{ "cells": [ { "cell_type": "markdown", "id": "1b7c3ea5", "metadata": {}, "source": [ "# Time Aware Symbols\n", "\n", "The `TimeAwareSymbol` object is an extension of `sympy.Symbol`. It is an important building block of DSGE models. This short tutorial shows what they are, and how they can be used. " ] }, { "cell_type": "code", "execution_count": 1, "id": "e7da03af", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:35.518982Z", "start_time": "2025-03-13T11:56:35.516796Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:03.919264Z", "iopub.status.busy": "2025-03-15T11:41:03.919038Z", "iopub.status.idle": "2025-03-15T11:41:03.926204Z", "shell.execute_reply": "2025-03-15T11:41:03.925728Z" } }, "outputs": [], "source": [ "import sys\n", "\n", "sys.path.append(\"/Users/jessegrabowski/Documents/Python/gEconpy/\")" ] }, { "cell_type": "code", "execution_count": 2, "id": "3f7366c6", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.832987Z", "start_time": "2025-03-13T11:56:35.521831Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:03.928840Z", "iopub.status.busy": "2025-03-15T11:41:03.928516Z", "iopub.status.idle": "2025-03-15T11:41:05.802656Z", "shell.execute_reply": "2025-03-15T11:41:05.802307Z" } }, "outputs": [], "source": [ "import sympy as sp\n", "\n", "from gEconpy.classes.time_aware_symbol import TimeAwareSymbol" ] }, { "cell_type": "markdown", "id": "ab37d8e0", "metadata": {}, "source": [ "## Basic Functionality\n", "\n", "A `TimeAwareSymbol` functions exactly like `sp.Symbol`, except that it accepts a `time_index` argument. `time_index` is an integer that gives an offset from time `t`. Here are three examples:" ] }, { "cell_type": "code", "execution_count": 3, "id": "01b55186", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.888040Z", "start_time": "2025-03-13T11:56:36.885825Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.804444Z", "iopub.status.busy": "2025-03-15T11:41:05.804117Z", "iopub.status.idle": "2025-03-15T11:41:05.806154Z", "shell.execute_reply": "2025-03-15T11:41:05.805953Z" } }, "outputs": [], "source": [ "x_t = TimeAwareSymbol(\"x\", time_index=0)\n", "x_tm1 = TimeAwareSymbol(\"x\", time_index=-1)\n", "x_tp1 = TimeAwareSymbol(\"x\", time_index=1)" ] }, { "cell_type": "code", "execution_count": 4, "id": "9c64cb0f", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.897115Z", "start_time": "2025-03-13T11:56:36.893559Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.807297Z", "iopub.status.busy": "2025-03-15T11:41:05.807221Z", "iopub.status.idle": "2025-03-15T11:41:05.809866Z", "shell.execute_reply": "2025-03-15T11:41:05.809669Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t}$" ], "text/plain": [ "x_t" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t" ] }, { "cell_type": "code", "execution_count": 5, "id": "49b98d71", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.902971Z", "start_time": "2025-03-13T11:56:36.900898Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.811213Z", "iopub.status.busy": "2025-03-15T11:41:05.811125Z", "iopub.status.idle": "2025-03-15T11:41:05.812883Z", "shell.execute_reply": "2025-03-15T11:41:05.812698Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t-1}$" ], "text/plain": [ "x_t-1" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_tm1" ] }, { "cell_type": "code", "execution_count": 6, "id": "c4698744", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.915738Z", "start_time": "2025-03-13T11:56:36.913886Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.813926Z", "iopub.status.busy": "2025-03-15T11:41:05.813844Z", "iopub.status.idle": "2025-03-15T11:41:05.815635Z", "shell.execute_reply": "2025-03-15T11:41:05.815318Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t+1}$" ], "text/plain": [ "x_t+1" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_tp1" ] }, { "cell_type": "markdown", "id": "4405c0b9", "metadata": {}, "source": [ "The variable is build from the provided `base_name` (in this case `x`), and the `time_index`. The `name` is constructed by combining these two elements." ] }, { "cell_type": "code", "execution_count": 7, "id": "d6e4a84b", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.927070Z", "start_time": "2025-03-13T11:56:36.925154Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.816611Z", "iopub.status.busy": "2025-03-15T11:41:05.816550Z", "iopub.status.idle": "2025-03-15T11:41:05.818136Z", "shell.execute_reply": "2025-03-15T11:41:05.817929Z" } }, "outputs": [ { "data": { "text/plain": [ "'x_t'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.name" ] }, { "cell_type": "code", "execution_count": 8, "id": "2d8feb2f", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.941089Z", "start_time": "2025-03-13T11:56:36.939163Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.819109Z", "iopub.status.busy": "2025-03-15T11:41:05.819049Z", "iopub.status.idle": "2025-03-15T11:41:05.820774Z", "shell.execute_reply": "2025-03-15T11:41:05.820598Z" } }, "outputs": [ { "data": { "text/plain": [ "'x'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.base_name" ] }, { "cell_type": "code", "execution_count": 9, "id": "30eefe6e", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.957765Z", "start_time": "2025-03-13T11:56:36.955754Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.821783Z", "iopub.status.busy": "2025-03-15T11:41:05.821710Z", "iopub.status.idle": "2025-03-15T11:41:05.823376Z", "shell.execute_reply": "2025-03-15T11:41:05.823193Z" } }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.time_index" ] }, { "cell_type": "markdown", "id": "356b81e4", "metadata": {}, "source": [ "There is also a `safe_name`, which can be used in contexts where the `+` or `-` in the name would be problematic. For the `safe_name`, `+` is replaced with `p`, and `-` with `m`." ] }, { "cell_type": "code", "execution_count": 10, "id": "282de615", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.970297Z", "start_time": "2025-03-13T11:56:36.968444Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.824331Z", "iopub.status.busy": "2025-03-15T11:41:05.824277Z", "iopub.status.idle": "2025-03-15T11:41:05.825955Z", "shell.execute_reply": "2025-03-15T11:41:05.825773Z" } }, "outputs": [ { "data": { "text/plain": [ "'x_t+1'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_tp1.name" ] }, { "cell_type": "code", "execution_count": 11, "id": "5a2d76d8", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.985131Z", "start_time": "2025-03-13T11:56:36.983297Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.826920Z", "iopub.status.busy": "2025-03-15T11:41:05.826863Z", "iopub.status.idle": "2025-03-15T11:41:05.828580Z", "shell.execute_reply": "2025-03-15T11:41:05.828378Z" } }, "outputs": [ { "data": { "text/plain": [ "'x_tp1'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_tp1.safe_name" ] }, { "cell_type": "code", "execution_count": 12, "id": "c52de32a", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:36.997700Z", "start_time": "2025-03-13T11:56:36.995862Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.829513Z", "iopub.status.busy": "2025-03-15T11:41:05.829454Z", "iopub.status.idle": "2025-03-15T11:41:05.831070Z", "shell.execute_reply": "2025-03-15T11:41:05.830893Z" } }, "outputs": [ { "data": { "text/plain": [ "'x_tm1'" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_tm1.safe_name" ] }, { "cell_type": "markdown", "id": "a453fd69", "metadata": {}, "source": [ "Otherwise, all other arguments to `sp.Symbol` can be specified. For example, assumptions are allowed:" ] }, { "cell_type": "code", "execution_count": 13, "id": "ad0b0a50", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.014621Z", "start_time": "2025-03-13T11:56:37.012512Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.832041Z", "iopub.status.busy": "2025-03-15T11:41:05.831968Z", "iopub.status.idle": "2025-03-15T11:41:05.833648Z", "shell.execute_reply": "2025-03-15T11:41:05.833460Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t}$" ], "text/plain": [ "x_t" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t_positive = TimeAwareSymbol(\"x\", time_index=0, positive=True)\n", "x_t_positive" ] }, { "cell_type": "code", "execution_count": 14, "id": "b9f43fec", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.026909Z", "start_time": "2025-03-13T11:56:37.024883Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.834619Z", "iopub.status.busy": "2025-03-15T11:41:05.834564Z", "iopub.status.idle": "2025-03-15T11:41:05.836294Z", "shell.execute_reply": "2025-03-15T11:41:05.836115Z" } }, "outputs": [ { "data": { "text/plain": [ "{'positive': True,\n", " 'finite': True,\n", " 'negative': False,\n", " 'commutative': True,\n", " 'complex': True,\n", " 'extended_positive': True,\n", " 'imaginary': False,\n", " 'extended_nonzero': True,\n", " 'zero': False,\n", " 'extended_nonpositive': False,\n", " 'extended_real': True,\n", " 'hermitian': True,\n", " 'nonnegative': True,\n", " 'nonzero': True,\n", " 'nonpositive': False,\n", " 'real': True,\n", " 'extended_negative': False,\n", " 'infinite': False,\n", " 'extended_nonnegative': True}" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t_positive.assumptions0" ] }, { "cell_type": "markdown", "id": "0f631adc", "metadata": {}, "source": [ "## Time manipulations\n", "\n", "After creation, several methods for manipulating the time index of the variable are available:\n", "\n", "- `step_forward` increments the `time_index`\n", "- `step_backward` decremetes the `time_index`\n", "- `set_t` allows `time_index` to be set directly" ] }, { "cell_type": "code", "execution_count": 15, "id": "586d93af", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.040775Z", "start_time": "2025-03-13T11:56:37.038747Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.837373Z", "iopub.status.busy": "2025-03-15T11:41:05.837320Z", "iopub.status.idle": "2025-03-15T11:41:05.838967Z", "shell.execute_reply": "2025-03-15T11:41:05.838765Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t+1}$" ], "text/plain": [ "x_t+1" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.step_forward()" ] }, { "cell_type": "code", "execution_count": 16, "id": "4035fa2d", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.056443Z", "start_time": "2025-03-13T11:56:37.054013Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.839942Z", "iopub.status.busy": "2025-03-15T11:41:05.839891Z", "iopub.status.idle": "2025-03-15T11:41:05.841496Z", "shell.execute_reply": "2025-03-15T11:41:05.841310Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t-1}$" ], "text/plain": [ "x_t-1" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.step_backward()" ] }, { "cell_type": "markdown", "id": "ecfe78a0", "metadata": {}, "source": [ "The most important feature of `TimeAwareSymbol`s is that when two `TimeAwareSymbol`s have the same `base_name` and `time_index`, they evaulate as equal" ] }, { "cell_type": "code", "execution_count": 17, "id": "9e4097ba", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.069553Z", "start_time": "2025-03-13T11:56:37.067637Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.842470Z", "iopub.status.busy": "2025-03-15T11:41:05.842399Z", "iopub.status.idle": "2025-03-15T11:41:05.843882Z", "shell.execute_reply": "2025-03-15T11:41:05.843714Z" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.step_backward() == x_tm1" ] }, { "cell_type": "code", "execution_count": 18, "id": "466bdba8", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.082648Z", "start_time": "2025-03-13T11:56:37.080785Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.844879Z", "iopub.status.busy": "2025-03-15T11:41:05.844824Z", "iopub.status.idle": "2025-03-15T11:41:05.846553Z", "shell.execute_reply": "2025-03-15T11:41:05.846366Z" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.step_forward() == x_tp1" ] }, { "cell_type": "markdown", "id": "bd087fd9", "metadata": {}, "source": [ "### Steady State\n", "\n", "Another important concept in analysis of dynamic systems is a \"steady state\". A steady state is an equlibrium such that $x_t = x_{t+1} = x_{t+1} = \\dots = x_{ss}$ \n", "\n", "Variables can be sent to the steady state using the `to_ss` method" ] }, { "cell_type": "code", "execution_count": 19, "id": "b29f782b", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.097514Z", "start_time": "2025-03-13T11:56:37.095669Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.847527Z", "iopub.status.busy": "2025-03-15T11:41:05.847475Z", "iopub.status.idle": "2025-03-15T11:41:05.849122Z", "shell.execute_reply": "2025-03-15T11:41:05.848925Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{ss}$" ], "text/plain": [ "x_ss" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.to_ss()" ] }, { "cell_type": "markdown", "id": "a7869fff", "metadata": {}, "source": [ "Since 'ss' is a special `time_index`, variables of the same `base_name` sent to the steady state will evaluate to equal" ] }, { "cell_type": "code", "execution_count": 20, "id": "bb60cdaa", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.107661Z", "start_time": "2025-03-13T11:56:37.105798Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.850118Z", "iopub.status.busy": "2025-03-15T11:41:05.850067Z", "iopub.status.idle": "2025-03-15T11:41:05.851667Z", "shell.execute_reply": "2025-03-15T11:41:05.851487Z" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_t.to_ss() == x_tp1.to_ss()" ] }, { "cell_type": "markdown", "id": "e4b6827c", "metadata": {}, "source": [ "# Working with Equations\n", "\n", "`TimeAwareSymbols` subclass `Symbol`, so anything you can do with a symbol can be done with a `TimeAwareSymbol`.\n", "\n", "For example, you can do algebraic manipulations" ] }, { "cell_type": "code", "execution_count": 21, "id": "509ea9eb", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.136558Z", "start_time": "2025-03-13T11:56:37.120150Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.852812Z", "iopub.status.busy": "2025-03-15T11:41:05.852735Z", "iopub.status.idle": "2025-03-15T11:41:05.872492Z", "shell.execute_reply": "2025-03-15T11:41:05.872317Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t+1} = \\frac{x_{t}}{2} + \\frac{x_{t-1}}{2}$" ], "text/plain": [ "Eq(x_t+1, x_t/2 + x_t-1/2)" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "eq = sp.Eq(x_tp1, (x_t + x_tm1) / 2)\n", "eq" ] }, { "cell_type": "markdown", "id": "415fadc9", "metadata": {}, "source": [ "Or call `sympy.solve`" ] }, { "cell_type": "code", "execution_count": 22, "id": "fc262e13", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.192409Z", "start_time": "2025-03-13T11:56:37.142429Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.873595Z", "iopub.status.busy": "2025-03-15T11:41:05.873533Z", "iopub.status.idle": "2025-03-15T11:41:05.922362Z", "shell.execute_reply": "2025-03-15T11:41:05.922167Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle 2 x_{t+1} - x_{t-1}$" ], "text/plain": [ "2*x_t+1 - x_t-1" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.solve(eq, x_t)[0]" ] }, { "cell_type": "markdown", "id": "ea9708ac", "metadata": {}, "source": [ "Usually, though, you are going to want to manipulate the time indices for entire expressions. Unfortunately, there is no `TimeAwareExpr`. Instead, `gEconpy` gives some helper functions for manipulation of equations that include `TimeAwareSymbols`. These are:\n", "\n", "- `step_equation_forward`\n", "- `step_equation_backward`\n", "- `eq_to_ss`\n", "\n", "The equations do what the names suggest" ] }, { "cell_type": "code", "execution_count": 23, "id": "886f615a", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.199017Z", "start_time": "2025-03-13T11:56:37.197640Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.923472Z", "iopub.status.busy": "2025-03-15T11:41:05.923389Z", "iopub.status.idle": "2025-03-15T11:41:05.924735Z", "shell.execute_reply": "2025-03-15T11:41:05.924553Z" } }, "outputs": [], "source": [ "from gEconpy.utilities import (\n", " eq_to_ss,\n", " step_equation_backward,\n", " step_equation_forward,\n", ")" ] }, { "cell_type": "code", "execution_count": 24, "id": "d5f266c3", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.207620Z", "start_time": "2025-03-13T11:56:37.202694Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.925729Z", "iopub.status.busy": "2025-03-15T11:41:05.925657Z", "iopub.status.idle": "2025-03-15T11:41:05.929826Z", "shell.execute_reply": "2025-03-15T11:41:05.929648Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t+2} = \\frac{x_{t}}{2} + \\frac{x_{t+1}}{2}$" ], "text/plain": [ "Eq(x_t+2, x_t/2 + x_t+1/2)" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "step_equation_forward(eq)" ] }, { "cell_type": "code", "execution_count": 25, "id": "7346e163", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.216203Z", "start_time": "2025-03-13T11:56:37.211676Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.930800Z", "iopub.status.busy": "2025-03-15T11:41:05.930746Z", "iopub.status.idle": "2025-03-15T11:41:05.934609Z", "shell.execute_reply": "2025-03-15T11:41:05.934421Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\frac{x_{t-1}}{2} + \\frac{x_{t-2}}{2}$" ], "text/plain": [ "Eq(x_t, x_t-1/2 + x_t-2/2)" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "step_equation_backward(eq)" ] }, { "cell_type": "code", "execution_count": 26, "id": "4a86a257", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.226926Z", "start_time": "2025-03-13T11:56:37.224772Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.935543Z", "iopub.status.busy": "2025-03-15T11:41:05.935488Z", "iopub.status.idle": "2025-03-15T11:41:05.937701Z", "shell.execute_reply": "2025-03-15T11:41:05.937526Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "eq_to_ss(eq.lhs - eq.rhs)" ] }, { "cell_type": "markdown", "id": "729de928", "metadata": {}, "source": [ "# Example 1: $AR(1)$ to $MA(\\infty)$\n", "\n", "Using these tools, we can do powerful analysis on time series. \n", "\n", "Consider an AR(1) system:\n", "\n", "$$ x_t = \\rho x_{t-1} + \\epsilon_t$$\n", "\n", "We can use `step_equation_backward` together with repeated substitution to derive the $MA(\\infty)$ form of the $AR(1)$ system" ] }, { "cell_type": "code", "execution_count": 27, "id": "2952f2e5", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.233082Z", "start_time": "2025-03-13T11:56:37.231508Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.938796Z", "iopub.status.busy": "2025-03-15T11:41:05.938740Z", "iopub.status.idle": "2025-03-15T11:41:05.940193Z", "shell.execute_reply": "2025-03-15T11:41:05.940012Z" } }, "outputs": [], "source": [ "eps_t = TimeAwareSymbol(\"\\\\varepsilon\", 0)\n", "rho = sp.Symbol(\"rho\", positive=True)\n", "\n", "# This is only the right-hand side, remember there's an x_t on the left\n", "ar_1_rhs = rho * x_tm1 + eps_t" ] }, { "cell_type": "markdown", "id": "4af732d4", "metadata": {}, "source": [ "We will iterative shift the equation backwards and substitute" ] }, { "cell_type": "code", "execution_count": 28, "id": "2bdbb2eb", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.340161Z", "start_time": "2025-03-13T11:56:37.239970Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.941188Z", "iopub.status.busy": "2025-03-15T11:41:05.941133Z", "iopub.status.idle": "2025-03-15T11:41:05.973386Z", "shell.execute_reply": "2025-03-15T11:41:05.973178Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho x_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho*x_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{2} x_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**2*x_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{3} x_{t-3} + \\rho^{2} \\varepsilon_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**3*x_t-3 + rho**2*\\varepsilon_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{4} x_{t-4} + \\rho^{3} \\varepsilon_{t-3} + \\rho^{2} \\varepsilon_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**4*x_t-4 + rho**3*\\varepsilon_t-3 + rho**2*\\varepsilon_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{5} x_{t-5} + \\rho^{4} \\varepsilon_{t-4} + \\rho^{3} \\varepsilon_{t-3} + \\rho^{2} \\varepsilon_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**5*x_t-5 + rho**4*\\varepsilon_t-4 + rho**3*\\varepsilon_t-3 + rho**2*\\varepsilon_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{6} x_{t-6} + \\rho^{5} \\varepsilon_{t-5} + \\rho^{4} \\varepsilon_{t-4} + \\rho^{3} \\varepsilon_{t-3} + \\rho^{2} \\varepsilon_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**6*x_t-6 + rho**5*\\varepsilon_t-5 + rho**4*\\varepsilon_t-4 + rho**3*\\varepsilon_t-3 + rho**2*\\varepsilon_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{7} x_{t-7} + \\rho^{6} \\varepsilon_{t-6} + \\rho^{5} \\varepsilon_{t-5} + \\rho^{4} \\varepsilon_{t-4} + \\rho^{3} \\varepsilon_{t-3} + \\rho^{2} \\varepsilon_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**7*x_t-7 + rho**6*\\varepsilon_t-6 + rho**5*\\varepsilon_t-5 + rho**4*\\varepsilon_t-4 + rho**3*\\varepsilon_t-3 + rho**2*\\varepsilon_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{8} x_{t-8} + \\rho^{7} \\varepsilon_{t-7} + \\rho^{6} \\varepsilon_{t-6} + \\rho^{5} \\varepsilon_{t-5} + \\rho^{4} \\varepsilon_{t-4} + \\rho^{3} \\varepsilon_{t-3} + \\rho^{2} \\varepsilon_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**8*x_t-8 + rho**7*\\varepsilon_t-7 + rho**6*\\varepsilon_t-6 + rho**5*\\varepsilon_t-5 + rho**4*\\varepsilon_t-4 + rho**3*\\varepsilon_t-3 + rho**2*\\varepsilon_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{9} x_{t-9} + \\rho^{8} \\varepsilon_{t-8} + \\rho^{7} \\varepsilon_{t-7} + \\rho^{6} \\varepsilon_{t-6} + \\rho^{5} \\varepsilon_{t-5} + \\rho^{4} \\varepsilon_{t-4} + \\rho^{3} \\varepsilon_{t-3} + \\rho^{2} \\varepsilon_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**9*x_t-9 + rho**8*\\varepsilon_t-8 + rho**7*\\varepsilon_t-7 + rho**6*\\varepsilon_t-6 + rho**5*\\varepsilon_t-5 + rho**4*\\varepsilon_t-4 + rho**3*\\varepsilon_t-3 + rho**2*\\varepsilon_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho^{10} x_{t-10} + \\rho^{9} \\varepsilon_{t-9} + \\rho^{8} \\varepsilon_{t-8} + \\rho^{7} \\varepsilon_{t-7} + \\rho^{6} \\varepsilon_{t-6} + \\rho^{5} \\varepsilon_{t-5} + \\rho^{4} \\varepsilon_{t-4} + \\rho^{3} \\varepsilon_{t-3} + \\rho^{2} \\varepsilon_{t-2} + \\rho \\varepsilon_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho**10*x_t-10 + rho**9*\\varepsilon_t-9 + rho**8*\\varepsilon_t-8 + rho**7*\\varepsilon_t-7 + rho**6*\\varepsilon_t-6 + rho**5*\\varepsilon_t-5 + rho**4*\\varepsilon_t-4 + rho**3*\\varepsilon_t-3 + rho**2*\\varepsilon_t-2 + rho*\\varepsilon_t-1 + \\varepsilon_t)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "curr_x = x_t\n", "curr_rhs = ar_1_rhs.copy()\n", "for _ in range(10):\n", " display(sp.Eq(x_t, ar_1_rhs))\n", " curr_x = curr_x.step_backward()\n", " curr_rhs = step_equation_backward(curr_rhs)\n", " ar_1_rhs = ar_1_rhs.subs({curr_x: curr_rhs}).expand()" ] }, { "cell_type": "markdown", "id": "09fe5335", "metadata": {}, "source": [ "Since $\\rho \\in (0, 1)$, the leading term will eventually go to zero, and we recover the well-known equation:\n", "\n", "$$ x_t = \\sum_{s=0}^t \\rho^s \\varepsilon_{t-s}$$\n", "\n", "I don't know any way for sympy to automatically detect the presence of this series and rewrite into summation notation -- if you do, open an issue so I can update this example! " ] }, { "cell_type": "markdown", "id": "b9ca6207", "metadata": {}, "source": [ "# Example 2: Analytical Steady State\n", "\n", "More useful, perhaps, is that we can use `TimeAwareSymbols` to derive the steady state of a dynamical system. Consider the AR(1) equation again:" ] }, { "cell_type": "code", "execution_count": 29, "id": "0330395e", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.346268Z", "start_time": "2025-03-13T11:56:37.343969Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.974504Z", "iopub.status.busy": "2025-03-15T11:41:05.974424Z", "iopub.status.idle": "2025-03-15T11:41:05.976241Z", "shell.execute_reply": "2025-03-15T11:41:05.976044Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\rho x_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, rho*x_t-1 + \\varepsilon_t)" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ar_1 = sp.Eq(x_t, rho * x_tm1 + eps_t)\n", "ar_1" ] }, { "cell_type": "markdown", "id": "25fd61be", "metadata": {}, "source": [ "We can send this to the steady-state and compute the value of $x_{ss}$" ] }, { "cell_type": "code", "execution_count": 30, "id": "c78ba100", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.366701Z", "start_time": "2025-03-13T11:56:37.352569Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.977248Z", "iopub.status.busy": "2025-03-15T11:41:05.977192Z", "iopub.status.idle": "2025-03-15T11:41:05.988311Z", "shell.execute_reply": "2025-03-15T11:41:05.988123Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\frac{\\varepsilon_{ss}}{\\rho - 1}$" ], "text/plain": [ "-\\varepsilon_ss/(rho - 1)" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.solve(eq_to_ss(ar_1), x_t.to_ss())[0]" ] }, { "cell_type": "markdown", "id": "2f5a8fc7", "metadata": {}, "source": [ "Obviously we need to know something about $\\varepsilon_{ss}$. We typtically assume $\\varepsilon_t ~ N(0, \\sigma)$. In the (deterministic!) steady state, there are no shocks, so $\\varepsilon_{ss} = 0$. \n", "\n", "Let's generalize the equation to allow a drift in the shocks, so $\\varepsilon_t ~ N(\\mu, \\sigma)$. We can pull out the $\\mu$ using the properties of normal distributions to obtain:\n", "\n", "$$x_t = \\mu + \\rho x_{t-1} + \\varepsilon_t$$" ] }, { "cell_type": "code", "execution_count": 31, "id": "1c8ee016", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.378061Z", "start_time": "2025-03-13T11:56:37.374587Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.989381Z", "iopub.status.busy": "2025-03-15T11:41:05.989324Z", "iopub.status.idle": "2025-03-15T11:41:05.992317Z", "shell.execute_reply": "2025-03-15T11:41:05.992132Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle x_{t} = \\mu + \\rho x_{t-1} + \\varepsilon_{t}$" ], "text/plain": [ "Eq(x_t, mu + rho*x_t-1 + \\varepsilon_t)" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mu = sp.Symbol(\"mu\")\n", "ar_1 = sp.Eq(x_t, mu + rho * x_tm1 + eps_t)\n", "ar_1" ] }, { "cell_type": "markdown", "id": "71c140ff", "metadata": {}, "source": [ "Solving for the steady state gives the well-known expression for the AR(1) steady state" ] }, { "cell_type": "code", "execution_count": 32, "id": "403eced5", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.395395Z", "start_time": "2025-03-13T11:56:37.388529Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:05.993597Z", "iopub.status.busy": "2025-03-15T11:41:05.993539Z", "iopub.status.idle": "2025-03-15T11:41:05.999375Z", "shell.execute_reply": "2025-03-15T11:41:05.999167Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\frac{\\mu}{\\rho - 1}$" ], "text/plain": [ "-mu/(rho - 1)" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.solve(eq_to_ss(ar_1).subs({eps_t.to_ss(): 0}), x_t.to_ss())[0]" ] }, { "cell_type": "markdown", "id": "8f4c3365", "metadata": {}, "source": [ "# Example 3: Deterministic RBC\n", "\n", "Consider an RBC model defined (in reduced form) as follows:" ] }, { "cell_type": "code", "execution_count": 33, "id": "b95f909d", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.408567Z", "start_time": "2025-03-13T11:56:37.400727Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.000475Z", "iopub.status.busy": "2025-03-15T11:41:06.000418Z", "iopub.status.idle": "2025-03-15T11:41:06.006890Z", "shell.execute_reply": "2025-03-15T11:41:06.006705Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\beta \\left(\\alpha K_{t+1}^{\\alpha - 1} e^{A_{t+1}} - \\delta + 1\\right) + \\frac{C_{t+1}}{C_{t}}$" ], "text/plain": [ "-beta*(alpha*K_t+1**(alpha - 1)*exp(A_t+1) - delta + 1) + C_t+1/C_t" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle C_{t} - K_{t} \\left(1 - \\delta\\right) - K_{t}^{\\alpha} e^{A_{t}} + K_{t+1}$" ], "text/plain": [ "C_t - K_t*(1 - delta) - K_t**alpha*exp(A_t) + K_t+1" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle - \\rho A_{t-1} + A_{t} - \\varepsilon_{t}$" ], "text/plain": [ "-rho*A_t-1 + A_t - \\varepsilon_t" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "C, K, A, epsilon = [TimeAwareSymbol(x, 0) for x in [\"C\", \"K\", \"A\", \"\\\\varepsilon\"]]\n", "alpha, beta, delta, rho = sp.symbols(\n", " \"alpha beta delta rho\",\n", ")\n", "\n", "euler = C.step_forward() / C - beta * (alpha * sp.exp(A.step_forward()) * K.step_forward() ** (alpha - 1) + 1 - delta)\n", "transition = K.step_forward() - (sp.exp(A) * K**alpha + (1 - delta) * K - C)\n", "shock = A - rho * A.step_backward() - epsilon\n", "\n", "system = [euler, transition, shock]\n", "for eq in system:\n", " display(eq)" ] }, { "cell_type": "markdown", "id": "641d56b8", "metadata": {}, "source": [ "We can use `TimeAwareSymbols` to solve for the deterministic steady state of this entire system in one fell swoop" ] }, { "cell_type": "code", "execution_count": 34, "id": "53357a4e", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.611387Z", "start_time": "2025-03-13T11:56:37.418226Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.008005Z", "iopub.status.busy": "2025-03-15T11:41:06.007927Z", "iopub.status.idle": "2025-03-15T11:41:06.231687Z", "shell.execute_reply": "2025-03-15T11:41:06.231480Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle A_{ss} = 0$" ], "text/plain": [ "Eq(A_ss, 0)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle C_{ss} = - \\delta \\left(\\frac{\\beta \\left(\\delta - 1\\right) + 1}{\\alpha \\beta}\\right)^{\\frac{1}{\\alpha - 1}} + \\left(\\left(\\frac{\\beta \\left(\\delta - 1\\right) + 1}{\\alpha \\beta}\\right)^{\\frac{1}{\\alpha - 1}}\\right)^{\\alpha}$" ], "text/plain": [ "Eq(C_ss, -delta*((beta*(delta - 1) + 1)/(alpha*beta))**(1/(alpha - 1)) + (((beta*(delta - 1) + 1)/(alpha*beta))**(1/(alpha - 1)))**alpha)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle K_{ss} = \\left(\\frac{\\beta \\delta - \\beta + 1}{\\alpha \\beta}\\right)^{\\frac{1}{\\alpha - 1}}$" ], "text/plain": [ "Eq(K_ss, ((beta*delta - beta + 1)/(alpha*beta))**(1/(alpha - 1)))" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ss_system = [eq_to_ss(eq).simplify().subs({epsilon.to_ss(): 0.0}) for eq in system]\n", "ss_dict = sp.solve(ss_system, [K.to_ss(), C.to_ss(), A.to_ss()], dict=True)[0]\n", "\n", "for var, eq in ss_dict.items():\n", " display(sp.Eq(var, eq))" ] }, { "cell_type": "markdown", "id": "0c70e2a6", "metadata": {}, "source": [ "Using `sp.lambdify`, we can compile a function that computes the steady state of the system given input parameters. This is essentially what `gEconpy` does internally when solving for the steady state of a DSGE model." ] }, { "cell_type": "code", "execution_count": 35, "id": "dd01f69d", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.623257Z", "start_time": "2025-03-13T11:56:37.617458Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.232907Z", "iopub.status.busy": "2025-03-15T11:41:06.232840Z", "iopub.status.idle": "2025-03-15T11:41:06.239095Z", "shell.execute_reply": "2025-03-15T11:41:06.238910Z" } }, "outputs": [ { "data": { "text/plain": [ "[0, 1.9825902234443513, 19.50030034168597]" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f_ss = sp.lambdify([alpha, beta, delta, rho], list(ss_dict.values()))\n", "param_dict = {\"alpha\": 0.33, \"beta\": 0.99, \"delta\": 0.035, \"rho\": 0.95}\n", "f_ss(**param_dict)" ] }, { "cell_type": "markdown", "id": "194c01e7", "metadata": {}, "source": [ "### Phase Diagram\n", "\n", "Since this system is deterministic, we can construct a phase diagram showing system dynamics for a given $(C_t, K_t)$ tuple. To do this, we first need to re-arrange the Euler equation and law of motion of capital to obtain rates of change, $\\Delta C_{t+1}$ and $\\Delta K_{t+1}$. For $\\Delta C_{t+1}$ we get:\n", "\n", "$$\\begin{align}\n", "\\Delta C_{t+1} &= C_{t+1} - C_t \\\\\n", "&= \\beta C_t \\left (\\alpha K_{t+1}^{\\alpha - 1} + (1 - \\delta) \\right ) - C_t \\\\\n", "&= \\left (\\beta \\alpha K_{t+1}^{\\alpha - 1} + \\beta (1 - \\delta) - 1 \\right ) C_t\n", "\\end{align}$$\n", "\n", "For the second line, the Euler equation was solved for $C_{t+1}$ and substituted.\n", "\n", "For $\\Delta K_{t+1}$:\n", "\n", "$$\\begin{align}\n", "\\Delta K_{t+1} &= K_{t+1} - K_t \\\\\n", "&= K_t^\\alpha + (1 - \\delta) K_t - C_t \\\\\n", "\\end{align}$$\n", "\n", "Computing these $\\Delta$s over a grid of points will give us a phase diagram. Let's look at how these can be solved for with `sympy`:" ] }, { "cell_type": "code", "execution_count": 36, "id": "795a1847", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.645702Z", "start_time": "2025-03-13T11:56:37.629074Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.240187Z", "iopub.status.busy": "2025-03-15T11:41:06.240125Z", "iopub.status.idle": "2025-03-15T11:41:06.254988Z", "shell.execute_reply": "2025-03-15T11:41:06.254784Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\beta C_{t} \\left(\\alpha K_{t+1}^{\\alpha - 1} e^{A_{t+1}} - \\delta + 1\\right)$" ], "text/plain": [ "beta*C_t*(alpha*K_t+1**(alpha - 1)*exp(A_t+1) - delta + 1)" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "C_tp1 = sp.solve(euler, C.set_t(1))[0]\n", "C_tp1" ] }, { "cell_type": "code", "execution_count": 37, "id": "8eb5d492", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.655281Z", "start_time": "2025-03-13T11:56:37.651393Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.256094Z", "iopub.status.busy": "2025-03-15T11:41:06.256033Z", "iopub.status.idle": "2025-03-15T11:41:06.259141Z", "shell.execute_reply": "2025-03-15T11:41:06.258957Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle C_{t} \\left(\\beta \\left(\\alpha K_{t+1}^{\\alpha - 1} - \\delta + 1\\right) - 1\\right)$" ], "text/plain": [ "C_t*(beta*(alpha*K_t+1**(alpha - 1) - delta + 1) - 1)" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Delta_C = (C_tp1 - C).collect(C).subs({A.set_t(1): 0})\n", "Delta_C" ] }, { "cell_type": "markdown", "id": "14b4090d", "metadata": {}, "source": [ "This solution isn't exactly what we need, though, because we don't want the $K_{t+1}$. Use the transition equation to write it in terms of time $t$ variables only" ] }, { "cell_type": "code", "execution_count": 38, "id": "a9deb7ed", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.671050Z", "start_time": "2025-03-13T11:56:37.661382Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.260148Z", "iopub.status.busy": "2025-03-15T11:41:06.260087Z", "iopub.status.idle": "2025-03-15T11:41:06.268678Z", "shell.execute_reply": "2025-03-15T11:41:06.268488Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle C_{t} \\left(\\beta \\left(\\alpha \\left(- \\delta K_{t} - C_{t} + K_{t} + K_{t}^{\\alpha}\\right)^{\\alpha - 1} - \\delta + 1\\right) - 1\\right)$" ], "text/plain": [ "C_t*(beta*(alpha*(-delta*K_t - C_t + K_t + K_t**alpha)**(alpha - 1) - delta + 1) - 1)" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "K_tp1 = sp.solve(transition.subs({A: 0}), K.set_t(1))[0]\n", "Delta_C = Delta_C.subs({K.set_t(1): K_tp1})\n", "Delta_C" ] }, { "cell_type": "code", "execution_count": 39, "id": "d9735240", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.689238Z", "start_time": "2025-03-13T11:56:37.677692Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.269707Z", "iopub.status.busy": "2025-03-15T11:41:06.269649Z", "iopub.status.idle": "2025-03-15T11:41:06.280410Z", "shell.execute_reply": "2025-03-15T11:41:06.280236Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\delta K_{t} - C_{t} + K_{t} + K_{t}^{\\alpha}$" ], "text/plain": [ "-delta*K_t - C_t + K_t + K_t**alpha" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "K_tp1 = sp.solve(transition, K.set_t(1))[0].subs({A: 0})\n", "K_tp1" ] }, { "cell_type": "code", "execution_count": 40, "id": "bfae4a64", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.700748Z", "start_time": "2025-03-13T11:56:37.698083Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.281456Z", "iopub.status.busy": "2025-03-15T11:41:06.281398Z", "iopub.status.idle": "2025-03-15T11:41:06.283316Z", "shell.execute_reply": "2025-03-15T11:41:06.283158Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\delta K_{t} - C_{t} + K_{t}^{\\alpha}$" ], "text/plain": [ "-delta*K_t - C_t + K_t**alpha" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Delta_K = K_tp1 - K\n", "Delta_K" ] }, { "cell_type": "markdown", "id": "796b37fe", "metadata": {}, "source": [ "Compile a function with `sp.lambdify`" ] }, { "cell_type": "code", "execution_count": 41, "id": "7ed49878", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.709770Z", "start_time": "2025-03-13T11:56:37.707176Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.284381Z", "iopub.status.busy": "2025-03-15T11:41:06.284319Z", "iopub.status.idle": "2025-03-15T11:41:06.286585Z", "shell.execute_reply": "2025-03-15T11:41:06.286403Z" } }, "outputs": [], "source": [ "parameters = list(param_dict.keys())\n", "f_Delta = sp.lambdify([C, K, *parameters], [Delta_C, Delta_K])" ] }, { "cell_type": "markdown", "id": "02ff77d8", "metadata": {}, "source": [ "We are also interested in when $\\Delta C_{t+1} = \\Delta K_{t+1} = 0$, because these equations will form boundaries in phase space. We can do this by using `sp.solve`. \n", "\n", "First, solve $\\Delta C_{t+1}$ for $C_t$. There will be two solutions, and one will be zero (since the whole expression is multiplied by $C_t$). We're only interested in the non-trivial solution." ] }, { "cell_type": "code", "execution_count": 42, "id": "fe50f783", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.788580Z", "start_time": "2025-03-13T11:56:37.716006Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.287591Z", "iopub.status.busy": "2025-03-15T11:41:06.287534Z", "iopub.status.idle": "2025-03-15T11:41:06.358527Z", "shell.execute_reply": "2025-03-15T11:41:06.358324Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\delta K_{t} + K_{t} + K_{t}^{\\alpha} - \\left(\\frac{\\beta \\delta - \\beta + 1}{\\alpha \\beta}\\right)^{\\frac{1}{\\alpha - 1}}$" ], "text/plain": [ "-delta*K_t + K_t + K_t**alpha - ((beta*delta - beta + 1)/(alpha*beta))**(1/(alpha - 1))" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "boundary_1 = sp.solve(Delta_C, C)[1]\n", "boundary_1" ] }, { "cell_type": "markdown", "id": "1c56b009", "metadata": {}, "source": [ "Next, solve $\\Delta K_{t+1}$ for $C_t$" ] }, { "cell_type": "code", "execution_count": 43, "id": "13ef207b", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.801677Z", "start_time": "2025-03-13T11:56:37.795610Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.359670Z", "iopub.status.busy": "2025-03-15T11:41:06.359606Z", "iopub.status.idle": "2025-03-15T11:41:06.364501Z", "shell.execute_reply": "2025-03-15T11:41:06.364290Z" } }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\delta K_{t} + K_{t}^{\\alpha}$" ], "text/plain": [ "-delta*K_t + K_t**alpha" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "boundary_2 = sp.solve(Delta_K, C)[0]\n", "boundary_2" ] }, { "cell_type": "markdown", "id": "05f3d5ea", "metadata": {}, "source": [ "Compile a function" ] }, { "cell_type": "code", "execution_count": 44, "id": "53ab0394", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.810980Z", "start_time": "2025-03-13T11:56:37.808242Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.365669Z", "iopub.status.busy": "2025-03-15T11:41:06.365610Z", "iopub.status.idle": "2025-03-15T11:41:06.368026Z", "shell.execute_reply": "2025-03-15T11:41:06.367799Z" } }, "outputs": [], "source": [ "f_boundaries = sp.lambdify([K, *parameters], [boundary_1, boundary_2])" ] }, { "cell_type": "markdown", "id": "5430c224", "metadata": {}, "source": [ "Functions created with `sp.lambdify` are inherently vectorized, so we can make a grid of capital values and compute the associated consumpions" ] }, { "cell_type": "code", "execution_count": 45, "id": "1bdf3095", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:37.819786Z", "start_time": "2025-03-13T11:56:37.817330Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.369107Z", "iopub.status.busy": "2025-03-15T11:41:06.369048Z", "iopub.status.idle": "2025-03-15T11:41:06.371212Z", "shell.execute_reply": "2025-03-15T11:41:06.371017Z" } }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "k_max = 120\n", "c_max = k_max ** param_dict[\"alpha\"] # We can't consume more than exists in the economy!\n", "\n", "k_grid = np.linspace(1e-2, k_max, 100)\n", "c_grid = np.linspace(1e-2, c_max, 100)\n", "boundaries = f_boundaries(k_grid, **param_dict)\n", "\n", "kk, cc = np.meshgrid(k_grid, c_grid)\n", "with np.errstate(divide=\"ignore\", invalid=\"ignore\"):\n", " c_delta, k_delta = f_Delta(cc, kk, **param_dict)" ] }, { "cell_type": "code", "execution_count": 46, "id": "2a689056", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:38.026922Z", "start_time": "2025-03-13T11:56:37.827639Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.372173Z", "iopub.status.busy": "2025-03-15T11:41:06.372120Z", "iopub.status.idle": "2025-03-15T11:41:06.574375Z", "shell.execute_reply": "2025-03-15T11:41:06.574177Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/QAAAEwCAYAAAAZwzrpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAL1wAAC9cBJXXS8AABAABJREFUeJzsvWeUHcW1sP2cHGfmTI4KMyNplLNQzhFlRJJIIotgcjY2GAwY29jYYDBBICGQUM45a3LOOeec5+TU348ejtG1se/73fva5vV51tJamu7e1buq+/TeVbVrl0QQBAEvXrx48eLFixcvXrx48eLFy48K6b9aAS9evHjx4sWLFy9evHjx4sXL/zneDr0XL168ePHixYsXL168ePHyI8TboffixYsXL168ePHixYsXL15+hHg79F68ePHixYsXL168ePHixcuPEG+H3osXL168ePHixYsXL168ePkR4u3Qe/HixYsXL168ePHixYsXLz9CvB16L168ePHixYsXL168ePHi5UeIt0Pv5d+K2tpaJBIJra2t/2pV/tvs3r2badOm/avV+F/h+eef5+233/5fK+9f8Tz/0T1/8YtfsGrVqn+aPv8dPv/8c7Zu3fqvVsOLFy9e/m3x+gf/Wrz+wb+OefPmcfny5X+1Gl7+jfF26L3801m0aBEqlQq9Xo/BYGDWrFlcunTpX63WX3H16lUkEgl6vR5fX1+CgoJYsGABn3zyCS6Xy3PdnXfeSVZW1r9Q0/8damtr2bVrF08//fR1x7/99lvmzJmDj48PgYGBTJ8+nQ8//PC6NvAC586dQyKR8Oyzz/7VuUWLFvHuu+96/u7o6GDGjBmsXbsWs9nM/fffT0JCAjk5Of9Mlb148eLl3wqvf/Dvidc/+J/x9/wDgPT0dNavX09gYCC+vr6MHj2al156ic7OTgDeeOMNnnvuuX+myl5+ZHg79F7+JbzxxhsYjUba2tqYPXs2GzdupK+v71+t1l+hUqkwGo309/dTX1/Pc889x69+9Stuvvnmf5oODofjn3Kfjz76iJtuugmdTuc59tprr/HYY4+xbds2Ghoa6Ozs5IsvviA+Pp6BgYH/6zr9s+r+v8Fnn33G2rVr2bVrFzab7Qevq6mpYc6cOYwfP56jR4+i1WqRyWTcfffdfPjhh/9Ejb148eLl3w+vf/Dfx+sf/Dj4e/7BuXPnWLBgAePHj6egoID+/n4uXryIXC4nLS0NgCVLltDT00N8fPy/Qn0vPwK8HXov/1JUKhUPPPAARqORyspKz/Hz588TFxeHr6/vXxnzn/70p0RHR6PX6xk5ciSffPKJ55zdbufhhx8mODgYHx8fYmNjOXbsmOf81atXmT17Nv7+/sTFxbFz587/tq5arZYNGzawe/dujh07xvnz5wHYuXMno0eP9lz3xz/+kbi4OHx8fBg2bBhvvPEGgiB4zpeWlrJgwQJ8fHyYMmUK77//Pmq12nN+0aJFPPvss6xduxYfHx+2b99OXl4eCxcuJDAwkICAANavX099fb1H5t5772Xr1q3cdddd+Pr6MmLECK5du8bp06cZPXo0fn5+3H///X931PzYsWMsX77c83dNTQ3vvPMOH374IVu3bsVgMCCRSJg0aRIHDhzAYDAAkJ+fz+LFi/H39yc2NpZ33nnnB+/jdDp54403iI6OJiAggGXLllFcXPx36+5wOHjzzTcZMWIE/v7+LFu2jPLyco9Ma2sr69atw8/Pj7i4OC5cuPCPHiVut5vHH38cg8HA8OHDPe+Q0+kkIiKCkydPXnf96tWrefXVV3+wvLa2Nk6ePMmHH35ISEgIR44c+ZvX5ebmMmfOHDZt2sSOHTuQy+Wec8uWLeP48ePXvStevHjx8p+K1z/w+gf/Cf7B448/zl133cU777xDREQEAFFRUbz99tusWbMGAIlEwtKlSzl69Og/1N/LfyiCFy//ZBYuXCj86le/EgRBEMxms/DUU08Jvr6+Ql9fn1BTUyMAwsaNG4Wenh6hs7NTGDdunPD666975L/55huhublZcLvdwoULFwS1Wi1cu3ZNEARB+PTTT4UpU6YIXV1dgtvtFmpra4WSkhJBEAShoKBA8PHxEU6fPi24XC4hKytLCAwMFC5fvvw39bxy5YqgUqn+5rnIyEjhpZdeEgRBEHbs2CHExcV5zh08eFCorq4W3G63kJWVJQQFBQm7du0SBEEQHA6HMGLECOGZZ54RLBaLUFFRIYwZM+a6+yxcuFAwGAxCfHy84Ha7BZPJJOTl5QlXrlwRbDab0NPTI9x0003CkiVLPDJbt24VtFqtcPHiRcHpdAo/+9nPhIiICGHLli1CX1+fUF9fL4SEhAjffvvt36yPyWQSAKGoqMhz7NNPPxWkUqlgs9n+9oMUBKG3t1cICQkR3n77bcFmswlFRUXCsGHDhPfff18QBMHzPFtaWgRBEIR33nlHGDlypFBWViZYrVbhZz/7mRAZGSkYjcYfrPtLL70kzJ07V6irqxPsdrvwzjvvCCNGjPDotWTJEuHmm28W+vv7haamJmHWrFnX3fO/8vrrrwsymUx4//33BbvdLly5ckXQaDSed+inP/2psHHjRs/1TU1NglwuFyorK3+wHd555x3P8/j1r38tLF68+LrzCxcuFNasWSP4+fl52ua/0tnZKQBCTU3ND97HixcvXv5fxusfeP2D/yT/oKysTACEixcv/qD8d7z33nvCwoUL/+F1Xv4z8XbovfzTWbhwoaBWqwU/Pz8hJCREWLhwoRAfHy8Iwl8+8NnZ2Z7rf/aznwlr1679wfI2bNgg/PznPxcEQTSeI0eOFBITEwWHw3HddY899piwbdu2644988wzwn333fc3y/17BvuGG24QHnzwQc89v2+w/ytPPfWUcPfddwuCIAgJCQmCRqMRLBaL5/wnn3zyVwb74Ycf/sHyBEEQcnJyBJlMJtjtdkEQRIO9YcMGz/mioiIBEHJycjzHbr31VuH555//m+U1NTUJgNDQ0OA59tZbbwmhoaF/V4/du3cLw4YNE9xut+fYn/70J2HChAmCIPy1wR45cqTw5Zdfeq51Op1CWFiYcOjQob9Zd7fbLej1eiElJeW6YwEBAcK1a9eExsZGARBqa2s950+fPv0PDXZ0dPR1x7Zu3So88MADgiAIQnV1taBUKoW2tjZBEATh7bff/qsO+vdxu91CbGysxylrbm4W5HK5UFFR4blm4cKFgq+vrxAREXFdG38fu90uAEJWVtYP3suLFy9e/l/G6x94/YPv+E/wDxITEwXAM7D09/jss888befFy3/FG3Lv5V/C66+/Tm9vL21tbVy9epX58+dfdz48PNzzf51Od916rA8++IAJEyZgMBgwGAycPn2ajo4OAO666y4eeOABnnzySYKDg7n11lupqakBxKQuX331lUfOYDDw+eef09LS8n+sf2NjI4GBgX/z3LfffsuMGTMICAjAz8+PTz75xKNfU1MToaGh14XQDRs27K/K+K/Hqqqq2LRpE5GRkfj6+rJgwQJcLhfd3d2ea8LCwjz/12q1f/PYD61r8/f3B6C/v99zLDg4mM7OTux2+99uBKChoYHo6GgkEonnWGxsLI2NjT94fUxMjOdvmUzGsGHDrrv++3Xv7OzEaDSycuVKzzPz9/fHYrHQ2NhIY2MjUqmUoUOHemSio6N/UN+/dQ+A4cOH09TU5JFfsGABX3/9NSCGTD744IM/WNalS5dob2/3rJsMDw9n+fLlbN++/brrXnjhBebPn8+CBQuora39q3K+a/uAgIB/qL8XL168/L+K1z/w+gfwn+EfBAcHA3jK/3v09/d7/QMvP4i3Q+/lR0VSUhKvvPIKn3/+OV1dXfT29rJ69WrPGjS5XM5LL71EVlYW1dXVyGQytm3bBsDQoUN5+OGH6e3t9fwbGBjgzJkz/8c6NDc3s3jx4r8619DQwF133cXrr79OW1sbfX19PPLIIx79IiMjaWtruy4pyvfXun2HVHr9T/ORRx7BYDB4EqZ8lxhF+F9ab63RaIiLi7tuvdp36+UOHDjwg3JDhgyhtrb2Oj2qq6uJior6weu/c6BAXKtWV1d33fXfr3tQUBBarZarV69e99zMZjN33HEHkZGRuN3u69rw++X/EP+1zWtra4mMjPT8/dBDD/Hll18SHx9PZ2cnmzZt+sGyPvvsM2699VaPkwTimsWdO3del7RHLpeze/duFixYwIIFC6ioqLiunOLiYgICAq5zPrx48eLFy38Pr3/g9Q9+bP7BqFGjiI2NZe/evf9Qr+LiYqZMmfIPr/Pyn4m3Q+/lR0V/fz8ymYzg4GAkEgknTpzwJJ8BuHz5MtnZ2TgcDrRaLTqdzpN4bNu2bXzzzTecPn0ap9OJw+EgJyeHzMzM/9a9LRYLJ06c4M4772Tt2rWsXLnyr64xGo243W6Cg4ORy+UkJyeze/duz/mZM2cSERHBq6++is1mo6qqij/+8Y//rXrr9Xr8/Pzo6Ojg9ddf/2/p/H/Cxo0br9seKDo6mp/+9Kc8+eSTfP31157EQ4WFhdx+++309vayZs0aTCYTv/nNb7Db7ZSUlPDb3/6W++6772/e49577+Xdd9+loqICm83GG2+8gVQq/ZttCWIimMcee4xnn32WqqoqQGyLo0ePYjKZiIqKYtGiRbzwwgsMDAzQ2trKW2+99Q/rWldXxwcffIDT6SQ+Pp79+/dz5513XtcWHR0dPPXUU9x1113XzZh8n46ODo4dO8aWLVuwWq2efytXrsRms3H8+PHrrpfJZOzYsYPVq1ezYMGC6xykS5cusW7dur9y1rx48eLFyz/G6x94/YMfo3/w0Ucf8fXXX/Paa695IkJaWlp47bXXOHXqFCAOzly5coUNGzb8Q/29/Gfi9Ry9/KhYuXIld955J9OnTyc4OJijR49e94Fra2vjrrvuwt/fn4iICFpbW/noo48AmDx5MocPH+bdd98lNDSUsLAwnnrqKYxG4w/ez2azodfr8fHxISoqit/85je8+OKLP5jFfMyYMbzxxhusXbsWg8HAb3/7W7Zs2eI5r1AoOH78OKmpqQQFBXHLLbewdetWVCrV3633+++/z5UrV/D19WXhwoWsW7fu/6TZ/ls8+uijHD58GLPZ7Dn25ptv8uGHH/Lxxx8TGRlJYGAg9913H/Pnz8fHxwc/Pz/Onz/PmTNnCA0NZfXq1Z6Qxr/FCy+8wG233cby5csJCwsjMTGRc+fOXbcVzn/lnXfeYcWKFaxevRofHx/Gjh3Lvn37POd3796NyWQiMjKSBQsWsHXr1n9Y1yVLllBWVkZQUBB3330377333nUzKkqlknvuuYfc3Ny/G063c+dO7HY7y5cvR6PReP4ZDAZ6e3v57LPP/kpGIpHwySefcPvtt7No0SJyc3NxuVzs2rXrB9vNixcvXrz8fbz+gdc/+DH6BytXriQ+Pp7c3FzGjRuHr68vixcvxm63M2vWLACuXLmCj48PixYt+of6e/nPRCL8b8XkePHi5f8XH330EZ9++in5+fn/alV44YUXMBgMf3cLlv8UPv74Y3bu3El6evr/9Xt98cUXXL161bMuz4sXL168ePH6B/+e/DP9A4AFCxbw+uuvs3Tp0n/K/bz8+PB26L14+SeTkJBAVFQUw4cPJy8vj40bN7Jt2zZeeeWVf7VqXgbp6+tjzpw5vPzyy9x9993/anW8ePHixct/AF7/4N8fr3/g5d8Rb8i9Fy//ZOrq6liwYAE6nY6NGzeyZcsWnnvuuX+1Wl4Gee+994iIiGDChAnccccd/2p1vHjx4sXLfwhe/+DfG69/4OXfFe8MvRcvXrx48eLFixcvXrx48fIjxDtD78WLFy9evHjx4sWLFy9evPwI8XbovXjx4sWLFy9evHjx4sWLlx8h8n+1Av8IrVZLRETED543dfVg7u1HqdXgdrqQyqRIBvdxdrtcAOiDAhAEAafVhnXAhEqvRevvh9Nux9Lbj9PuwC8sGKlMhmXAiLVvAJVOhzbAD6fNjrm3D5fDiSEiDEEQsPYPYB0wovM3oPLRYTdbsPQNgESCX1gwLrsD64ARm8mMX0QoUqkUm8mMtd+IUqNBG+CHw2LFOmDC5XBgiAzD5XBiM5mxDRjRBQWgUKmwmy3YjCYkUik+IYE4bTZsRjN2sxVDZCiCW8BmNmMbMKHS61D76nFYrNiMZtwuF75hIdR3m9FI3ChMA/iEBCKVyz3lypQK9AEGHFYbNpMZp9WOX2QobqcTu8mCzWhGY/BBqdVgN1uxm8wICPiGBuOw2rCbLdhNFnzDgwFwmEUZhUaNxs9X1MVsxmUX6+i02cV7m8zoA/2RKRTYLWIZEpkUfVAADosVu9mCw2LDEBmKy+n03Ful16HSa3GYrdjMFgSXG7/wv+hiM1nwDQ1CIpFgt1ixmczIlUp0/n7YB8t12uwYov6ii91kRuvvh3ywve1mCxKJBJ+QQI+Mw2LFLyIUt9Ml1slkRqXTotLrPPq6nE4MEaE4LDZPnfQhgUilUk+5MoUcXYBhsFwrTqvte7pYsZvNaPx8UahV4jUmCwy2t91ixWG2YLdY8QsPwe1y47CIdVZq1eKzN39flzAcVutguRb0Qf5IZTLPfWQKBdoAg0d/p82OITJU1GXw3lqDL3KV0tMOEokUn+CA69rSLzwEl8M5eMyM2kc/+L5YsJutov4hQditVhxmKw6LFd+wYNxut0dfpU7zl7Y0WRAENz6hwTi/099ixTckCBA8uik0as/7bjdbBt/3YJxWu9j+Zis+QQFIpNLBvy3IVSo0fj6DMlbcTqco812dzRZ0gQZkcrmn3eRKBRqD+C7bLVZcDge+ocG4HA7PNboAP2RyhacMmUKO1uCLw2bHYbbgtDvwDQ3C5XR66qgx+CJXKjzvrkQmQ+fvd52MT0gQbpfTo6/aV49cpcT5nYxUitbfgNNux2G24rTZ8AkNwu1y/UXGR4dcpcJps4nPQwK6AAMuu0N8p6w2fEICEVxujy4qvRaFWv1XMk67A8d3MsGBCO6/yCh1WpQalactEQR0gf7Xywx+hz0yWg1KrdojI7gF9EHfk7HY0Af7I7gFz+9VqVWj1Ghw2v+LjM2Ow2oTZYL8xe/9oIxCo0al/Z6My40+OOA6GV2QAQS+J6NCpdXisNtxfCcTFCC2tdWGw2JFF+gPDMpYLChUKlQ6rfgMrdbB71MIEqmE1vb267Z78vK/xz/yEZo7erHa7Oi1asxWOxqVAgBBAKfLhUIuw99Xh8stYLHaMFnsBPjp0GlUWKx2eo0WEATCgvwQBOg1mjGarAQZfNBqlJitdnoHzEglEsKC/HA4XfQbLZgsNsKCDMjlUkxmG/0mCxqVggA/PVa7g36jBbvDRWSIPy63G6PZyoDJSoCfDq1aLHfAZEUqkRAS6IvN7sRosWK22IkINoBEgsXuwmRzolXK8NEosLvc2Jxu3IKAn1oh1tEt4BIElDIJUokEQQABcaWlwyXQ2mclUKdAr5SCVCY2jNsJLhfI5CCTgdOB4HSAICDR6BGcDgS7HbfdhszHDwC3zYbbakGiUCLX63FZbbgsFtx2B+qwEFx2B06zBYfJjNrfD6lKKdpykxmJVIJPcKDoi5gtOMxW/CJCEFxu7BbRr1DptKh99R4b5na68IsI/Z4vYh60uTKPDf7O5oq+iAWnVbRz332/bSYzGj8flBq153suCN/5OFaPHfMLD0ZwCx5brtCo0fj6eGzNd37cd3bCbjKjDwxAqpB5/BWpTIY+yP96HycqTPwWD9ZJ5aNHpdV47JwguPENC8ExeB+72YJvWDAIf7GFcrUSrcHXc95ld2CICrvOR9MFGpApFIO6mJFKpeiDAz3lOqw2DBHfaxezBbWPDqVW8xe7/J3v9z2/yDdssF0GbaxSoxl8RpZBu/x9H030YfQhgaKP9p2NVQ3q/50tdzjxCw/BYbN5fATdoP/y3XOUyf/iS31nL/0iQnDaHGKdTBa0AYN1HtRNKpOhC/T32Ean3S76Ih7/xYLazweFWuW5r0QqQRfkP2hzrTitdnzDRBv7nf5qHz0KjcrT3iD2Ob6zJQ6rDd/QIAS323MflU4rtu13MgIem/SdjE9wIB6fZ9BeqnRaT1sKbjc+wQEee2m3iD4PEnBYxN+RUqNCpdN52tLtduETHHidjD7IHwkSjy5ytQq1ftCOWay4nS70IYG4viejCzQgkUg9vohcpUTlo8Nlc2C3iD6oT0jQ9TIBBiRSieijmS3IlArUvvq/yDic+IQE4nI4Bv1oK1p/P6QyqcevkykUqH30oh22WP8iY3fgGPRXtAZfpDKZaO8H3xW1r8/1MsGBOB0OUX+LFY2fLzK5zGPLpXI5Go+MDZfdLvbBHE6PX6Tx8xmUEfWXymRo/Hw9foVzUMZld3h8HI2vHplCPti2NqQyKT4hQaKP0Nb2P/YR/u079BEREVRWVv7Nc1ajCZfDyWsjFmLq7mXShuU0F1Uwcd1SMvYco7+tE7Wvntjx06hKzsbaPwBoiYiIw2Yy09XQABhQarWMmTyXyoQMTN0uQMOYhfNxWG3UZebjsEjRBwcwaclyqlOyaamtAHTM23AHAx2dVManYzIriJ41lZELZlB6KZmGxkKkykDWPPgETQWllF5KxmTtYd49W9AH+lN8PoGGlkIChg9h5QvbKL2UTOmFBMz2fm55/uf0t7ZTdOYaTW2lTL75RsYun0fh6SuUXkxCrlex+e03qU3LoeDkZTo66lj36nOofXQUnLhE+bU0oiaNYdZLT3B/loOxedcYduEQD/7+j7SV15J//AK16XksuPduRsydTt6x8xSduYYm1Je7P/k1pRcTyTt2gbauau5659e47Q5yj56n7HIKo1fMY8lPtpJ79Dx5xy5gc5jZtv1T6jPzyT1yjtr0PNa+/AxhcTHkHD5L4emrGIaHcff2X5N//AI5h8/R0V3LIx9/Rl9zGzmHz1F+JYUb7r6J6betIefQWfKOXUCqkfHgVx9ReS2N7IOnacwrYfPv3kTj60P2wdMUnb3GsBkTuendl8k+cIqcQ2cZMHfx2Jdf0FJUTvbBM1QlZbL8iW3Ezp5K9sEz5B+/iC7Sn/u+fp/CU1fIOXiGtp5qHnj/j1iNZrIPnKbscjITNyxnwSN3kn3gNLlHzuGWuXj4y4+pSc0l+8ApGnKL2fiLF/EfEkH2gVMUnb1GyKhotnz0S7IPnib74BkGjJ089KeP6aptIGv/KWpSc5h792bG37iIrP2nKDhxCXWoL1s/+y1ll5LI2n+Kzr4GNr/xJhKJhKz9p6i4lsaoRbNY/sLDZO0/Re6Rc7hUTu774A805hWTte8kraVVrHjoYcLGjSRr30lKLiYRFDOEW37/cwpOXCTn0FmMA93c9favMXZ0kbXvJA25xUxZeyNTb1lF5r6TFJ29hjpAz+bf/pKqpAyyD5ymr7+ddU89g0qvI3PvCWrT8xg6YxI3vvwoGXtPUHDyEhKNjNvfeJ3W0iqy9p+ku7+JRXfdS1hcDJn7TlKVmEHE+FGsfPkxis5cJffoeVwKBze//Ar9bV1k7jtJR2UtU1euYcyyeWTtO0nZlRRCR0Wz7LmHqE7JJvfwWSwWI2sfewoEyNh7gtaSSsbMns+0W9eQc+gMJReTCBgaweIn7qW1tFKss7GbpXc+gE9wABl7T9CUX8qo+bOZctMqSi4kUHw2Hp+IIOY/tJn+ti6yD5yi39jJzBs3ETVxDJl7T1CXmc+I2TcwYfUSajPyKDx1GU2wHzPv2Ijb6SJr/yl6ja1MX7aOyIljKDhxkeqUbGJmTGPM8nm0lVaRf+ISCn8NU9atQuvnQ+a+k3QPNDF12VrCR8dSdiWFyoR0omdOJnbeDPpbO8T330fGxGVLMUSEkXXgFJ3V9UxduprA6CHUZ+ZTfjWVIVPHM2z6BBxWG3lHz+OWuZm6YhUafwNFp6/QVl7NlCWr8A0Ppr28ltJLSUROHE3E2JEoNGpyDp/FIdiYvnodCpWKimtptBRXMHHRcnQBBvpb2im5mETYmFjCx4xAqdOSf/wiVqeRWWs34Xa7qc8soKmglImLlqJQq7GbLBSfTyB45DCiJo1FKpVSciERo62HOetvxWY00VZaRUNuMRMWLgEkSKQSis/GExgTxbAZE3Fa7VQmZjBg7WLO+lsZ6Oimt7GV+qwCxs9fjEwuw+V0UXY5GcOwcGLmTMXS009dVgF95jbmbthMV10j1r4BatPzGDt3IQqNCrvJTGViJn6RoYxceAO9Ta20FlfS09jC3I1b6Kyqw2Y0UZuex5g581HrdZi6e6lNz0MfHkjc4tl0VNXRXdtEd30T827aTGdNA+aefuqzChi9aD5af1/6mlppzCtBF+bPzLtvwmlz8NLhL/55RvM/jL/nIxjNVirq2ph5xxtYgUduWcTB8xls3TifP++7hNvmICDIjwmjhnA5vQSnU5wEmDBjNDkldfQZLRAMkSEGRsVEkJJbidnPDsCi5TOobGijqaIRV7Cb8SMimTBqCEnZFZhau5DLpNx2+xKKqppJzqvEZbWzeuUN+PvquJxeTHtdG1Gh/jx862ISs8tJyC5HsNp5/JENdPQMcCGliK76NlbMGc/y2eM5n1xAfFYZvkol7/zySco7rCSUttPSY+HJNaOJifKjqHWA6i4TEb4q7ps5nE6TjS6zHbtLYGqEDyqZFJvThdPlRi2TkFrZzsN7i/jz+iEsG+GHVKmG/g7cPa1gNULEaARTP86GMlxtNUiChiAdNhVzURbm4hzcZhMBmx/DWFZOT0oSptISQm/ZjCJkCG3nLtNxNRFlcCAj3n6d2vPXqDpxgd7KWpZ/+D7dHT3kHxXt/6RNq7jh3ltE+3/0PG4fN9t2fkJ1cibZh85Sn1XALW+/im9YCDmHzlB45irh40Zy+x9fJ+fQWbIPnaG3v5XHPt9OR0Ud2QdPU5mQwaIHtjJmxXyyD54m/9gFVKF67t/1R0ovJJB98AwtxRVs/e17CG6B7AOnKbmQyOjl81jx/ENkHThN7uGz2FwWHtvxObWZ+WQfOE1dZj5rX36asDEjyD5wmoJTlwmIjuTu7e+Sd/QCWQdO0d3bxEMf/pn+1nayD5yiMiGDG+66iWm3rSFr/ynyjl1AHqDkgc8/oCI+jaz9J2krq+bWn7+G2kdP1v6TlF5MYvjMyax781my958k5/A5rHYjD/zpQ1qLK8naf5LGvBIWP3If0TMnk7nvBMVn4/EbEsrmj35J8dmrHlt+51u/wjZgInOfaMsnrF3CnPtuI3PfCQpOXkbmo+Cu3/+K2vR8jy2/8fGf4BceSta+E1QmZBA2ZgQbfvUiOQfPkHf0PHaplbveeofO6gYy952kvaKG2XfdSuycaWTuO0nZ5WQCh0ex4e3nKb2UTM6hM5jdfdzyws+wmy1k7jtJc2EZ45YtYsaW9WTuPUHx+QR8w4NZ+/rTNGQXenypGx9+ArWP6Is05BQRe8N05j64mbyj5yk6cxVNkC+rnnuMrpoGsg6cpm+gjfm33EnoqGiy9p2kJi2X4TdMYfa9N1N+NYX8E5eQ+6pY/siDWPqNZA3a5cmLVxG3aDZZ+05SmZjB0GnjmXHHBhqyi8g7dgFBCwvvvAuZQk7WvpN0VNUxceFyRsybQdHpK5RfTSVi4himbFpJV00DuUfO4XDbmbX+ZvzCgsnce4K2smomLFjC8BmTqUrMoPRSMiFxMUxYsxhzT7/o89iNzFi1gaBhkeQcPie207xFRE0cQ1N+KcXnEwiKHcqoRbOQSiSiz2PpYdbqTfiEBFJ8Lp7GvBLGzltI6MgYumobKD4bj2FoONEzJ6EL8Cf74Gn6TR3MXn0rGl89lUmZ1GcVMGbWfAKGhWPu6afg1GV8I4MZMW8GKr2WgpOX6TW1Mmv1zciVChrzSqhNzyNu4Rx8ggNxu9wUnLyELsxA3OLZSOVySi8m0dPQzMw1NyM4XXTWNFCdnMXIebPQ+fsilcspOn0Vtb8PY1bMw+VwUp2cRVdtIzPXbMJuMmPs6KYyIYOYWTPwDQlAcLspuZCE0k/DuJWLsPYbacwtprO6nhvW3ISxoxuXzU751VRiZkzFLzIUh9lKRUIGch8lk9Yso7eljY6KOtorarhh9UaMnd04rDYqEzIYPm0SAcOjMHf3UpeeB1opU9feSHtVLX3NbbSVVTPjxg2Ye/qw9A1Qm5bL0KkTCY4ZQm9zO035JQhqgWnr19BcVIG5u5fWkkpm3LgeS78RY2c39VmFDJ04nrEr5qMLNLDtT7/6H9vCf/sO/d9DcLn4YssTjFu1kO6GZmrSctn061cIiokibulcrv1pFzKlnHkPbub+PR9w6f0vuPSHLxizYj4b3nqetG+OcPkPX+J2uVj108cwd/dx7c/fUHDyMrFzpzHl5htJ2XGAtK+PoA8OYPkLD1NyPoHUXYepy8xn7MoFyJVyFColeccv4hcRzIwt65FIJGLkQE8fo5fNRR/kj7Gjm/JraQRFDyFy4hj6WzvorK5HpdcwbMYk+ls7aCurwtzbT8iIYWj8fGgtqaKtvBqNj46gmKH4R4WLo802cfbaNywYn5BAOqvr0fj6oAs0oAs0oNRqkCsV2NQawIFO4kICKDQaVDoNal8fZAoFMrkMmUKOQqNGoVGLjSoBmUKBUqsBwO1w4nYLyBQKpHJx9N5hEx0auVKJxTWA3WjCZXcgkYrREd9FQrhdbjFaQhAwdfXisNiQSCQAmLt7sfT243I4QCLBZbMz0N7lGeF0OZz0t7Rj7u3H7XIPyvThsIizYxKJBJfDSXdd0+A1LlwuFz0NzfS3deKwWAGw9PbTVdeEpbcfwe1GcLlor6hloK0Th9UGQHd9MzajGWv/AIIgYDOZaS+vYaCjC6fdgdvloq2shp6GZqxGcQStr6Udp82OqasXt8uNy+GgubCcvuZ2nFYbbpeL1tIq+prbsPT2A2Dq6qWluJL+1g5cDiduu52mgjK66pqwDZbbUVmHIAgYO3vEaBCjica8EnoaW3Ha7LhdbpoLSumorMM8WG53Ywtut5u+lnbcTidOq43G3CK6ahs97dlcWIa5u5eBjm4ABjq7qM8ppqehRRxBtDtozC2io7IO64AJgLayGuRKBf2tnQDYBgaozcinu64Rp82OTCGnMa+YrppGzN19AHRW1eGwWOltbPG0ZW1GHu2VteJMJ9CYV4qxsxtjRxcA/c3t1Gfm01XXJI5imy3UZxfSWlqF1WhGcLtpKa7EabPT39IutmVnD7XpeXRWN+B2OnFYLDTmFV/XLm3lNfQ0tNDb1OZp/7qMPNrLawZnay00F1bQ19KGaVD/rrpGHBYbXbWNnve0IaeQluIKHFYbCquVtrJqrP1GjINt2dPQjNNmp6OyTpTp6aMpr4T2itrB2XcpnVX1CG43/a0dgzJN2E1m2sqqRd16+mkprqCnoQWb0YRSo6a7vpmexlb6mts876mlb4CW4goEQcDS109beQ2mzh4sfQPIlAo6axoRqhvorm8SZRqaMXb10lZWheB2Y+kdoKO6AbvZjLmnD6lcTkdFLe5BQwvQ29iCsb2LrtpG3E4n1n4jXXVNOMwWTF09SKRS2sqqcVittFfWDt6nFalEQl9LOy6HA+uAic7qemwDJowdXQiCQGtJJVajifbyGrENGlsRXG6MXT047XZsA+I5S98AA22dCIJAS3Gl+BsefB49jS0gwMCg8bWZzLSWVGHu6fW8Gy1F5Rg7uz3Pvbe5FZBgbO8cjLAx0VxYhrGjm96m1sHfRynG9i76WsTn09fcRp9EQn9rh2eWq7mgjL7WdvoGy20qKMXY0UPf4H37mlvpb22nr6VdjOIZjN5S6XR4+ddQ3djB6x8dZvENY3A6XWQUVvOnV+8mMiSAKXFD+d2uM0wbG81jm5fgo9Pw6y9OcuB8BretnMnudx/h80PX+GT/ZWKGhPDnn20lMaeCzw9eJTW/iltXzCDI34cdRxM4dDGT4ZHB/HzbBr49k8ruk8l09Rq5bdVMSmtakUgkXE4vZmxsJHMmj8DldtPVa8RPr2X1/EkIQGtXP3ll9UyOG0q/2UpTew+Nbd0E+OmZOmYYDa1dlNW0YrLaGBGux4aMqjYNrb0WdAo5gTol/hoFKrkMqUSKSi7+U8ik2F0uZFIpEok4Sw8gkUrosTgBMGjEqAWkMpDKkcjk4hy+RAIyGRK5AqQyJAzKyuRI5AoEQUBwukAAqVwOUimC04XgcCKRSpHK5QhucBrNuB1O8RrANmDCbhFnwyVSKW6nE3N3L06bDYlUgtvuZKCzG0u/EcEt2n/rgAmZogenzY5EIsHtdNHb3C7aKwHcbjf9LZ0YO7tx2kW/wmo009vYgrXfiNstILjddNc1YuzsEa8B+prbcTmcWAdMYgSR2UpHVT2mrh5cThcuh4P2qjp6m1o99nSgswd5dT2m7l4Elxu300lrSZXoFwz6FZ1VtQx0dGPpG/BEdraWVjHQ3onL4UAql9FcVE53/V/sf1dtI3KlQrT/bjd2k5mmfNH+OyxWXE4XLUXldFaLA4kAA20dNBeVi36F04nL7qApv4Su2kZsJlHflpJK7EYzxs4eAMy9/TTkFnv8CiQSmgrK6Kisxdo3ACC2QWcPfS0dYrtYrNRn5NNV24jDasPtdNKQW0JfcxumLrHcnsZWGnKLRfvvduO02qjLLKC9omYw4hCaCsuwm8weW2js6KYuI5/uuibRf7HYaMgR7b+lT6xja0klcqXCYwstvWInqrOqHqfNjtNmoym/hO76FszdvWJbVjdgGzDRXd88+P6IA69tZdU4LFakUgktxRWYunoY+J4vUpOWQ0d1veeda8gpoqW4ArvJjEypoL28GqfN7vnu97e2U5eRR1t5jficB4w0F5TSWdOItd8IUtH+99Q309so2pv+lk4asotoKakSZ/tNZlpLKulv7cTc248gCHTXNjLQ1umxff2tHTQhobmwXIyiNZrpqKjFZjRh7BLfl46qenoaWuisbhi8Tztuh4uOytrBSD4LXbVNdFTVM9Au1rmjshaJVEJ7Ra0o096Bw2ald/DdcFisdNbU47I7PM+svbIWwS3QWlo9+A52Yu03Dvr5YnRdR2UddovV88w6ymtw2h10DPoMxvYurP1GLL392Abbtq28GtuAmZ6GFvE+5bXYzWZ66psRBAFTRxd2owlzT58nermtrBpLTx/ddaLP015WfZ0PMdDZg91ixdjZg7V/AJVeS3NROcbOHk/btpWLPl1/aweCW/RJHFYbxo5uTwR4U2Ep/a0d9Aw+w7ayamxGE/2tHbhdLkxd3bhsNvpaOzD39KFQq2nKK6G3uc3jV7SWV2M3mulrFn11h1WMFJEplfxv8KPu0Gv8fJlz361s3/wEhqgwRsybwYFn3yRszAiqEjMBUGjFcN4Tr79Pd10TtgETNWk5nPzF+7QUVWAzmeltaqUmLY+Btk5cdgdagy8NeSWExsXgdrkIGBZBd0MLlt4BJDIZISOH09PQTG9LG2FxMQSPGE7UxDFY+gbQ+vsRGhdDzJxpVFxLQ+3rQ/jYkcTOnY6lbwBL3wBRE0cz0NaB1Wiis6qe8LEjsPb1ix9su/ihH710Di67HZfLieB2M3L+DAS3G4lMSvmVFCLGjsQvLBi5SolEJgWJwKQNy1Fq1SjUavrbO/EbMwaS0hg7fSyK5mL8wkOImTUFrb8fSo0auVLJ5JtW4hMSiC7AMDhqNoPQkdH4hASi1GrQGnyZuH45AUPEwQSX08mk9csJih6CX3gI+ccvETlpDCMXzCRgWCRaf1/UPnrm3HcroaOi8QsPoaW4gglrlxA1aTSB0VFk7DlO4PAhTL99HaFxsfiGBqHx82HWPTcTOWE0AcOjKL2QwOhl84hbPJuw0bGkfXMEn5Ag5tx3C5ETR2MYEo6xo5sb7tjAsBkTCR0VTea+kwydNoFpt64hauJo0nYfQ+vvx+In7mX4jEkExgyhNi2XGZvXMWbpXMLHjyLt6yOEjBzO+NWLGTp9Aum7jyKVy1n42N3Ezp1G6OhYCo5fZMKaxUy7dTVDpo4n5atDGCJCWPbsQ8TMnkra7mN01dSz4JE7Gb10Dpn7TpK++ygxc6YydMo4omdOJvWrQ+iD/Fn1ymOMXHAD6buPUZGQztwHbmPaLTeSue8UKV8dJGx0LDPvuomCudNJ3XUIl93BypceZfTSuaTvOUbukXNM3rQKfZA/WQdOk7rzIP5R4ax/6zlGnZ9F6q7DtJVVs+y5h5i0fjlpu4+RsfsooxbOZMT8G8g+dIaUHQfwCQpg4zsvUHZ5Lim7DlEZn86in2zFZjSRvucYabsOEzkhjgWP3Enu0fMk7ziAw2Jl/S+fpWrVAlJ3HSbv2AVm3r0JfZA/GXuOk/LVQQKjh7Dp1y+Tf+IiSV/up7exhY2/epHG3GJSdx0m68Bppt62hohxo8jce5yUHQcJGBbJbX98ncIzV0n+Yj8tpZVseOcFuqobSNl1iIxvjzNp/XLilswmc/8pkr/cjyEqjNs+eJ3Si0kkf7mfusx8NrzzIqbOblJ2HSZj91HGr17M9NvXkn3wNElf7Efr78fmP71BVXI2yV/upzIhg/VvP4/b4SDt6yOkfn2YsSsWsOixu8k5dIakL/cjUyjY8ue3aMgpJvnL/ZReTGLdm8+h1mtJ++YIKV8dYuTCWSx79gEKT10hafs+XC4nd3z6Dm2lVSTvOEDh6ause+Np/CJCSd99lJSdB4mZNZWVLz9K6aUkkrbvw9I/wF2fv0tPfRNJX+4n/8Qlbnz1J4TGxZD57QmSdx5g6PQJrH71J1QmZZK0fS/9bZ3c/cWvMXX2kPzlfnIOn2X58w8RMX4UOUfOkfzFfqImjWH1z56gPruQxM++pbuhha1fvYfdaCZ5x36yD5xm6dMPEDlpNAUnr5D85T4ixo1izetP01xUTtLne2mrqOGene/hNFtJ/fowmXtPsvDxuxkyeRwlFxJI+nI/YaNjWfeLZ+ioqiXhsz20FFVw71e/wzZgImPvCTK+Pcb8bVsYNm0i5dfSSNq+l8DoIax781m665tI2r6Xhpxi7t31e8y9A+QePkP67mPMue9Wht8wiZq0HBK378MQEcpN775ER1U9qTsPUpORNyjTR8Hxi6R9c4Qb7t5E7OwpYp0/34s+yJ9bfvcz2ipqSP/mKNUp2dz71e8xdfVQdPaaKLNlA7HzZlCfU0jKFwdQ++m57YNf0FJcIc7WJKRz79e/Z6C9i7JLSaR+fYSpt65h9NK51GXkk/LVQZRaDVv+/BbN+WXkHD5L+dUU5j6wGZlcBns+/tcay/9QJo4awtjYSH6/6yxTRg/Fz0fL6x8dQSaTUlojOo29A2a6+02U17ZS39KJ0WzjSnoJxVVNFFU14Xa7Kalq5nJ6MSVVLchlUtQqOdkltcREhaCQyxgaHkhLRw+dPQNoVEpGR0eQml+J3eHEV69mdHQ4jW3dtHX1EuTvw5iYCGZNHEFVQzuRIf5MGBlFR3c/RrMVq93JlNHD6Oo1YrbYsDucTB49lJ5+M1abgysZpYQbVPj56nEJ4AZsThdjQn2QSiTIZBJ6zHb81HKkEpBKJLQbbQiAWiH3dOiRSOi1i//399WBVIJEH4BEqcEtVyBIZEiVaqRh0UhUOlCqwGFHPXoicj9/JFo95uJsNEOGoIsbgzIoCKlOj1yvJWLjajRRESiDAugvKmPo0rkEjh2J35Bwyg6cxD88hHG3ryM4dig+wQEoNGqmb15P+NiRBAyLpPD0FUbMm07colmEjIwmY88xtAEGFjx6F+HjRmGICqO7rpmpN9/I0KnjCR4xjMy9JwkfN5Kpt64mfNwoMr49jtbgw/xtdzJ02gSCYodScS2dKTetZPTSuYSPG0Xa14fxHxLB1FvEctL3HMVpczDvwc3EzJ5K6OhYcg+fJW7xbKbespohU8aJEzxB/qx4YRvRMyeTvuc4rcUVzL7vVkYvnUvEhDjSvj5C1OSxxM6dzvAZE0nddRitwY/lzz3EyPkzyNhznOILCdxwx3qm3bqa7KmnSdl5kOCYocx7aDOxc6eTuusw5p4+ljx1v8f+Z+0/xdiVCwkaHkX24bOk7jyIT2gQ6954hlELZ5L29RHqc4pY/MRWpty0kvQ9x0nbdYjoGyYx/sZF5B27QPKOA6h89Kz9xdOMWTaX1K8PU3wuntn33oJEIiFz7wlSdh4idGQ0K17cRsHJSyTvOICxo5vVrz/FhKwCUr8WbfnkDcsJiYsha99JkncewC8smFve+ylFZ6+RvOMAjbnFrHn9SToq60j/5ghpu48xatEsxq1aSPaBUyTvOIA+OIBbfvcqxRcSSdl5gKrETFa/+hNM3X2kfXOUtK8PEztnGrPvvYWcw2dJ+mIfMqWCW37/M6oSM0necZDSiwmsePFRJBJI232UtF2HGT5zEsuff5jcI+dI/nI/dquNW//wGvVZBaTsPEjBqcssffoB9CEBpO8+SurOgwybMZGN77xI3vELJH+xD2NnD7f98XXay6pJ3nGA3KPnWfSTrYSNjiVjz3GSdhwgcvxobv7dqxSfTyD5i/30NDRx+5/epLehheSdB8naf4qFj95JzOxpZOw9TvKXBwgdHcttf3iNioR0krbvo728hts/+iWW7l5Sdh4kY+8J5j5wO2OWzSX70BmSvthPcMwwbv/wDeoy80n6Yj9N+cXc8enbOK12UnYeJH3PMWbevZHxNy4m/+QlkrbvwxAZyuaP3qS1uJLEz/dSm57HnZ++g0wuI3nnQdK/OcrU29Ywaf0yis8nkLR9L7oAA1v+/BadVfUkfr6XyqQMtvz5bWQyGRnfHift68NM3rCCKTevoiI+ncTP94q27+Nf0tvUStLneym/lsbmj95EKpeTc+gMqbsOMX7NEqbdtoaatFwSP9uDVCZjyydvM9DWSdL2fZReSmLzh28ilcvIO36BtK8OM2b5PKZvXktjXgkJn+5BcLu5+4vf0NvUStquwxSevcZt77+GTCmn6Mw1Ur46SNySuUzfso7WkioSP9uD3WLlvl2/p7u+iYw9xyk4dZmbf/cz5Ao5pZeTSdlxgFELZzLznptpKSon6Yv9WPuN3L/nj56Ij4ITF9j0m1eQKRVUxqeTvOMAI+bNYN5Dm2nMLyH1q0MYO3t46MBHtFfUknf0PLlHz7PxVy8iVympSs0mdcdBYudMY+Gjd1OXXUDGN8fob+tgwaN3iROdv3/jf2zv/u23rRsxYsQPhtNZ+gcQ3G4+v+0nlFxIYNj0icy6ZxOjl82lMbeY/U+9iU9IIDfctRHfsGBO//JDOqvrRSf3509y+Q9fUpmYgVKrYc1rT9KYV0L2wTO4HA7GrV5E5Pg4Ur86RH9bJyofPStf3Ebe8YvUZeQBMH/bnZi6esg/cRGnzU742JGMXblADMVtakWmVLDsmQeoiE+nOiUbgOmb14EgUHDqCjajCY3BlyVP3kvaN0fpHBwVXPXKo1QlZ1OZkCF25hfOJGx0LFn7T4kjPxo1q3/2BOm7j9JSXAHAwsfvoaehmaIz13A5HPhHRaC59z6+dEQw7cBHhNSWsv6t58g9fI66zHwAJm9cgcbgS+a+kzgsVlR6HWtef5IrH3xFT4M4qrnylceoS8+j7HIygiAQNXksY1fMJ/7Pu7EOGJEpFGx4+3mSvtjnmW2cfe8tWAdMYuicy4XGz4dVrzzG+d98imlw9HTtG89QcOKSR5dRi2cTMmI4qV8dwmm3I1erWPvaU1z5cKdnJHTR4/fQUlxB2ZUUAAKGRjB98zqufLBTnG2XSFjz2pOkfX3E05aTNq5AcLspOHEJQRBQ6rQsfeZ+rvxxJ9YBIwBLn76fkotJNBeWARA1aQyRE8eQvvsogtuNTKFg6TMPkLR9r0f/6ZvX0VldT226+C6offXMvOsmEj7d48ndsPDxe8g5dMYzqhk7bwZyhdyjv1ytYvY9N5Oy8yBOuxj1MOOODVQlZXpGG/2HRBA1aQwFJy8BIJFKmXXPJs8zA4hbOpfexhZP+ys1asauWkjukXOe38rUW1ZTfC7eU+ewMbHIFAqa8ksBMSpj7KoFFJy45JGJWzKHhpwizD3i7LVKpyVs7AjqMvI914xZPp/SS0meWZTIiaPpb+1koF2c1ZerlEROHOP5zYjtMJ2alBxPO/mFh4BE4hnJlSsVRIyPoz670CMTNWkMrSVVnnZS6jToAv3pGRx9lykUhI6OobmgzCMTODyK/tYOTySGQqtBH+jvebclMhkhscNoK6/2yKh99QguNzaTOGOiUKvRBRk8I+sSqRRDZJinDFEXLRIJnlkWuUqJ1t/P89yRSND6+3lmDgCUWg0SqRSbUYyGkKmUaHx0nhkUAIVGjdNq47tPtFKjBqkU+6BucqUCuVo9uJToezI2u+d5KDTqwfWKlsF2kotRNINRNn9TRq0C8LSbVC4fjIhx/KCMXKVCcLs910hkMqQyKS7792TUKpx2x/dklLgcTs/fEpkMqVR63X3kahUuux3BLQzWWSkOcg5G7UikUqQy2fUyKqU4+zbYbjKlArfT5bkPEgkyufyvZb7XJlK5HEFwe+4jyshwOZx/kVEqPe+jR8bt/kt9JBI0fj4oNGoOabt/0I55+Z/x93yEtq4+FHIZMzb/gobWbrasnsXo6HAe2LSQHUcSeOuzY0yOG8ZP7lhGTVMHf/j6HD39ZrasnsXsiSP4YM95KuraCPDT8ebjmzh6OZuLqUUAPHr7EixWOwfOZ2Cy2IiJCuaONbPZcyqF6sYOlAoZT9yxnOySOq5mlCIIAusXTcHgq+Xo5Wz6jRZ8dWoe27yMI5ezKBscYHjqzuWU1LR4lgDMGB/N1DHDOXQhg85eI2qVgrdefZT4ygHKWsQZzHsWxRAUpKOkbQCnW8BXLWPrjKE091mxDb7DE8J8kEvAOfi3UgofXyrh05RWUh8eQaBWjhQJ7tZKsA2u5QyIxFFXiqulWlw/rw/ArglnIPkSbosJpDJ089bRdvoMllrxO2qYtxhzu4nWsxcR7A5kej3BD91H9odfYhmcCZ34wmPknk+kJlmceBk+exqhk8eRtH0vDqsNuUrJ+l8+x9WPdnls4fxtd9Jd30Tx2WsIgoBPaBALHrmTi7/bLs7WSSSsef0pMvedpLVEfB/GrV6MxldP1v5TCG43Sq2GFS89wpU/7vDY8iVP3UdVcrbHRoWNGcnIBTNI+mI/bqcYVbDipUdI/mKf55s+7bY1DLR3UX41FQCVj555D23m2ke7PN+RJU/dR96xC55ZwOhZU9AHBXhsuVylZN7Dd5D8xT7P91kM7xZnpwF8QgKJWzKHzL0nxOchkTDvwc1k7T8p5m1C9J0svf005IjvpUKjZvJNK8n89rjHdky7fS1ll5IxdopRZcEjh+MTHEh1chYgfrsm37SC3MPnPHZ59NK5tBRXePwvhVZD9A2TPHUGmLB2KcXn4j3f0ojxcVgHjJ5nJlMqiJk9lYpraR6ZkQtnUpuW67Ev+iB/NAY/z8ytVC4neuZkqpIyPTJRk8eKs9Hf2WWthoAh4R6fRyKVMnTqOOoyCzwy/kMjsPQOeOyjQq3Cf0gE7RU1nrYMHzuSlqJyj4xKp0WmVHh8HrlKhSEqjM6qOs81gcOi6K5v+otd1mlQqFSe90muVOATFuzxTUDMQWPpG/C0rVKrQaH+i4xMoUAXaPiLzzBYrtPmwO10ep6rXKX0RHxK5XJUeq3n7+/KdTkcHjulUKuRKeVipACijZXJ5Thttv8i4/Q8Q7lKhVQu9URUSKRSZAr5X/kMbqfTcx+ZUoEEicce/pCMy+H01EemUCAIbtyDy5yQSJArFdfJyNUqMUp4sN1kCjmCIPxFhr+23XLVoM/wnf2XyxH4LzJKhSdCx1PG932GvyEjUyqu82fkSoXovwzKSGUy4C+52/6WjEypwP19Gbkcja+eIVPH86ea1P+xj/Cj7tC73W7+vP5BlDqtGEbV1UvUpDEYO7ux9g2IiSFMJm782RPIFAo6q+sou5qKb1gwt/zuZ7QWV1B0Np6SCwls3fkeAUMiKLmYSOquQwTHDOOOT96mpbiCpO17qUzK5Nkre5HKpGQfOkvS9r3Muf82Zt29idbSKi794QvMPX08tO8jHDYbyV/uJ233UR745o8EDo+iLrOAi+9vJ2x0LGt+/iSW/gGu/mkXlYkZPH7ySyQSCcXn47n6p10sfvJexi6fT09jC5f+8CUOm40tH76J024XR8i+OcpDBz5GZ/ClPqeIy3/cQczsKSzYdifmvn4SPt1DQ04R2qdf4KdHCvjdVDVt3+xh3S+fY8iksXTVNXLlg69QatWs/+Vz2C1WMr89Ts6Rs2w7/CkyuZzajDyufPgVk9YvY9qtaxjo6CLhsz101zVz12e/wuVweEYB7/jkbQKGRNBSUsnVP31FYPQQVjz/MJa+flK/PkzZlVS2HfwzgttN+bVUrn38NYsev4e4xXPorG0g4ZM9OGw2bnv/NWwmM9mHzpLx7TEe2vcnVHoddRl5xP/5G2LmTWf+g1vobW4jeccBWorKeWDPBzisVgpOXSFp+142/fanRIwbRWO+OKKnCzCw4a3nMXZ2k7b7KEVnrvLYiS9AECi7nEzCp3u44a6bmLJpFW3l1SR+vhdTVw9bd7yHqaeP7IOnSd99lAf2fIBPSCCViRkkfLqHqMljWfXSo7RX1ZGy8wD1WYX85NQOrANG8o9fJHnHAda89iQj5s2gNj2XhM+/RaFWc8fHb9Hd0EzaN0coOHmZJ8/tQiKRDM5O72PSxhXMe2gLDdmFJH6xj77mNh47tp3e5jYy9p4gc+9x7v3qdwQOi6LkYiJJX+wjNC6WTb9+maaCUpK/3E9NWi7Pxe/H3N1L1oHTpH9zhOUvbGPCmsWUX0slcfs+pBIpD+77Ey3FFaR8dYiiM1d46uJupFIpuUfPk7rrMONWLmD5Cw9TlZhJ4hf76Klv5rn4/bQPznRmHzrDXZ//irDRIyg4cYmUXYcIih7CHX9+i6rkbFJ2HKA+u4CXM47T09BCxt7jZO8/xapXHmPcjYspOnOFlJ0HUfnoeWjvh1Sn5ZKy4wBVSZm8kHIYS08/mftOkLXvJPMfvoMb7twgjoJ/uR8kEh47vp3ajHxSvzpE2eUknr22H6fVRs6hM6R/e4zpt69lwbY7KbmYRMrOg9hNFp48v4v67ELSvj5C8blr/OTMV8jkMnKOnCNjzzHGrVrIihe2iSO3Ow8y0N7F8/H7qc8pImP3UQpOXWbboT+j8fMl79gF0ncfJXbeDNb+4mnKr6aSsvMg3fXNvJh8iKb8UtK/PU7+sQvc9/XvMUSGkX/iEunfHCFqyjg2/fplyq+lkvrVIdrLa3gx/RitReVk7D1B3pHz3PHntwiJi6Hw1GXSvjlC6KgYbvvj61TEp5P69WFaCst4KeM47aVVZO0/Rc7hs9z83k8ZMmU8haevkPbNEQKGRnDnJ+9QkZBO2tdHaMgt5uWMY3RU1HryPax74xlGzJtB4dmrpO06jE9IIFt3/o7KxAzSvzlCbUY+L6Udobu2iexDZ8g+cJoVLz3C2BXzKT4XT+rXh9H4+XL/N3+gKimT9N3iLPiLqUfobWwl5/BZsg+cYvFT9zNp3VLPrLhCo+bh/R9RmZRFxrfHqUrI4Pmkg/S3dpB75BxZB06xYNudTL3lRorPJ5D29RGkchmPHP6EquRsMr49RsW1NJ6L34+pq5fco+fJ2n+S2ffewg13bqTkQgJpX4uDco8d/5yq5Gwy952g7EoKz1zag7Vf/K1m7jvBjDvWM/veWym9kEjaN0dwOZw8fvILqlNzyNx7ktJLiTx94RtsJgv5Jy6Rue8EU29ZzbyHNlN6MYn03Uexmcw8efYrqlOyydwnroF94uxXhIwY/nftmJf/GX+vbXv6Tdz4yHsMjwzCaLaRUVjNhsVTKapqwmZ3YrLYUMhl/PShdfQbLVTUt3E5rZiblkzlthtnUVDeyPGr2RRXNXH64+foN1k5FZ/H3jOpbF0/lwc2LSStsJrtB6/S3Wfi6AdP0TdgZsfRBPafS2fHWw8RNzyMxJxyPv72ErFDQ3jriVvo7jPy0d5LJGSVc+qjZ5DJpJxJzOeTfZd58JZFbFg8lYbWLv7wzXmMJiufvn4fDoeTPadT2X0qhW/e3UZIgC9lzX18nVDDmCg/7pwbjcXhIrWum/oeC1tnDEUQBHrMDhr7LAwL0OCnVuJyubEMOuJvny7j2/R6yn42D6ndhMwQhkQiQTD14W6rQuobjDR4KG6rGUd5Fu7+TjTzbkJwubCU5tGfeoWADXehDArF0tRI+4mjKPz9ibj9TpwmM83HTtNxNZEpf/4dEomEltQsCrZ/S9zm9QxfsYiexhZSPv8WS08vN3/wJnaLlbyj50nddYj7vnkfXYA/9TmFXPv4G4ZMHsvin2zF2NlN8o4D1GXm8+DeP+FyOCi+kEjip3tY/fMnGDZ9Im1lVcR/shu5WsWmd1/G3NsnflePnueRo58hk8upTMgg/pPdTFy3lJl33URnTQOJ2/fS09DMfbvexzpgJPfoOVK+OsTd239NwJAIajPyiP9kNyEjhrH6Z0/S09hC6q5DVCRk8JNTO3BabRScFn2RJU/dz9iVC2jMLSbhs28R3C7u+uxd+lrbydgj+luPHd+OUqOm5GISSZ9/S9zSuSx+4l6ai8pJ/mIf7ZV1PHZ8O8bObrIPnibt6yNs/uhNIsaNovxaGonb92KICOHW379Ga1kVqTsPUX4tlWev7sVuspB77DwpOw8y/6EtTL997WB01z4cFisPH/wzndX1pH59mNyj53n8+BeofXUUnLwsRpHNmcqa156iNi2XpC/20VpWzfMJB+iuayL922Nk7T3Jzb97leiZkyk6F0/Kl/vRBfpz71e/oy6rgOQv91MRn86LKYex9PaTfeA0Gd8eZ9a9tzDnPvFbm7RjPw6LlSfP7qIht5iUrw5RfPYqT5zdhVypIOfwWdJ3H2XMigWsevlRyi4nkbzjAP1tXTwXv5+m/FLSvjlMwYlLPHTgY3xDgsg5co70b44wfOZkNr79AmVXU0nZcYDO6npeTDtKW0klabuPknfkHHd98WtCRgwn/8Ql0r4+TNiYEdz2h9epTMwg+cv9tBRX8ErWSdpKq8j49ji5h89y8+9eZdi0CRSevkLqrsP4R4Vz1+e/ojIxk9Rdh6jPLuSVzBN0VjeQtf8k2QdOs+a1J4lbMoeiM1dJ2XUIfaA/9+76PVXJ2aTtOkRNWg4vpR2lt7GN7IOnyNp/mqXPPMCk9csoOnuNlF2HUGrUPLT/I2rScknbdZjKxAxeSDqIsbOHnMNnydx3knkPbmbGlvWUnI8nZddhJBIJjx79jJq0XNJ3H6XscgrPXtuHbcBI7pFzZO49wYw7NjDn/tsouZhI2q7DOG12fnJ6B7XpeaTvPkrJxSSevvA1ToeT3KOizOSbVrHosbspvZRI6q4jWAeMPH3hG2oz8knfc4zic/E8fvILpDIZeccukLH3OONWLWTZsw95ItyMXd08d2UvtRn5ZO47QeHpK2w7/CkqrYa84xfJ+PY4cYtmseqnj1F6OZm0r4/Q19LO8/H7qcssIGv/SQpOXeaBbz9E5+9HwalLpO8+Tuzcaax57UnKrqSQ9s0RuuubeSHxIA3ZhWQdOE3+iUvct+t3+IQGU3DyEhnfHmfotAlseOs5yq+mkfbNETpr6nkx5Ygnj0P+8Qvctf3X+EeFU3j6Cul7jhE1cQybfv0SZVdSSd9zlPbyWl5MO0JjThHZh86Qf+wCW/78FsExwwZljhI+diS3vPcqZVdTydh9lNbSal7JPolcLv9f8RF+1B16gM6aBn45cRU2o4mh08bjsNpZ+sz9ZO8/RfH5BACm3b6OgbYOz8iiT2gQ0TdMpuDkJc9IyfTb15F3/IJn1nP00jkYO3tozCsBxJm7GVvWi7Opg6NBCx+/m4pr6X+Z2Z08lqFTx5N94LQ4e61UcONPHyf7wGmaB0cB59x3K1ajmaIzV7EZTfiEBLL0mQdI+/qIZ7Z9469epCopi7LLydjNFsatWkjkxNFkHzwzuO5ex8ZfvUje0fNUxKfjcjhY8dIjWHr6yD9xib6WdkJGRWPa+giH+vUs+OwX6Pu7uf2DX1CZmEHh6StY+ga44a6NBEUPJffwWZqLytEF+nPTr18m78g5Si4m4rTZ2fjuS/Q2tpJ39Dw9jS3EzpvO1FtWkzOYdE6uVnH7h29QcS2NghMXMff2s/jJe9H4+XrK9YsIZeM7L3iSzjjtdm7/4Be0llWTe+Qcfc1tTNqwXAwJP3iamtQcNH4+3PL+zym9kEj+iUvYjCZufPVxMXnNwTO0V9QQMW4Ui5+6j6z9pyi/koJEKuW2P7xGQ24xuUfOYezsZuY9mwiLi/Uks9MHB7LxnRcoOHWZojNXcdrsbHj7BQbaO8k+eIbeplZGLpjJ5E0rydp/iurkLJQ6LTe9+xLVKdnkH7+IzWhi4WN3ozH4krX/FB2VtRgiw1jz2pNkDSbWEwSBje+8QEdlHblHzmHq7mXCuqVE3zCZrP2naCooRevvx5rXn6L0YpJnlHvZcw/htNnFhCWtHUROiGPmPTeTtf8UdRl5yFVK1vz8SRpyiyk4dRmHxcqMLesxRIaRtf8U3fVN6EMCWfnCNvKOXaAyMQOAFS9so6+lnbxjF7AOGImdO524xbM9yWxUPnqWP/cQlQnplF1JQXC7mbX1ZmRyOTmHz2Lu6cMQGcb8bXeQte8kzUXlSOVylj59Hy3FlRSfT8DtdDJm+XxCRg4Xk9m0d6Ix+LHwsbsoPnvNM+M+94HbMHX3UXj6Ck6bnYhxIxm9fD5Z+0/R19yGSq9j7gO3UZOWS01qDiBGWsiVCgpOXsZutmCICGXqbWvIPXyO7vomlDot029fS3tFLZUJ6YAYCRA0fAi5R89jM5rwDQth0oZllF5MoqOqDrlaxcS1SzF191J+NRXB7SZ0VDQxc6aRe+Qclr4BfEODGbNiHnUZ+bSWViFTKBi5cCZSmZTSi0m4XS6CYocSM3saRaevYOruRR8SyIg50+moqqOpoBSJTMbQKePwDQ2i+HwCLoeDoJihDJkyjsr4dAY6utAHBxA1aQymrl7PTEtoXCwhI4dTcj4Bp91OUMxQwkbH0pBTRF9LO7pAf4JihgJ8b3ZpBAFDI6i4lobDaiMwegiBwyJpr6ilt6kVbYABn+AAtP5+nrYNHzsCn5AgatPzsJstBA6PQh/kz0B7N931TWgNvugC/dEFGjwRKeFjR6L21dFcWIHNaCJweJQ4m26z01nTgMbPB31IIBofPQ05RQiCQPi4UcjkMjqrG7AOGAkcHoXb5UauUtBRWYfaR49fRAgypYKWogoEt5vwcaNwORwMtHVi6RsgcFgUAuK6266aBlQ+evyjwsT1g5V1uF0uwseNxNI3gN1kwdzTR8CwSLGTIgh014nvSsCwSBxmCz0NLYMyozB1ietqzd29+A+NRCaT4nQ46G1sRanVEBg9xJOHwu10EjFuFMbuXpwWK+befvyHhIs7d5gt9Ld2oNRqGDFvOnaLjU+as70d+v9L/CMf4XxyIWsf/z0SCcyfGkddcye/efZ23vjkGMVVTUilEh6+ZRFXM0o9YfjTx0Ujk0pJKxBnSjUqBSvnTuD41Rzcg9Eim2+cSXxmGc0dvaIeQ0OZMDKKY1eyxbwzMilP3rmcfWfSPNfcumIGRrONi6lFOJwuAv10PHzrYnafTKG+VZy9/ulD60jJqyQxuxyH08WCaXFMHjOcwxczaWrvRatW8vs3Hyehqp/8hl5cboEHFsUSFqKntH0Ak92Fv0bBndOiaDfaMNrEGaNxoXoUUnA4XQiAUibhhf25JNX0kv3oKECCVCZH6G5C6OsAwQ3B0TjbGnDWlyKY+5EEhOMOjMWUl4attgKkMvxWbaY3M5u+jFRcRiOBK1bjFDS0nb+CsbwSZVAgkU8/TtWx8zReScJlszPtly/RWFVHwdHz9Da2ELdiISOWzyP74BlqUrJR6XXc+sfXKL2YRMHJy1j7B1jx0iOiPTp0htbSKoJHDOfGnz5G1v5TlFwUo8Ru//ANmgtKyTl8joH2TqZvXseQyWPJPniGusx8dIH+bPrNyxSduUbh6SvYzRbWvfks1n4j2QdP01XbyPCZk5l19yayDpyiMj4dmUrJLe+9Sm16LnnHLmDpG2Dew1vwCwsm68BpWksq8Q0PYd0vnib36HlKLiTidjrZ+O5LdNc1iQl72zsZu3IBcYtnk7X/FPXZhWj8fFj35rNUXEuj8PQVHFYbS56+H6lUStaB0/Q0NBMyMprFT2wVk8wmZSKVy1n/5jM0F1WISYmNJqbeuoaQkcM9vog+0J9Vrz5O4akrHlu+4sVtmLp6PbZ8+IxJTFi31GPLlTotq15+lJrUHI+Nmnn3JtQ+Oo8t9w0LZslT95F94LRoyyUSlj//EB2VdR5bHrdkDlGTxniiVLUGXxY9cS+lFxM9Uapz7r8Vu9lKwYlL2ExmgkcMZ+otN5K17ySdNQ3IVUoWPnY39dmFVManIwgC49csQR9oIPfoBaz9A+iDA5l9783kH7tIW3k1Urmc2ffeQnddkydicNiMiURNHOOpsz4ogGm3r6Hiaproj0skTL35Ruxmi8d/CRwexbhVi8g5dIaBji50AQYmrFtKU14JDbnFAIxeNheVTkvRmWs47XYChkUSt3g2xefi6WtpR2PwI27JbHoaWjx2eciUcQTHDqPg5CUcVhsBQyOJmTOVqsRMehpb0Pj5MGzGROxmqydqIjQuhojxcRSfvYbNZMZ/qBit2VxQRldtI2ofHWGjR6DQqMRoXkEgNC6GkFHRVFxNwzpgxD8qnJCRw+mub6ajqg6lToshIhRDVBgV19JEnycuBv8hEdRl5GHpG8AQGYZfRAjWfiNtZdUotRoMUWH4hgZTlZTpkdEHBdBSXDHoG4ai9tEjkUppKa5ArlISGD0Enb8vtRkFuJ1OQuNiUWrF3ECmrh78wkORqxQodVpaisqRKRUEjxiOQq2iuaAMl8NBaFwsIGDu6RffwfAQFGoVCrWK1pJKpHI5YXExCEBHhZgnIDQuBptJ3AWjv7UDv7AQlDqNJ0+ARColfNxIHGYrPY0tOG2DMkYx71d/awe+YcGo9DrcLhddNQ0gkRA5IQ5TV4+YJ8Bq89zHZXcw0N6FT2iQZ+eL7yI6oyaNobepzbPrQ2hcjGeHC2NnN37hIUSMj8M/Kow344/8j32EH/UaeofVSmd1PTe/91P2PPIq3XXN3PHp26LB2LwOQ1Q47ZW1zNq6ifGrFpF3/AJn3vqQ0LhYtu74LV11TVz8/XZyj5xj2bMPcscnb5H2zVGu/ukrhkydwE2/elFcI/rFftrKq7np3ZdY8tT9pH19mNRdhxm9dB4b3nqenENnSd9zFG2AgTs/fYcb7thA5r6TFJ+PZ+Y9m7jhzo1kHzhF5v5ThIyMZuHjd1N46rLYgWxuY+lzDzFywUxyDp8l9/BZomdN5YY7NpB37AK5R8/jPyScta8/TcycaeQdPU91SjbTbl9DzOyp5B+/QN7xiwRFD2HSU/czbMYk8k9cFBN4jRsLKfUsunMd1acvEj17KiMXzhRDuE9dwRARypIn7yV0VDQFpy7TUlTB1FtvJDh2KGFjR1J4+gpBMUOYctNKgkcME7OJ+vkwe+vNGCLDCBkVTfnVVEYumEH4mBEEDo+i6OxV/MKCmb55PYaIEIrOXqOvtYNJG1egCzAQMCySonPXCBs7kpjZU/ELD6H4XDw+IYFMv30tugA/AodFUpdZwJhlczGEh+AbFkzxuXgMEaHEzp2O1t9PHKwRBCauW4pSo8YQEULppWSGTZ9AyKhotP6+lFxIxCc40JNbwC8ilM7qesasXIDaRyfuNnAhgcDoIcTOnYbaR0/JhQS0AX6Mv3ERMrkcn5BAatNyGTFvOoaIUDS+ekouJuIbFszopXNRqJSUXEzCNmAkbulcALT+fpRdSSZifBxhY0ag1GoouZiIPtDAmOXzQCJBH+RPW3k1cYtnodbrUPvoKL2UhP+QcIJjhyGVyyi7lITG34+4RbMQXC60Bl9q0nIYesMk/CJDUahVlF5KQhcUQNyS2QCUXkrC0jdA7PwZCIBKr6UiIZ2QUcOJnDgaqVxG6aUktP5+jFhwAy6Hg9LLKbSVVxMzZypqXx0KjZrya6kYIkOJGBfnKVftoyNmzjQcVhsqHx11WQVETBiN/5AIZAo55VdT0QX5M3LBDbgcTsouJ2M1moidOw2pTIZcraImLYfAYVFETR4HQPnVVLSB/sTOmYbTaqPscgq9Le0Mu2ESGoMvMoWC6pQsAodFEhoXg+AWKLuSgk9YMLGzp+KyOyi7nExXXSPRN0wmcFgkEqmEquQsQkZGEz1zMk67nbLLKegDDcTOm45MoaDscjLtFbVEz56Cwyxus1aZlEnE+DhiZk/FYbFSejkFtZ+eUQtnidunyOW0lFQwcsENSGUy3E4XlYkZhI8dScysybidYp2VWi2jl88lYJi4lVZTYRmjlsxGN7iVXVViBiGjohkxbzpylZKyy8lI5TLG37iYnkaxg9mUX8qYFfPwCw/BaROzvgcOj2Lkwpni+3U5GUFwM3njcjExo8NBQ24xoxbO9GxrVJGQQcCQcEYvm4f/kAhKLyXhsjuYeutaHBZx28GGnCJi5kzHNzQIuUpJZUIGhsgw4pbOobu2kdJLydjMFqbdvlbcEsnhpCGniGEzJuETGojW4EdFfDo+IYGMWjzbk/DR0j/A1Jtv9CwpqM8uZMiUsfgEB+AXEUplfDq6QH9GLZqFsaMLp9WOqbePSeuXY+kfQK5UUp9VQOSE0egCDXRW11MZn442wJe4xXPob+vA7XRh7Opm/OrFmHv6UOl11GcVED52JBqDL31NbVTEp6Px82X00jn0NrUhuAUG2jsZt3IBpq4eWoorqcvMJ3R0DDqDH73NrVQmZKLx1TFm+Xy665qoleTT39bBmOXz6G/toKOyjrrMfIJHDmd4oIGe+haqU7JR+egYu2IBXTUNNOQU09fazuSbVuI/NJJPnnzon2wdvQA0t/cQ6KfjwZsXsv3QNfpNFt57YQsmi42fbFnKmYR8BOChmxfx3nNb+PJoPL/76izrF03h5QfXkpZfxXs7z1DZ0MYfXrqT371wB18evsbnh6+xZsFkPvn5vRy5nM2OI/H46NR8+5tHSc2vYvfJFE4n5HH/xgX8ZMty9p9L49vTqYyOjuC5ras4k1jA/nNp1DV38soDa1m3aAoHL2Rw8HwGsyfFsu3WxRy7ks3hi5lEhQbw1k82seSGMRy/ksO1rDJWTghn3rghXClu40pJG4E6JTeOCSE6UEtJ6wBmh4twXzU6pZwuk51usx2FTIpWKcMuk2J3upBIpfTawF+rRKLWIzhsEBCBVK1D0Prh7mlF6hOAKngoMkMwzsZykMjQzViA3D8IS0kelopCdGPHo4ocjjoykr7MdJTBQYQvvRFNZDgd8clYGpoYvmYZmuAgfIcPoeFiAiGjoolaOAu/yDBKz8XjExrIDXduxCc4kOCYoVSnZDF6yRwCh0VhiAyj+Nw1/MKDGbtiIfogcZcgm9HExPXLxU5KZBjFFxKImjyWyAlx6IMCKD4fjy4ogCk334jKR48hKoyW4grGrFyI1t8PfZA/JRcS8B8aTtioGNQ+OkouJKLx82H8msXIlAp8Q4OoTMwkZs40AoZFojGIfoVvSBAT1y1DoVGLu3h0dDFmxXxkSgVafz9KLyURNjqWIZPGoNRqKL2YiDbAwNiVC5DIZOiDA8SdVxbNQhcgbn9ceikJQ2QYUZPGIFPIKb2UjEQuY9SiWbicTrQGX0/m9cDhUSjUKkouJqIL9GfMsrlIJBJKLybS29zGyIWzkA2GZJdfTSUwZihDp00QB6IvJaPx92XUwpm4nU40Bl8aC0oZPmsK2gADcrWKsivJ+IYFET1zCiDaf4lUQuycabjsDlR6LdWpOYSPHTXor8gpv5KMLsDAyAU34Ha6KL2URF9rBzFzpyJXKVFo1FQmZuA/JAJDZBgAZZeT0QX4ETvoV5RdSqa1tNJjK2QKBVWJGfiGBRE7Zzpul3vQF9ETM2sqgsuN4pKKpsIyIibEETJyOBIJg7Yvgth503HaHZReSkKmkDFi3gyUGg1ylZL6nCIiJ41GoVYjCAIV8ekEj4pm+MzJ2C0Wyi4l43Y5iVs0G9/QIKRyOXVZBQydOl7cks3hpCI+TfQf50zz1MdmtjBm2Ty668SlFnWZ+QyfOZnQkdE4LFbKr6WJOb/mzxDfjUtJmHv7GbtqIeauXgSXi5r0PGJmTyN83Ahcdgfl18TI4tFL5uIbEkTZ5WT627uYuH4pdosNp90h7kQ0bQIR4+OQSCQef2zsqoWehL29zW1MufnGwe3jbNSk5RI1eSwR40ah0mlEf8zfj4nrltHb2ILb5aa7vonJG1aARILb5aImNYeI8aMIGzMSfXAA5VdTUfv6MHnTKkyDCSm7ahuYsGbJYNJLGdWpOYTFRRM6ZgTt5TWUXUlBpdcy5eZVGDt7cNkddFTVMXbFfASXG5VWQ1VKNsEjhok5y+qbKbuSglKrZurNqzF2dOF2umivrCVuyRxcTic6fz+qUrIJjB5CUPRQBto6KLuSglyjZPKmVfS3tiORSGkrr2bkghtwWG20l9dSnZKN/9AIQkYMp6+lXRzEU4hLUHobW5ErFbSVVYu+r9lCZ00j1SnZGCLDCB0VTU9jK9XJWcgUciauX0Z3fRNN+aW0lVUzfOZkbCYz3XVN1KTm4hceSujoGLprG6lNz0MikzLvodvxCw+F+CP/Y3v3o+7QK9RqatJyufLhTqImjWXsygV8/cBLTL99HalfHfSs0TFEhvHF5ic9a2ksfQNs3/IkDdmFnszO6XuO0VXXSH1WIT0NzbRX1HDyF3+gOjWH2rRc5GolOYfPUp9VSGVihrjlUWkl3fVNlF9NpTG3hMhJYyg+n0DZ5WTqMvLoa+2gvaKWjso6MTt4bSNWo4nqlGzqMgtoK6/B5XDQWVVHfXYhbWXV9Ld1YjebaSosp628hu66JgwRoXTXN9FZVU93fTPmnj6sA+JL0tPY6snu3N/WQV9LO/2tHciVCroGLEgQcLa3Da7VETD39GHs6mWgXcwA6bDZsQ4YMff0YR/cc9JhsWLt68fU1YNcoRT3mzaLs13iemEJ7sFM1jajCZlCiUQirrk19/QjUyqRq5S43QI2k7ivqFQhRyIT93m09ZtQadUotBoQBGwDRiRSKWofnbhvqFX8QMk1alR6HYLbjXXAhEqvG9xbVI7DYkWhVqHx80Wl1+J2iXt8KvU6ZEoFUrkcu8mCUqPGNzRIHG1zOkEiQeOnRxtgEPcoH9xv3S8i1LMuWKFW4RcegtbfDwQBt8uFNsCAr9mKXKXEYbGh9tUTMDQCta9+cJ2dDENECD4hgZ69KfVB/shVysG1UHZUej1BMUPRB4kjvVKZDJ+QIAyRoZ51QPogf4Jjh1GfVYDL6UKpURM8YhhNhWVIZVIEAQxhwcgVcnHfT4do6MNGjxCjSQQBuVpFUMwQumoaxDVITheGyDC0/n7UDZar8tF71o9JpRIUSgWBwyKxGU2odBrcTnG/0rDRsTTmifoqtBoixo+irawauVKBRCIhaHgUVqOZ+qwC3G4BXYCBiPFxNBdVIJFKUWk1hIyMpr+lA5VOi+AW8B8WgSEijMa8EgRBQK3TEjV5LG1l1eIabwmEjoxGcLmpy8hHEEAbYCBi3CiaCsqQSMRcy0OmjKOzpgGFRo3gFgiKGYraT099diESJKj0WqImjh4cyZUNjrKOxtjRTW26FrfbTcDQSKRSKY35peK6L5WSodMm0F5Ri1wlZh4NGztCzLyfVYjgFvANC8IvLESMUpDJkMplDJ02gZ7BmVwkEDIyBqlU6hnV1wcYiJw4mtbSKqRyOVK5jKjJYzF191GbnifOpscMQe2rF/MaSCSo9HqGThlPR2UdcqUCqUJO5IQ4MXNwVgGWnn4MURH4RYTSUlzh+Q1FTRpLX3MbtZkFSGUywsbEIpFIxJn95jYM4cGoffW0lVbRVFCGSq8jYkIc5p4+6rOLkMqkhI6MRqXV0JhXgq3OjG9YMBofPV01DTQXlqP21RExdiROi436nCKkMhlB0UPRBwXQXFiOubdf/E2plPQ1t9NUWIbaR09Y3AgEARrzSpBIpfhHheMXEUJraRWm7l4MQ8IwCGGYuvtoLhLvEzJiGAq1iqaCMpBICIyOQh8cQEd1A8aOLvyHROAbGoTdbKG1pBKVXkdQ9BB0/n40F5UjkUBQ7DC0/r70NrUy0NZJ4PAodAEG3C43LSWVqHQ6AqOj0Pr7DWbulRAyKhqVTouxq4f+tg4Ch0eKaywVClrLqlHptQTHDkPtox/MiiwhbHQsMoUcS7+RvtZ2nA4HpsF1q17++YQHG3jmN3sorGxk9qQRDI8M4rnf7mHulFF8e3owYk+r4u3P5Zy4moNjcM3k1YwS4rPKKKxspLWzDx+dhg/3XCC/vIHskjq6eo2k5FWQWVhDan4VOaV1TBgZyc6jiSTmlJOUU05LZy9pBVU0tvUQn1lKRX0bnT39nIzP40p6MfnlDTidLnJK60jMqSC3pI7Wzl66+4wk5VaQW1pPdUMHAb46SmpbKaxqpaqllz6ziz6Lk7p+K429FrpMdtyDofV9VgcmhwsEAadbwOZ04XC7cbnd4tpTt4DgFsTIREHwJM+TuJwIbie43eC0I9itCHZx73FcDgSHDcFmAZUG3G4Euw23xYTLYgakCG4XbqsV58AAEokUJOB2OHAOGHE7HJ4IGafFgq2vH7laTMqLy4VjwIgUCQqVUrTJZgt2iw2ZUoFCrUJwubD2G1GoxT3OpTKZuF88oNJpUGrUuByOwb3q1UhlciRSCTajGYVKgS7AgFKrFteuugWUGhVagy9IxGs0Pj74hoUgV4t7ieuC/PEJDkTj54PgFnDa7Gj8fHA5HMiVSjHfkI8OQ1QYah/R/n/XSfcJFu2/Y3APbX2gP6pB+6/UaggYFoU+0CDaMKnUM8CpUKtwWGzo/P0IjhlKfWY+bqcTtV6MJvINDUYql+F2udGHBKPS6z1+hdbPh5CR0R5bo1Cr8I8KwxAV5slb4hsSROCwSNFOu1yo9TpCR8fSVFiOVCZFJpPhHxUmdtZ1GlwOF/pA/0H7XwKC6G+Hjh1Je2WdmGdFgICh4SBAfVYhbpcbrcH3Ovuv1KoJjhmGqbMXpVaD4BYwRIYSPmaEJ/pVpdOKOXLKqpEpFcgUCoJGDEehVlOXWYAgCOgDA4gYP4qWovLB3ZQkRE6Mo7uh2VNu4JBwkEhoGIwElGtURE0aQ1tpFTKFHJAQPnoE5p4+atO1IAj4hYXgFxFKU34pEokEmUzK8BkT6ayqQ6ZS4jK5CBo5HJfTSX2WWK4u0J/IiaNpKa5AKpMhkUgYMmUsfS3tVGs12IwWAmOGoNSqRTsnkQyukx5HW7lYR4lU9EUsvQPUZeZj7uknYEgEfmEhNBWUIZXJUGjVDJ06nq7aJhRqFRIkhI8bicvhoCGniP62TvwiQlHptKIuchkKrYYhk8cy0NZBbUY+EqmUsLgYz45EPY2t+IQGETAknPbyGmQKOXK1iojxo7D0DVCXVSjay5ihaPx8aCosp7tOjPr0jwqju76Jxtxi5Go14WNGiBMJgxGFgcOjMESE0lJcSVdtI/qQAHxDgjC2d9GQW4xMrSJk5HCkMpn4rkrAEBmK/5BwOqvq6KiuFxNk+/th6R+gIa8EhVpFyAjRxjbmlyK43QQMi8AvLJjuhhZRJiwIlV6L02anqaAUhVpFYHQUvqGBNBdX4DBbCYoZMhh12EV7VR0+IUHi90YipbmwDIVKJfoEgQZxp51+IyGDtt3SN0BHlagbiLkAWoorkKtVBI+MRuPnS1ddI6bOHkJGDff8lr+TcTvF31tbWQ1ylYKwuFiUWg19rR30tXTgtNk9OzP9T/nRh9y73W4+XLWVkgsJSOVy1rz2FIufuAdTdx97H/85XXVNrHvjaYZOm8jZdz4i5atDjF46h6073yPh0z1c+/gbHBYrj538gs6qOuI/2U1teh5Ln32Q8Tcu8mSP9g0L5sG9fyL/+AXSvjlKT0Mzd3/xa1wOJxl7jlERn86YZXNZ+uyDZO47Se6R8whuN/fv/iP1Wfme0KwVL24jdFQM2YfOUHoxCUNUGFv+9Ab5Jy6Re+Qc/W2d3LPjt/Q1t5N7RExgN+XmVUxct4y8YxcoPhePXKXkrs/fpTIh3ZN0Zf1bzyFXqSg4cZHKxEwixo8ib/MTFHfbWfXFL7D0DXD/7j/QkFNEwcnLtBRXMO+hzUSMj6Pw1GXKr6ahDfBjy0dvUnDqCoWnr9Df2sHtH/6CgbYuCk9foT67kLjFc7jhro3kHT1P6SUx5Pjer9+n/HIyhWeu0l3XxIoXt6H20VN45io1qTn4DwnnpndfIufQWUouJGDpG+Cu7b+mKa+E4nPxtJVXM/WW1WLEwYmLVCVlodJpuP2jX1J48pI4At7Zzbo3n8XSN0DxuXiaC8uImjxWzMJ++CwV8ek47Q7u3v4u5VdTKbmQSF9LO3MfuB2f0CCKzlylIacIn9AgNvzyOXKPnqfiWho2k5lNv32F1pIqSi4k0tPQzOglcxi1eDb5Jy5Sl1kgZlT93auUnE+g7Eoq1v4Bljx9P06rjZILiXRU1RE4PIqFj99D3tHz1KSKCd82/foVatJyKLuSgrmnT5ytGxJO8Vmxzlp/P5Y//zDF5+OpTs7G5XCw/IWHB8PGkjF19RA1aSxjls+j8PQVsdMmk4mZzhPSqUrOwmmzM+OODQCUXUoSP/LhIdxw50aKz8XTVCAmvVv6zAM0FZRRlZiBw2pj5IIbCBwe5WknlV7HnPtupTIh3eMY3HDXTZg6u6mIT8duthAwLJLRS+ZSfD7es93XvIc2U59dREN2IYIgMHrZPORKBRXx6diMJnQBBsavWUzFtXTPVmrTbl9LV02DaKzdbsLGjiQ4ZigV18QwMblaxaT1y6nLyPMMuI1eOhebyUxdRj5ulwvf8BCGTZtAZUI6lr4BJFIpE9YuoaWogo7BBDbDpk9EppBTm56H2+XCJySIqMljqEvP83xARy+bR3ddkydRTvCIYfiGBlOTlovb6UQX6E/E+FE05Zd6EuVEz56CuavPk0wvcPgQfMOCqM8qxOVwoPU3EDo6hvbyGs92PpET4nA5nJ5kR4HDI9EF+tNcUI7Tbkftqyc4dhg9DS1/SVw0Qpz5aBuU8R8SjtbgR1tZNU67HZWPDv+ocEydf9l2Jzh2GBKp1FMfQ1QYKp2WrtpGj1PpExKI3WTxyATFDgVB8Gx14xchDjD1NbcNDnCp8QkVZb7TLShmCC6ny5P4xy88BIlU4glHkykV+IWHYDOaPW0QGD0Ep9XmSbLkExoEgoC13yjKKBSeUL/v2jpweBS2wX1oAXxCggABS9+AuH3VoCNq6e33JIkKGBYp7igy+Iz1wQFIJBKPDBIJgUMjMXb3YBvcojFgaCTm3n7PoK8+KACJVIK5t9+T1CZgWCTGjm5PAiv/oRFY+gY82zzpAg1IZTLMPX24HE4kEgljVsxHqdXwXv4lb8j9/yX+kY/QO2Dmhs2/oLa5k5AAX156YA2Pb15KWn41j739FYF+et564mYkEgnvfH6CM4n5vHT/Gu5cO4eP915k1/EkQgJ8OfrBU5xOyGf7oatUN3aw/Y37USkV7DqeyMXUYhZMG8Ubj29i98kUDpxPx+F0sec3j5Jf1sC3Z1Iprmri6btXMmXMMPafTed8cgERwQb+/POtnIrP4/DFTFo6+/j0tXvpHTBz+GIWaQVVrF04mTvXzuPYtXzOJhchlUjY9dvHKemwcrWknYZuM48tG8nYoQZK243U9ZgJ0Cq5Y0oU3WY7PRY7TrfAuFAfT8i9yy2glEtY+vtERgWp2LE+AqRSJEoNQk+LuA+93YIkcjTu7nacjRW4OpqQhkRB2FhMhVlYygsQnA78b3qA/tw8+jLSsLU0E7x2Iy6ZDx3XEunNykMZGMDQl56h+sQFGi8nYe3uZc7vf0F9aTVl5+NpLSpn7NplxCybR96xC1TEpyFTKLh7+7sUnrlK8bl4+ls7WP3ak7gdTorOXqMhp4jQ0bGsevlRsg+cpuxKCnazhXt2/JaqpCxKzifQXd/EzHtuJmSEuIa1Nj0PXYCBTb99hbxjFyi7nIK1f4Cb3n2JrromSs4n0FFVR8zc6Uy5aaUYDZmag1Qq5fYPf0HJxSTKLiVh6u5l0U/uQSqTUXw+gdaSSvyHRLDs+QfJP3qBqqQsnHY7N7/3KvVZBZReTGKgo4sJa5YQMX4Uhaev0lRQitpXz9rXn6LobDyVCek4rDaWPfcQA22d4ux2SzthY0Yw7dbV5J+4JHacJBLW//I5qhIzPHZ5+uZ1YhTgoP/iExLIvIe2UHwunvossUO87LkHaSur8djYmNlTiZwQR/H5BLpqG1Fo1Cz6yT1UxqdTm5GP4HZzw103YRswUn41FUvfAP5R4Uxcv4zic/EeG7vw8btpzC3x2Mu4JXPQ+PlQfiUFc28/WoMvU26+kcqEDI+9nLFlPT2NrdSk5ohh1aOiiZw4hrLLyZi6e5HK5czYso66zAJPcsPRy+fhsjuoScnBabejDw5kxPwZVMane2zS5JtW0l5e41neGjV5rDhrO+gnaf39iJkzjbqMfE/S3jHL59HX0uFZNhswPJLgmGFUJ2fhsNpQ++gZPnMSzQVl9LeJMtGzpmA3WzwJhf2HhHvyZDksVpRaDUOnTaCjstZj68LHjUSuUHh8K7EjG0FTfil2swW5WkXkhDh6m9o8yYGDRwxDqdXQXFCGIAj4RYTgGxZCe1m1uM2bQkHoqGjMvf0efywodigKtZrWwa1tfUOD0Qf5D25haEYilRI4PAqXw+lJ7BsYPQS5UkH74LZ7PiFBqH319Ld2eCLsgmKG4rTZPfcJHB4lLnurbURwu9EH+aPQqDH39P9FJnYYDrPF0waBwyJxu92DkXJudAEG5ColVqPJY4eDYoZiM5o8W+oFDI3AYbNj7OhGcLvRGvxQaFSeyURRZgiWfiOmwYTC/kMisJlMWHrFpOkagy9KjRpL/4An0V9g9BAsvX2erR8NUeHYTWZxe0uXC7WvHpVeh7mnz7MMOzB6CMbObo+uhsgw7GaLmJzd5Ual16H21Ynbaw9OJgcOj2Kgo8tzX0NkKHazVdzK0u1G7evDiHnTCY2L4ZXjX/3PfQTh35zY2NgfPOd0OIRzv/lESP/2mPB86DTh2cDJwodr7hN+O/8W4Snf8cJjihHCNoYJ3/7kNeHgC+8In976mPDmxFXC62OWCnnHzwvn3/tM+PLup4WfRs8TCs9dE4ovJAhn3/1YeH/pHcI3214RelvahOzDZ4S9T74u/GrmBsHcPyA0FZYJVz/eJby/9A4h9evDgtVoEoovJAjfPvGasP2OJwW32y20V9UJVz/eJfxu0e1CZ02DYLdYhOILCcKu+18Qzrz7sSAIgtBeVSecf+9T4eMNDwoul0uwmcxC3omLwie3PCIUX0gU3G630FxcIRz72XvCged+KQiCIJj7+oX0PceEP627XzD29Alut1uozcwX9jz+MyHxy32CIAhCf3uncPWjXcJX9z0vbPo4SVj82ytCycVE4fPNPxEa8ooFQRCEztoG4fjrvxdO/fIDQRAEwWa2CBl7jwuf3fqY4LDbBbfbLdTnFArfPPJTIefoOUEQBMHY1SNc+uOXwr6nfiEIgiC4nE6h6Hy88Omtjwld9U2CIAhCR029cPjld4XLH+4QyzWZhZRdB4Uv735acLvdgtvtFmrSc4WdW58TyhPSPfqefucj4chPfy0+U7tdyD12Xvhk0zbB3NcvCIIgNJdWCt/+5OdC8lcHPe1w5aOvhF0PviTq4nIJpVeShE9vfVRoKioXBEEQuuqbhMMvvSucevtDQRAEwW6xCMlfHRT+vGmbp461GbnCl3c/LeQcO+/R5eQvPxC+ffznnvcr69AZ4U9r7hN6mtsEQRCEpqJy4ettrwgX//ilR5cLv98ufHrro4Lb7RZcLpdQePaq8Ke19wuViRliu1TXCfue+oVw4Lm3PO1y9c9fC+8vu1OwDBgFt9stlMenCZ/c8qiQtGO/IAiC0NPcKhx++V1h+5afCIIgCA6bTUj+6qDw3sLbhJaSCkEQBKEmI0/44s6nhOOv/U4QBEEY6OwWTvziD8Lvl24RHHa74HQ4hMz9J4XfLd4i5A7WsbGwVPjq/heEnVufFQTh/2PvL8Osurp1bfSes9y9iirc3QMECMFCgIRAiLu7u7sS9xBCCBbcoYRyd3d3d51V09v3YxTjfde+zvnOj73XPte61hp/chWZfcw++uhzPG303tr9iOj6+iVs1+/y5fLt0tfWIRaLRfIuRMhPm++XiG/3iIhIW0WN/PPUO/LjpnvFarWKfkgnUT/8JZ8tuVGqUrLEarVKSUSC/LrtETny1Lujc6xJTrz4kXy2+AbR64bFMDwscb8fli+W3SRJfx0Xq9Uq5fFp8setT8ovNzwkIiI9za1y+vXP5YNZG6StokZMBoMk/XVcdq3cKWfe/FJERGrScuTPO5+Vz6/aJlarVfrbO+XcO1/L+9PXSll0sphNJkk9fFa+WXObHHzkdRERqc8ulH33vigfzd0kJqNRhrp75NJHP8gHM9dL3oUIsZjNknnikny3/k756+7nlXEqLJMDD70qH8xaL3qdTnT9AxL6+a/y0ZzrJPXwWbFYLJJz7rL8sOle2b3zCRERaS2tlEOPvSnvz1gnQ719MjI4JOFf/yGfzN8s8X/8I1arVfKDo+XnLQ+o19xWWStHnnpH3p+2VgbaO0Wv00nk93vl00VbJfK7P8VqtUrx5Xj55caH5Yfr7lHGtrZBjj3/gbw37VrpbmgW/fCwxPy8Xz5bcqOEfv6rWK1WKY1Okt+2Pybfrr1D+T3UK/fjvanXSntlrZgMBon97ZB8sewmufDetyIiUh6fLrt3PilfrbpFmYPNbXLq1c/kvWnXSlNhmZiMRknYc0R2rdghp1//QkREKpMyZM9tT8mXK3aI1WqVvtZ2OfPGF/L+tLVSl1UgZpNJkvadkK9W3qI+O6pSs+XPO56Vz5duE4vFIv1tHXL2rV3y3vS1Up2SJWaTSVIOnJKvr7lNjj79njLXM/Llr7uek08XbRWLxSKDnd1y/t1v5IMZ66QsNlXMZrOkHjoj36y5XX0u1GUpv49PFmwWs9ksQ929cvGD7+SDmeulODxezGazpB85L9+uvUMOPPyaMldyi+Tv+17611zp6ZNLH/0gH87aIHkXI8VisUjm8Yvy3fq75O/7XxIRkcaCUtn/4Cvy0dzrxKjXy1BvvwR/8pN8NGej5JwNE5H/dx37n+N/7/h/G9ue/iH59I8Lsv9cgrguf1zGrHteHnl/ryy45V3xWvWUOC59VJyWPirv/XxaXv7qiOx88SeZddObsvWpb+RcdJZ8/udFue3lX2TOjrekqLJJLsbmyAe/npFV934iu09ESVVDu/wTnCIPv7dXbn7hRzEYjJJeUCVf7QuW1fd/KqU1LdLVOyjnorPk/rf3yIe/nVGesWX18sXeS3LjM9+JyWSW3gGdnInMlFtf/lmC4/PEYrFIblm9vPvTKXn+i0MiItLdr5OjYZly8yt7pL1nQMwWqxQ09MqXwcVyMr1eREQG9SbJqO+RMwWKJlusVukdNkh5+4AM6I0iImK2WGRYbxDdiF6mvxsqLxzNFvPwgJi6m8RisYjVahXzYK+YqnPE3NmgnGdEJ/riVBlOuSQiIlaLRXTlRdJ+6BcxdLaJiIi+rU0aD+6T1rOnlO8ZGZHmCyGS+9LbYjGbldgot1Bin3tHGmOSRERkqLNb4r7/U4LfUp4nZpNJCkJi5I/bnpLBrm4REWmvqpOTL38iiXuPiYjIyOCQJO49pv5mrVarVCRmyN67npP6nEIRUZ5dFz74Xi599IOIKPqZcfyS/HHLk2LU60VEpDGvRA4+8rpknQpW+tLTJ+Hf/CH/PPWOcs1msxSERMtv2x+VzlplHNora+XY8x9K+DeKNuqHdBL3+yH549Yn1bErj0uVP259SkqjlGvsaWqVs2/tkhMvfSwiIka9XlIPnpYfr79Phnp61bho370vSvwfR0REiUUuffSD/HnHs8r9MJkk61SI/HDdvdKYVywiIk1F5XLo0Tfk3NtK7KTr65fwr/+QHzbeIyaDQSwWixQER8nPWx6QzBOX1P4fffY99dll0A1LzC8HZNfKndJd36xqx+87HpOQz39V5l1Ds5x85VP54bp7xGKxiFGvl4Q/j8qXK3ZIaXSyWK1WRQduf1p99va3dci5t7+Sz5fcKLq+fjEbjZJy8JR8fc2tEvvbQRERqcsqkH33vSg/b3lAueYuRZc/nrtJGgtKR3U5WL5bf5ecHB27xoJSOfDQa/LZ4hvEZDDIUG+fhH6h6HL26VDld3MuXH7cdK/8ceuTIiLSWlYlh594S96btlaGuntkZHBIIr79Uz5ZsFmif94vVqtVCkKi5eetD8iP19+nzrmjz74n7029VnqaWsUwPCzRP/8tny2+QUK/UDS2JCpJftv+6H/U2Jc+lvemrpH2qjoxjIxI3O+H5IurbpLz732jzo3dtzwpX63cKVarVdHY1z6T96aukcb8EjEZDJK4VxnbU68ocX9lcpbsuf1pNebpa+uUs299Je9NWyvVqdliMholef8p+Xr1rXL0GUUva9JzZe+oXprNZhns7JIL730j789Yp8ZJaf+clW+vvf1fcVJOkfx934vy8bzr1Tjp4offywcz10tBcLSYzWZF+9bd+S/tyy+R/Q++Kh/NUbRP19snwZ/8JB/O3ijZp4LFYrFI9ukQ+WHjPfLnnUos21JcIQcfeV0+nLVB9DqdDA8MSsjnv8rHczdJ6uGzYrVaJefcZflx033yxy2j97C0Sg499oZ8MHO9DPcPyMjgoFz+ard8Mn+zGk8qcesD8tv2R5U25dVy+Im3lXisp1dGhoYk/Js98snCLRL726F/u+8PqvFYe1WtHHn6XXl/xjoZ6OhS4rHv9sqni26Q6B/3idVqlcLQWPnlhofkp+vvFxElvj/6zHvy3vS10tvSrsyVH/fJZ0tulPCv/xARkeKIBPn1pkf+LYZrlGPPfSDvT1+rvj/9n4gR/svv0LcUV/DViptBo2H+jesZ6Ohm24cvUpOaQ8gnPyNWKyvuvwWfSeOI/v4vdD192Dk5snPXm8T+clC1ylj/wkM0F5Sp4Lwpq5biN3UiOadD1RWaG95/ntQDZ9SVrWufuZ+2kkq1je/k8aqN2pXVsJ1fv0XKvpPqSuOyu7dj5+RI6v5TiAi2Dvbc9dunXHz3G3UF8OYvX6cyPoPiy/EATF21lPnbNhD62a8Yh0eU1et9XxH57Z/qKuGVHWOFpmrFzd+HlKc+Rt/YyLL9X6HRaLh792fkn49Qz7vw5uuZuHQ+4bt2Y9ANY+fowCNHfiL4ox/Vnd2bPnmF7tpG0g6dxWqxEDRvJhtfeoQLo/3V2trywN9fk/L3SXUcVj92J64+XsT8fEBdsXz48A+ce+srdefw9h/epyopi7xz4YjVyox1VzPvxg2Ef/k7up4+bO3tuf/vr4j5cb9qbXfdq48z0j9I+mGFxOkRFMD2T14h+KMf6W1qVaB4P39E/rlwyqKTAWXV1m/qRBL3HFV2fx3sufv3z4j4+g/V8uSG95+nubCcwkvRWC0Wxs6fydI7thHz036GunrQ2thw2/fvknbwrAp2W/HALSCQfTIYs8GIrYM9N+96k8hv/lRXWG/88EXKY1JVSNu0a64iaJ7iUWvQDaOxsWH7J6+QvO+EarN3zeN309PQTGlkEmK14j7GjxX37ST5r+PKrrJGw/VvPkXhxSgVojh361olOyM4RrXZ2fjyI6QdPKuuRF/z+N00ZBeq/Q+YNYUJi+eRe/ayumu59ul7yb8Qpa7CLth+HUOdPSrMxsbejuX3KDyIK/Yxy++7meqkLNWaZ/ySeTi5uyrAFRHQaFh2900UBsequ5/zblhPZ1W9umLv6ufDhCVzVcgcwMIdm6hMyFB3aicuW4hpRK+upAPM3bKW0qhk1QZl5oZVtBSWqzvP3hOCcPHxUlPCrnymOjlLBVtOWDqf/pZ2dRXZxt6O8YvmqPA3UFbkm/JL1eeA39SJmI2mf9nfabWMXzxHTckDxb6vq7pBHSdnL3ecPT3UjAONVkvQvBnq6jsoq9NDnT2qtaBGq8V3yni1/k2j1eI/bRIdVXWqNZqrnzdWk1nNONDa2OA1IUgBuaDY1HiNDaCvuf1f1i/2dji6uqiWOVpbGzwC/eltbFXbuHh7MNw7oI6tRqvF2ctD3W3X2trg6uut2uxobWyUMhuzRbWu0drY4Ojuqt5DG1tbHNxdVfs+ra0tYrFg829WNVpbGxxcnNXddhs7W2zs7VWrPsUazoKN3b+3scXO0V61Dfxf7XCu2Mn9u42OjZ0dWhutupJuM2pBc8W2Rmtrq9h0/Zv1no29nZK2PEoIt7W3x3zF+k5EbYNGo46bo7sbphE94RPkf3bo/5OO/18xwpnILO5+43d8Pd24ae0iKhra2P3+Q/xyJJK/zsbj5GDHe0/soLG9m31nEzCazFw1dxKbVs5j7+k4uvqU3+Pbj2/jQkwuJdVKptHdN1xN38Aw4SlKuZG/tzt3b72agxeT6BtU5uK7j2/nbHQWpTXKs+LGtQvxcHXmxOV0LBYrdrY2fPXKnez6K5iOHuU3/M7j28gorFXt8RbNmsDtW6/hm8PRjBhM2Npo2fPJY1wo7qaqQ+nbHSsmMHuiJ7nNoxajNloeWjae+t5hTBZlTk/3ccHBRlTbOpPFyrIv43lgoQcfrPUDNGic3LE2FCHDynm0Y6ZiaqnHVJkLYkXj5g0Tl9IbdhLLQB9otXhtf5D20DAG8xSd8Fq7Eau9J3X7DmMZ0WPj5Mj0XZ+Q8dmP9JUr2UZLP3qN8swCCk6HIlYrE65ewpzbtxHyyc8MdfVgY2fHgwe+Ie63wyokbN3zDyFWKyn7TmDSG3D29uTuXz/m/Dvf0F3XhEaj4Y6fP6Q4LJ7isLhRmNp6Ji6dT8xP+xnpH1SzGyO+3qNqyZa3n6G7rkm1LPafMZlrn7qXiK/+UGIcGxtu//EDMo9eULVw2T07cHR1Ju3wOUwjSine7T98QPhXu1XLths/fJGalBzKopIQESYtX8S0NctI2nsc/cAgGhsbdu56k5R9J9TMrVWP3omuq0fRcosFZy8P1r/wEPG/HWaoqweNRsOWd56lKDRW1bVZG6/Bzd9b1XKtrS2b33qKlL9PqbHImifvobmwXB1L36kTmLluJVnHLykapdGwcdRm74pGzb9pI0bdCBWxqcjo8+2ax+8i48gFVctXPnQbNak5aiw1duFsvMaOoSQ8QdEbjYaVD95KwaVoVTvm37SRnvpmNXZ18nRn5vqVFAbHqNZpS267garEDDUmnrhsAQhqLIhGw8Idmyi5HK8+w2dvWkNrSaUav3iOHYP3hCD1ngHM2Xwt1UlZqi5PXLaAoc4eNX5Bo2H6tctVGB/AtDXLaMorVXXZd8oENFqt+u6ARsOUqxdTm56n6vK4RXPoqWtSddnRzQXPcYHqewAaDeMXz6U5v1TVZd+pExjpG1THSaPVMmbWVDXOQ6NhzOxpdFbWqePk4uOF1sZGjfM0Njb4TZ1AR0Wteg7vCUH0t3ao2qex0eLu76vGPBobG7z/PWbQanHx8cQwqFPHVmOjxc3P5196b2uLe4CvOtYarRZbB/v/YJGrtbXBxdtT3W3X2tri5OH2H64PwN7ZUdXuKzZuun+LEewc7JUSG5F/tXFyVO+hjZ0tds5OaqacjZ0t1tFnnFitShuNBjsHO4zD+tHP2GFjZ/tvdr52SumMVovVovBFNBqNUt6rxgj2SlxxxarPzg6rxQxo1O/RaLVotRrVEu9/tdS7YqF7pW9aGxvsnBwJmDmFv/tK//tR7s1Go1J7BYgIFpOJ/AuR7L3jWQBu+eZtrCYzxmE9/W2d1GXms+n1J5h+zTJaSypJ+fsUhiEdT53bg9lkJnnvcTKOnOfeP79k4tL51GXlE/HVHnynTlDtThL+OEJZdDJPn987CkFJJPaXg6x+5A4W37JFsV7bcwxddw/3/bkL47BiF5J26Cz3/vEF3hOCaMguHLUYm8LGlx5loL1ToagmZvLosV+wms2URaeQevA06559gOlrltNaWkXWiUtYjCZu/uINdL39FIXEkHsunPv3fY2Tmws1qTlkHr/I5KuXcPV9O+mqayT/QiStJVX8MG4984PceMl3gKzjl7jh3ecYM2c6jbnF5J67jJObG5vffIr+1g6KQmMpjUzkocM/IBYLlYmZ5JwOZeH2Tcy7YT2tpVUUXopioKOb2797j6HuXkojE8k7F86t372HR4AvNWm55F+IxG/qBNY+fT8dVXUUX46jPrOABw98h35gkLKYFHLPhnPt0/cyZcVi6rMKKAyJQQR2fPqq4jMbkUjx5Tge+PsbtDY2VMSnU3AxkmlrlrHs7h00F5RSfDmezuoG7t+7i/7WDkqjksg7F86Oz1/Dd/J4qpKyKAyJwT3Al81vPk1rSSUlEQlUJWby2IlfGekboCw6mfwLkSy/Zwezr19DbVouxZfjMQzpuPPnj+morKU0MonCkBju3/c1dg72lMemUhgczYSl87j2yXupyyygJDyeluJKnjj1O121jZSN9mXre88xdt5MKkYptg6uLuzc9SYNOUWURiZRHpPC0xf2ouvupSw6hfwLkSy+ZTOLb9lCZWImxZfjGOzo4dEjP9KYV0JZVBL5F6O4b++XOLm7UR6TQv6laAJnT2Xzm09TlZRJaUQi9dmFPB9+iPbSKsqiU8g7H86mVx9n8orFav+1tjbcu+dLalKyKYlIpDQykWeD96Hr6VfHZe7ma1n50G2Ux6ZSHBZPT0Mzz4UeoDYth7KoZPIvRnH375/i4uNFeUwKBRcj8Zk0jh2fv05FXBrFl+NVC73WonJKo5PJPx/J2mfuY8baFZTFKH2xmM08duwXKuPTKQlPoCQigacv/oW+f3B0XCKYsW4F1z59P+XRyRSGxNJV08Cr8SfUay4IjuG279/DMyiAsuhkCi5G4T0xiFu+epuymBSKQmNpyivh5bjjNOWVKO4JITFc//oTTFgyj7LoFAovReHk6c49uz+nfLSEpC4jjxcjj9BRUUNplOK4sOaJe5i5YeXoNUdh62DP/fu+Hr3mOGpSsnk2+G/6mtspi0qm4FIUV92zg4U3bVTaBMcgFgsPHfqeqqRMSsITqIxP54kzuxnuVeZl4aUoFmy/jqvu2q70JSQGw/AIjx79Wbln4QmUx6by8D8/YjEaR/sfzazrVrPyodvUOTfc06dY3YzSi8uikrh37y5s7e1GCdLRTFuznNWP3UlVYqZaavPE6d+pzyqkJCKB0sgk7v79U+ydnKiITaUwJIYJV81n3TP3U5WURXFYHL1NrTxxejdNeSWURCRSEp7A7T+8j7OXOxVx6RSFxBC0YBYbXniImtQcisPi6Kpt5Ikzf9BSUEZpVBLFl+PZuetN3Px8qErMoDAkhoBZU9n40qPUZeRRHBZHR1UdT57dQ0thOeUxKRSHxXHTJ6/gOXYMVUmZFIbE4jd1Ate9+jj1mfmUhCfQVlbNk2f+oKW4gorYVIovx7P1vefxnhBEbWoOhSExeE0I4vrXn6Qhu5CS8ARaSyp54sxu2oorqUjIoCg0ls1vPY3v5PHUpuVSFBqHR5A/W99+hrrMAkqjkmgpLOeJ07/TVlqtuolsfvMprn7gVhYuv+p/Xuj/k47/NUYwmszY2yl4IJPJjI2Nlvd/Pcs3+0Oxt7Pl9/ceoKm9lxGDkdqmTupauvj8+VsJ8vcmq6SG/ecSmTFxDL+8cz8tnb38diyalLxKTn//PD6eroQk5PHTP5E8tOMa7t22SrGXOxxOV98QBz57HIPRzJmoTA6cT+T39x5k2oQA8ssb2H0ihmnj/Xn9kRvp6h3keFga8VllHPv6GUSEuKwy/joTz+O3ruW6lfOorG/nWGgqQ8N6vn71LgZ0ei6nlHA2toBf3rgNHw8Xipv7uVzQyowx7uxYMpYBvYnyziHaBg3cNGcMVqvQrzfRpTMS5O6Is70NVqtgNJtpG9Cz/rtEXtowledXB4JhCI1nIBpABruwdjehcfdH6zMW60A35sZyrEN9OF19I5YRHfqKYnSFmXhtuR1bLx90FWX0paZg5+tLwPadjDS30JmQQm9mLvO/+QSL3kBLYjq1lyKYcecOxlyznNb8EsrCYjEO69n62ev0t3ZQEpFAYXAM9/zxGQ4uzlQmZlJwMZIJSxew8sFbaS2ppPhyPK0llTyw72sGO7spi04m71w4m99+hqA506lNy6UwOAYHNxdueO95OqrqlGdmTAqPHvsZ47CeithU8i9EsHD7JhbsUEq8ii/HM9jRzT27P6ertpHSyEQKLkZx568f4+Ltqbj5BMcQMGsKG154mMbcYkoiEmnIKeTxk7/T19ym9OV8BBtffIRJyxdSlZhBUVg8Gq2G2757j+aCUkqjkim5HM/jp37DrDcqmnUpilkbV7Pi/luoScmm+HIcPfUtPHr8F1pLKkc1N4Lbvn8fz6AAymNSKAyOwXtCkLJ4kJpDaUQi1SnZvBB+iK6aRspjFP2/5rG7mbVxFeVxaSqR/sH931CbnkdZVDJFobE8cXq3ApCNVrR96uqlrH3mASriUim5nEBbeTUvhB+iIbto9BrD2bnrLfymTKAsJoXC4Ghcfb257bt3qUzIoCRcKSV4MeYo3dUNlEYlk38hghX338KCbRspj02lKCSG4b4Bnjq3h6rETEoiEykOjePRY8pmXFl0yui9n8/1rz8xquVxtBaX82rCSeoy8hVdvhjFjR++RODsaUpcdDEKJ3dX7t3zhfI9YXFUJWTwcswRumqbFF2+GMWye7azcMcmymNSFZj0iIEnTv+uaHl4POUxqTx5+nf0Q8OjcUUks69fy+pHblfHf6i7h2cu7lP6Hz5qg31QsWm8EotMWb2UDc8/pPQ/JIbepjZeuHyQ6hSlPKT4cjx3/f4pTu5uqv6PWzSHTa8/SeXoPeusbuD5ywepz8ynNDKRorB4dn79Nl6jQOjC4Gj8Z0zmhveepzIhg+KwONrKqngu7CBNeSWURiZRFBrLto9exn/6RMqjUygMicZrwli2f/yyquXNReU8H3qAluIKSqOSKAqJ5fo3nyJo7gwq49MoCI7BPcCHm794k+qUbKWcNa+YZy/to6OqnrIo5XvWvfAQE5fMozIhg6KQGBw93Lnl67eVWCQ8nvqsQp4+/yfddU1qXHrtk/cyeeViJRYJicXWyZHbv3+Xuox8SiISqUvP44kzu+lralPnz9UP3sb0a5dTnZxFUWgsWjtb7vj+AxpyCikOT6A2NYfHTv7KQFsnlfEZFIbGsuyubcxcv0p5ToTGAnDnzx9Rn1VIWVQS1SnZPPLPjwx19Sq/39BYFt+2ldkbV1OXkU9RaCwWi5V7fvuEuqwCyqJTqE7K5IGD3zLSO0h1UiaFobEs3HE9czevoT6zgKLRxad7dn9GfWYBFbGpVCZk8MTp3xm/eC7zlyz+70e5T953ghX37VQsEjQawnftpqmgjLlb12FjZ8vlL37nxg9fJOPoRXUFtvBiFGGf/qKuInqNC+TgQ6+RfTJEXYXLPXeZ/fe9pK6ULr3jRg48+IpaY+zi40Xin8fIPx+uQqymXXMV/zzxNhVxaXRU1jLt2uXE/nKAwpAYqhIzsZjM1KblEPH1H5RGJtFRWcum158k6oe/1CD+Sn13YXA0JeEJdNU2suCm64j4Zg/FYXFUJWWx6ObryT17mcKQmFGrFT3NBaVUJWRQGBxNXUY+vlMmkH7kPIWXoii+HI/35PH0eq9GV1nFhe8P0lZaxepH76Q6JZuCi1GURiWx+vG7KIlMJP9CJAUXo7CazbQWV1IalaTUj6VkM+2aZQp9/1w4RSExTFqxiPrsQvLOhZN3LpyumgY2vfYkpeEJ5J69TFlUMlvefW70xV1pZ+/sRGdVHXkXIsk9E0Zdeh4r7t1B7rlwcs+EURQSy8Kd11OfVUDOmTByz1xG191Lb2Mr1clZ5JwOozwmhfGL5lIamUjO6TDyzoUTMGMy7RU15JwOI+dUCM2F5Vz/+hPknLlMzulQisPiWPf8Q1SnZJNzKoTcM5dVu6ui0FiyT4VSk5LN4lu3UhwWp3hUXoxi5oaVNOWXkH0qlOyTIQy0dTLQ1jHqfalY5AXMmkZ5XBrZJ0PIO3sZtwBfpS+jbZoLy9j4ymMUBMeQfSKYknDF8aA2LZfskyHkjO5MdFbVURadQvbJYOoy8lmwbQMlEYlknQimMDiaicsW0JhbTNbJELJPBjPQ1slQVx8VcelkHb+kENPffIqKuDSyTgSTfz4CVz9vWgvLyb8QqdrSbXjhIYpCY8k6EUx5TAoLb76e6uQshfdw9jKAYvmWlEX2iWCaC8uUHfDIJLKOX6IkIpHAOdOoy8xXxvdUqGLh0dNHbXoeWccv0ZBdyOrH71b6cvwShSExuPr5UJ9VQGl4AlkngulrbkOsVuUaj1+iJjWHmRtWUZWYQfapEAouRqHRamkvq6Yhu5CsE8F01zUxa+MqyqKUvlQlZuI7dSKViRnkn48g75xiS6fr6aO5oIys45foqKzFe0IQFaP3qDwmBRcfTyoT0qmKz1CtbAY7etRrbC2pZOIyJQDLORNGaWQS9i5OlEYl0lpUQc7pMIa6euhtbKE8OpnM45doLihj7IJZiggHR1NyOQGtnS1FYfH0t7STcyqEgfYu2suqqHB3JftUKA3ZhYyZO52CS9HKgz8kBgHyL0RiNhhV+76mvBI8xviTd/Yytel5BMycQuaxi7QWV1BwKRqLyUzu6VAcXF3IPhlCb2MLnmMDKL4cT0l4AtXJWfhNm0Ti3mP0t3RQcCESw/AIGUcu4Dt5HLlnwuiqbcR9jB955yKoSc2mKiED78njif5pP6ZhPQUXotAPDpFx5Dx+UyaQdz6Szqo6XHy9SD9ygdbiCiri0vAaH0jY579i7+RIwUXF2in3bBjuY/wpi0qivbwGJ29PEv88pohxTCruQf5cfPdb3AN8KLwUja6nj8JL0Th5ulOblktrSSWOnu7E/PQ3hkEd5bFpuPn7cOmDH3DycKM4LA5ddy8lkYnY2NnRWlRBS2EZDm7OXP7iN7Q2NpTHpOLs40nopz9jY29HZVw6g53dVMSmKHWEDS00F5Rh7+JE2Ge/KG4NsWk4ergS/uVurGYzdZkFDLZ3KUFGcAzDvf00FyjAntDPf0WsQlViBg6uLkR9+ycjA0O0FFUw0NZJQ04x7aO7Jf9z/N85fjkayasPblX/fvSDfdjYaFkwYzzzpo3l9e+O89Ezt7B7bzTt3coO2j8hqYQm5NPZO6i22/DoLpJzld0xN2cHvj90mWOhaTR3KDtMy+ZNZsfzP5KSV0n/0AiLZ0/ksz8vEhyfR355AxqNhoTscj7efZ6E7HLauvp56o71fLz7PDHpJWQW1xLg7ca56GxCEvOJSS+hrauf61fO45M/zhOVWkxGUQ1brlnAqeh8ItLLicmuYsRgoqJ1kKK8dlJruilvG+Tp9U7kt/ZT0z1Mbc8wbg62DBnM9I2Y6B8xoTdbGeMmGM0WzBYLZouVniFl58jDxogMdgGCZmQQa28r1p4WZLALraMb5rpizA1lmJoq0HoFYGisQVeUzXBxDqaOVlyv3khfdhZ9KUkM5OUQcPNtdKek0x4ZS0dUHFo7WwZr6mkIj6MuOJKOzDwm3rCRkouRlJwPpzQkmumb1tCQU0TOmTDyzl6mr6WD3uZ26jPyyT0TRll0Crd8PZHSqCRyz4SRdy4CzyB/OqrqyD0TRs7pMBqyC1n33IPknQsn53QYRaGxrHz4duoy8sg+FUrO6VAsRhPdtY2URiWTczqUqoQMZm+6huLL8eScDqXgQiSTli+kpbiC7JPBZJ8Kpbu2EV13HxWxqWSPWu/e8N5zVCakk30qlNwzl3F0d1VinPMRii1ddiHXPnE3hSExZJ8MoSgkhsW3bqU+M5/skyFknwrFODxCT32Lon0nQ6hKymTamuWURSWRfTKE/AuRBMyaQmtxBVkngsk+GUJXbSMjfQPUZxaourb+hYeoTMgg+0QwuWcv4+jmSmtJJUUhit63FJWz8qHbKAqLU2KRiETmbL5W0e0TweSeDsU4YqCnofk/aPmUVUsVzT0RTFFIDN6TxtGYV0LumTDVls4wNExhSAxZJ4KpScnm6gdvpTIhg6zjlyi4GIWDmwvN+aWUR6eQdSKYrpoGlt+3k5KIBLKOX6IyPp3JK5dQk5pDzulQ8s6FYzaaFPhafilZxy+ptPCy6GSyjl+iLDoFr9Gd98JL0eScDkPX04dBN0xJuHLe5sIy5t90HRXx6WSfDKEkPAF7V2fqMguoSc0l51Qogx1dmE0mSqOS1WseM2c61clZ5J69TFFoLFaLlca8EtoralVdnjS6MZJ1IpjatFz8pk5UFr4jEim4FI3ZYKQhpwhddx/ZJ4LpaWjGe+JYKhMyyD0dpjjWTB5P3rlw6jILVPvB2tQctDY26jg5uissgrxz4VTGp+MxdgwZR87TWV1P3rkI9AODivYG+ZNzKpT2ihrsnBwpCo2lLDqF8pgU3AJ8Sf7rBMM9feSeCWO4b4CisFgmtM4h9+xlWksqsbGzI+d0KPVZhZRGJuHs40nMz/sB1Fi8LDqJgbZOCi9F01xYxsRlC0g9eJrOyjpKIhJxdHcl/Os/cPHyJO9cBIMdXVTFZyhOM/HpNOYWM2HJXBJ2H2aos4eSywnYOjkQ9vmveAQFKPywtk6q0/LoaWyhIbuI+qwCxi2aS+S3e7EYTZRcjkdrZ0vEN3/i4uVBSbjCcmrIKaS7toGOyjrqMvIZu3A2wR/9iL2rMyXhCaDREPPzQexGXXx6G1tGKfS1DLR3UZeex9h5Mwj+8AfsHB0UC0OrlcQ9R7FaLDTkFNFT30xrSRXNBWWYRhR3gMA50wj+5CdAo9gEGwykHTiNfkBHe1k1PXVNtJdXK5BGDdSl5TJm1jRCP/0Fs8FIXXoeJr2B7FMhVCdn/x/Rvv9yL/QVcWlotFquffJeALa++xx/3PIkxWFxAKx65A5WPHALS2+/gfjfD5N64AxL79jGo0d/JvtUCKGf/Yr/tIk8ePA71r/wMNE//k1pZCLL7trONY/dRfJfJ0jed4LAOdO57tXHyTkVQsrfpxjq6mHVI7czfvEc0g+dJftUKOMWzWXp7TfiPSGIjCPncff3YeVDt42S2O2oTs5i8soleAQFoLWxUbyw/X1YtHMzCOgHhjAMDTP1mqsw6Q2MDAwx1N2H94Qg/KdPYri3fxRY5sykFYsY7Oiir7mNprwS/KdORD8wRE9DC931zTi5uxE0dzpdNQ101jRidnTGKuDn5cqYWVPpbWrD2dsDH+s4fKdOwKssEFt7ezzHjsFn4lj8pk6gq6YRVx9PvMYG4Dt5vEIzd3TA1ddLhXjY2Nnh6O6Ke4Av3hPH0t/Sjp2jPU6jpHg3fx+0Wg32Tg64+njiPT5QhZY5urmo/o4AtvZ2uPh4KXCs0cPB1QWPQD+Ge/sRq2BjZ4uLjydOnu5YzEpKrKObCx5j/BARjMMjSmqPr7eS3mI0KbAJN1ecvTyQUWq/rYM9rn7eDHX1oh+FWjh7uuPg4oxpeATrKFHX2csDsVoZ7htAo9Hg6uPJQGsH+oEhhVTv4oS9izNmvQK20NooqcgiwkB7FxazWSHx2toy3DeAYXAIG3s7HFydsRiNDHZ2Y7VacfJwY6Cjm4H2bozDI9g5OWJjZ8fIoA4BtFoNjq4uiMVKX0s7ZoMBR1cX+iztDHZ0oe8fwNbeDht7Owy6EQbau7BaLNi7OCnemQ3NGIdHsHd2BGCgrQvjiB6NRkn7MRkM9DW3YTEaFZhJ3wA9DS2M9A+OkuYVwJnWxkYpDRlNSe6pb8aoG1bSqy0Weuqa0HX1qOlGhsEhxdvTqBCBrSYT3bVNSrqjvR0APQ0taLRaJY3PxgajXk9PQwumEb2SBjWip6uuCV1PP1obG6X/Hd3YOTpiMVvQ2NhgNZvprmtCP6gbpf8L3aPBjkajAWC4b5CehmbMegMarVZ5gatvUe8tQE9dE3bOjmram2lET1dtI0bd8Kibg1kB1XX3qXO0v7UDNBolRRtUmxb9gJKSZzGZ6G9pY7CjW039Gu4doLehBfNo+pbFYKS3sUVNR7eaLQpwTTespnQZRwyjMBslLcxsMI4u6PQiVitWiwVdbz8j/YNYRtPcjSPKWF7pi9lgUKB5o/MDEQxDOnoaWjCOlhAYh0foa2lTfnMiWPQGRvoH0HX1qal9Rt0I3fXNKojGqBtmsKOLoS4FVmM2GDEOj6Dr7lPTzfSDOsTarvbFOKhTfNw7lL6YDUYsJtN/6MvIwKDiljGaqmgc0qEf1DHY1onVbMZsMGI2GuhrGlLT5ZR5qlXhSIZBHbb29uj7B7GazVgMBowjeozdfWqa3lBXHyJWBkbTAQ2DOmxsbRns6MZiMmE2mDAM6dAPDKn9H+rswWw00j+adqjX6bB1sGO4px+L0YTZZGK4f4jhnj61ZEBro0CI/uf4v3f8dSaedVfNYuncydjZ2fLDm/ey5sHPKa9tpbSmhQ+e3M5921ay8eo57PormIKKRh7ccQ0/vXkve8/E892BMK5eOI0PntxBSGI+vxyJpLN3kFce2MLt1y9n75k4joWmsXrxdF6493qOhKRw4EIS4wO8ee3BrcydOpZ/glNIzC5nw/LZLJo5gUBfT06GpzMuwJv7b1qNr6crGg30Dgxz/ap5ODooz8bg+DymjPfjqnmTsVis9A0O4+HixPql0xgxmugf0pNd3sRkPxdsHewZ0JvoHjLgZKtlrLsTw0YLgwYzVhEcbbU42dlgNFsxWqxoNWCj1WC1atFqlJ17AC8XRzS29ojZCHaOaBxd0Di5IvpBsLVDY+uAxs0LrasXGhsbtC7u2Hp4Y+fth6WvB62jE3Yentj7+WPn5Q22Nti6u+Hg54vT2ECM3T3YODrg4OWBS2AA9u5uowR0e1x8vXEPDACNBq2tjeo4M9jRjVarxc7RAVdf71FdVvTCycMNzyB/0CiprVe03d7ZSXn2aDQ4ebjh4u2pUurtHB1wD/BVdEZvRKPRKPrv5orZaMJiNGHv5IiLjxdWq4xquw2uPl6K5o1adjq4uuDk7orFZMYwNIyNrRKfmI0mdN29iMWCk4cbtvb2jAzqMOpGsHWwx9HdDavFzFB3HyKCs5c7I/2D6Hp6FXceZ0fsnBwx6BQ3ITQaHNxcEKso+j9qFYcIuu7e0WecHfZOjphHDAx2dKtxj9lkoqexVSmjdHJEo9Uq+jWasnzFzaevuU0Bpbo4M9w3QG9TGyN9SlyhtbFhpG+AgfYuxGpV3AbESndtoxqviAi9TW0KyE6rVZ2F+prb1PtiNproqWv+D/o/0NqB/Wj7K6VT3XVNajmpfmiYrromhv9N/4e6euhr6cBitii0f5NZiSsGhpRSJxQtv1IWB6AfGKSnvhnTiB6tjVbR8oZWhnv70WgV/e9rbMU0rFdLpCxG07/0X6vFajTRXd+sAtcAhjq66G1U/Ms1Go0y3vXN6AeGFDcHq2L1ZhwaVuMK/cCQeo0ajQazwaCO3ZUyr/62TrSjcQoorlHddU1qOrrFZGSgvUsFxAFK+rrFoqaFmw1GehtbVf2xGI3ounsYbO/GMprqbRgcoruuWdVCk95AX2sHuh5lbpoNRkYGhjAM6tRyM/2gEjNc0X/TsJ6hzm6GunpGtdyg+LoPtap90Q8O0d/SrsJpjSMGhnv71Vj1imb2Nraq903fP8CAjUZNuTeODKMfjRssJjMCmPWG0cUkpS9XAHNDo/fINDyCyWBguE/RZY1Wg1E3zEhvn1oqMtw7gJ2TI4OjJR0GvQGTwYiup18tQR0ZGBx1/Bpt06PEw1fKQIwjyjWP9CufExF0PQpY90pcN9zTDxrQdfUiIhiGhzHqhtH19KtlBFfeef5PHP/lXugbshV7tzVP3KN4Lcanc8s379BT30xLUQWtxRUce+pdsk+GqG1yzoSSuv8UXbWNdNUqgXf8b4dpKSqnu7YRi8FIVWKG8sLS0IKTpzutZTXUpuXS19yOo7srfS3tDHR0M9jRjb2LM75TxtPb1ILHqGWC/4zJyoSzWnF0c8Fv6gR6G1sxDo/g4u2J79QJjF8yT7Em8/HCb9pExi+ZR3tZNfbOTgTMnML4xXNHa10MjFswi96l8xlo71JeYAP9mbhsIYOdPVhMJmwc7Jly9WKGe/sZ7utHa2tL0LyZ6AeVALi2XfkRTZ4xgZluqzHolIfl9GuXYxl9yXX18SJw9jQArGYzNak5uPp5M++G9YDyQ7d3cmTamuXY2tshAma9noDpk7F3dkIz+rB18nBj/rYNo/ZhCvFy8tVLcPRQfMRbisrxmTyeq+7choOLIkqO7m5MvnoxLqM2dA6uzky8agFu/j7qS7PnuDH4TZuIs7enKq5zNq/FI9AfBxdnepvbGL9oLl7jAnHx9kRro8XN35epq6/CI9AfO0d73Mb4Mvu6axQPWQ93qlOyCZo3g4AZk3Hz90Uzuhgwd8tavCeMxcHNBatJ8R71nzYJV18v8i9E4TtlIpNXLMJr1ArG1debJbduxX/aRJy9PGgtqWT6muUEzp6GR6A/WlsbvMeNYfHN1+Mzebzie+/rzeKdWwicPQ03P29Ko5KZvGIhU65ehPeEIGwd7HHz82b5PTsImDEZJy8Phnv6WLh9E2MXzMJz7BiyT4YQOHsa87auw3fKBOxdnHDx9mDVw7cTNHc6bv4+NGQXMv/GDUy5egleE4LI+Occ3pPGMWfTNQTMmIyjhxv2To5c/cCtjFs4G/cxfhSFxjFrwyrmblmL35TxpB0+h3uAD+uff4jAOdNw9vGkr7GNFfftZOJVC/AaH0jmsYtMXLaQMbOn4T9jChn/nMPF25MNLzzMuIVz8BjjS3VqDsvuvolZG1fhM3k8aYfOMGbWVBbfsoXAOdNJP3wOrVbDuuceZMKSeXgEBVBwKZoF2zZi7+yI//RJpB08g1dQAFvefoag+QqDoKehmbXP3M/UVUvxGh9I1vFgpq1ZxvhFcwmYNZW0g2dw9fViy9vPMG7RHFwPn6MuI5+VD9/OvPYufKeMJ/2fc4xdOIvl995M0LyZpB08g0arYcvbzzDxqgWk/3OO4svxLLtnB1qNBr9pE0k/dBa/aRPZ/ObTjFs4m7SDZ9APDLHl7WeoTs4m/Z/zFF6KZukd23Dz81b6cugsvlMncNMnLzN+8RzSDp5hoL2bre89R1NeKen/nCPvbDiLd24mYNZUMo9fIu3gGXwmjeWmz16l8FI0aQfP0F3fzJb3nqO7qp70f86TfSqEhTdfz5QVi8k8fpG0g2fwHDeGmz9/jbLoZFIPnqG9vJot7z3HYFuX0ubERRbctJF5W9eReSKYtAOncQvw4+bPX6cmNYfUg2doLijlhvdewDikI/2f82Qdv8ScLWtZtGMTeecjSD1wGjd/X3Z+8QaNeSWkHDxNQ1YBN7z/Ahog48gF0o+cZ9bGa1i083qKw+JI2X8aVz8vdu56i7byatIOnaEmJZet7z6Hg4szmUeVNjPWXs2inZspj00l9cBpnNxdueWrt+hpaCHt4BkqEzLY+s5z2Dk6knsmjPR/zjH92uUsvPl6alNzSN1/GltHB2775h0GO7tJPXCairg0tr79rJI5ERJD2uFzTF29lEU7N9OYW0zK/lNoNBpu/fZdhjp7yDhyntKoJLa8/QwaGxtKIxNJP3SWKauWsHD7JlpLq0jdfxKL2cLt379PX3Mb2adCKQlPYMtbTyNAVXw6aYfO4uztyezrroE/v/2/qpP/XY/eAR3VjR38eTqOPXMnYzKZScuv4tAXT3DD09/RNzhMWmENUek/E5/1Lx7HsdA0vvjzEnXNnXT1DZKcW8m3B8Moqmyiq2+I1o5e4rPKqGrooKt3CG93F/LKGrBYhO6+Ifw8XenpH6KpvZeBoRG8PVzw8XKjo2cQk9mCp7szMycH0ju6mOzl4cKMiWMorWnF1kaLv7c70ycEMH/aWAZ0euZMHcuMSYEsnTMJBztbPN2cmDVxDM1dOoaMVhCY6u9Kl85In96Eja0WLyc7xno4YrRY6dcrtfauDjZYRbCKFdBgo9WCLWg0Qv+IEqx7urugcXBQLOpsbdF4BqARKxqLGY3WFq1PEAhgsSAmPXbevmjmLgYUS1etkxPuS69CY2uLiBU7d3c85s3BxskJjVbDQHEZzoEBTLrpemwc7LGazdi7OjNh9XLFqtZWC1obxi2YjYuPQsu+8gK+5LatOHm4gVaDi48XM9evxM3PGztHB7pqmwiaMx2PMX44ebqj0Whx9fFi5rqrFftYB3s8g/yZfu0KPMcFKvT1+DQCZkzCf/okZfPB1hYXb08W7rhecQRxdUE/pGPqqqX4ThmPi48XNg52eI4bw+QVi/AcOwY7B3tcfb1YcNN1+E6ZgLOXO415JUxcvoiAWdNwH+OH1kaLxxg/pl2zDJ9J43Bwdcbe2Yn5N6xnzKypuPn7UBwWz9j5s5i0XNF/GwcH3Py8WH7fTvynT8LZy53+lnbmXH8tQXNn4BnkT9aJYPymTmT+jRvwnTIeexdnnH09WX7PDgLnTMPVz5ualGzmbLqGqSuX4DNxLLb2dngFBbBwxyYlrvBU7PiW3bWdcQvn4Dk2gLxzEUxZuVjR/6kTsHNSNnLWPn0fgXOm4+rjSXtFHUtuv5FJyxbiNT6I9H/OETRvBpOWLSBgxhQc3Fxw9vJgzZP3MnaBEldUxKay8OZNzL5+Db5TJpB26Cw+k8Zx9QO3Ejh3Bi5enhiGh1nzxD1MXDofz3GB5J65zOwNq3AL8MV/+iRSD53F3d+XTa89ztj5M3H18aK1pJJVj97B9GuX4z1xLBlHzjPxqgXMWLuCMbOnKc9eL4/Rkrq5uAf6UR6TylV3b2fhiB6/qRNIP3yOgBlTuPaZ+xX9P3QWw9AQm157gknLFuIxdgz55yOYf+MG3Mf44T9jMumHzuI+xp8bP3hB0f9DZ+morOW61x6nOa8UrwlBZJ8MYea6lUxctmC0L2dw9fNh20cvMWHpPNIOnVUyOF99jO6aRjKOnCfz+CWmr1nGnM1rCZw7g7SDZ3Dx8WTbRy9REpFI2qGz1Gfmc93Lj6Lr6SPjyAUyjpxn6solrLhvJ2MXBpN28AxOHm5s+/hlqpMySTt0lqqkTDa89ChWk5mMo+fJOHKBKSuXsO7ZB8g5PY/Ug2ewtbdj+6ev0ZBdSNqhs5THprL++YdwcHEi4+gF0g+fY9LSBax/8SEKg2NU/tf2z16nvayK1ENnKQ1PYN1zD+IRFKC0OXSW8YvmsOGlRyiLSiZl/ynMBgM7vniDnvpm0g6dpSg0lrVP3Yff1IlkHr9E+uGzBM2bwcaXHqE6JZuU/afQ9w9y85dvMNTZQ9qhsxRcimLN43fjM2U8BRciST10lsDZ09nw4sM05BSRsv8UQ5097PzqTYy6EdIOnSXvfASrH70T38njKbkcR+rBMwTMmsL65x+mtaSS1P2n6Gtp55av32Kkf0jJWjkTxqqH78Bn8jgqYlNJPXCGgOmTWfvsA3TVNpCy/xQ99c3c8vVb6Hr6yT0bTs7pUFY9dCteE8ZSk5JN6oHTSvnxsw/Q29hK2sHTdFTVc9v379Hf2klhSAw5J0MInDOdScsW/h/Rv/9SNfS63n5e9VYu/M20c0xesZjmwjK+XXM7rn7eeI0PwmtcIFvffZbhnj6OPfM+zUUV3Pbdu0xatoDQz36lKDSWMbOn8cSp34n95QBph86CCA8e+JaOqnqS9h6jp76Z5ffdzJzrr1Vhb87enty3dxdFwUqKj35wiJt3vYlZbyDjyAU6KmuZtHwh6559gIwj5ymLTkFra8ODB76lPCaV3LNK6sr65x/Cc9wYso5dpDGvBDd/Xx488C0Jf/xDSXgCZoORB/7+mqaCMnJOhdLX3MbcretYdtdNxO/+h7r0POydnXjy7B+k7D9FUUgs+sEhbvr4ZTQ2NqQeOE1nVR2aq1YQtvEBNtSl43jmKGKx8MSZ3ZRGJJI9mi694v6dzFi3kugf9tFSVI6ThxvPBv9NxDd71L7c+cvHDLZ3kbzvBP2tHUy+ejE3vPc8wR//RH1mPjZ2djxz6S8y/jlP3rlwDLphNrz8KD4TxxLz49901zXh5ufDk+f2cPG9b6lMyECsVh4+/D11GQWkHTrDSP8g827cwLK7txP66c+0l9dg7+zE0xf/Ivan/RRfjsdiMrH901ewmMzE//4PQ109BMyYwu0/vs+Fd76hMa8EjUbDYyd/Je9suAqIufrBWxm3YDYR3+xhoK0TZ093Hjn2C6Gf/KTCUm7/4QNaSyrJOHIe4/AIk1cu4ZrH7iLk45/oaWjG1t6ehw9/T+KfxyiPSUFEWP/iw9jY2pL05zH0g0O4+npz16+fcPH971Tw3927P6MoJJbisDisFgvzblzPpGULifnxb4b7BnBwceau3z4h8tu9/wL0vPMsXdX15Jy5jNVsJmDmFK55/G4uf/k7uu5eBdDzw/ukHjxDQ3YhAMvuvRlbO1syj17EbFQ8c2/88EUV6gNwwwcvUB6dQnVyFgCTVyxm/JK5pPx9UoX6bX3vORL/OKqCTlY9codS3xSTAihWXlc/cAvxvx9WV2Gvf+Mpsk8Gq1CZWdddg42drZoxY+/izOpHbid530l1R3XVI3dQlZj5b1ZxkwiaN4OCC5EqfGflQ7eSfSJEBdHM3bqO7romFSrj6O7KrOtWk38+Ul2tvuqumygOi1NXp8cunA0iKnzH1tGB2dcpFoBX2szetIaG7EJ1RdjZywO/qRNV+I5Gq2XWxtWUx6Soq+0Tlsyjp6FF3RF2cHUmYOaU/wDFm3rNVdSm5akr/94Tx2LWG9T7Ye/shN+0STQXlKptxi+aQ3NRhdrmit3KFXiNnZMjvpPH/wuSA6rV3RUQnZOHG3ZOjiq8xs7RAc+xY1SbIVBAelcyTpSxdMPO0V6F19jaKzteV+bBlb6Y9AY1w8DR3RUbezt158LG3g5HNxd0/5bJ4OTpjmlEr36Pg6sLWlsbdcXexs4OW3s7dacAwNHDDbPe8G9tnAGNuhr/vwLwrlyzcUSv7iY4uDhjGd3NBwX6Y+fooIL1rvTfNKJXd0PsnZ2wmM3qOTRa7X8A7wA4uLkouzmj88DeyQmL5T+2sXNyUC1qANwDfHF0d+OotfF/auj/k45/jxFi0kvY8tS3ODvaUx/xPR5uzpyNyuL+t/cwdYI/s6cE4Whvx+/vPkBoUgGvf3scvdHE3588htFs5ou9l8gra+DuG67msVvW8vPRSC7G5uLj4cKRr54mJCGPQxeT6Rsc5rPnb8XRwY795xMprmpm/ozxvPv4TfwTnMLl5EJstBp+e/dB8srqORmeQUfPAI/sXMOsyUGcDM8gq7gWX09X/vjgIY6GphGWVMCI3shPb99HfXMXZyIzqW/tZv2yWTx85xaOhOeTWtyAo70thz+9h6T6QVKquxkymHng6gksnORNSfsgPSMmXO1tuHvRWDoGDQwZlJ2tKd7O2NuA2WxBgFPZLXwSUsa5eyYz30cDGi1ad18sTWVIbxtYLWgnzMfS1YaxMgfR9aP1HoN21hr6Is9hqK8CjQa/+1+kKyaG3pRErMPD+G7dhtYriIaDRxmub8DO04M5P31Lzle/0ZKYjpjNrPrpM+qLK8g9fJbh7l6mrF/FwsfuIeSTn2guULykn770F4l/HKUwWElj3vLuszg4OxP360H6WzvwGh/EQ4e+4/xbX1GbngfAYyd+peRyPFknghVLtztvYsa6FVz+cjc9Dc04urvxxOnfCf/ydyri0xGrlVu+eYe+5jZS/j6FfmCQ8Yvncv0bT3Lpgx/oqKxFa2vLo8d+Iu3AGYovx2O1WLj26ftw8/Mm9peDDPf24+Ljxf37vuLS+9+rQOG7fvuUyvg08s5FYDGZmL3pGuZsXkvEV38w2NmNnZMj9/+1i+gf91OfqUBYr3/jKYa6lEVFs8GI98SxbHn7GUI+/on+1g40Gg13/vrJaOmZAttdcvsNeIzxJ+mv45hG9Di4ubJz15tEfP3HvwB9H7xAbVquAtsVYfySeczZdA1xvx5SLdB2fP4aiX8eU2FvVz90G8M9fRQGxyiWYd6erH/uAaJ/+FvV5S3vPkfB+QjVKm7Guqtx9fMh90yYsrPv5Mj6Fx4iac9RNetq9aN30pBdqFq4eU8Yy/S1K8g8dlEFk6195n4yj11UAWpzt65D192rwmodXF1ZfMtmMo9dVLPIVtx/C6URCarGBs6djouXJ1VJmYCiUYt2bibvbLjaZu6WtTQVlKnwQCd3NyYsnUd5bKr6fFlw00ZKIhJVPRm/eC667j7VhtfOyZGJV82nKjFTbTNz/UpqUnPUOMkjKEBZhBqFH9s62DNu0RzqRuctKHFFa2mVulvt5OGOi68nXdUNav+D5s74D5Bf3ykTGGzvUnXK0c0VFx9PNR6zsbPDb9rEf8H4AGdvD6wmi3oPHUcXYnpGLWivWMH2NrSoJcnOnh5YLf9q4+DqjKO7K/0to2C9UZDelZ1opf9uWC0WVavtnZ2xd3FULWjRaHB0c8EwqFPbOHq4YTVbVK22d3bCxs5WjelA0W7D0LAawzm6u2I1m1XgnZ2jIyDq2P+rjQ6xijpOZpNJjWdsHR0A1L//v7Ux6f8VM1yBAP779zi4uWAcGlavx8HVBdPIv2IGWwd7JbPo39p4TxjLuEWz+b447r+XbV1FfJrsuvpm+WT+Zsk4el7997KYZHnWfro8yUT5bftjcuaNL2Xvnc/KLzc+LO9PXyfHnv9Aii7HSdzvh2Tf/S/LDxvvkaGeXqnLKpCYXw7It9feITWp2WIYHpHKpAw58tS7cvo1xWJssKtHEv86Lr9ue1j0umGxWq1Sn1Mohx57QzKOXRARxUYl9teDcuQZxbLLarVKdVqO7LvnBemsUexOdH39Evr5LxL14z71M4VhcXLo0dfFYrGIiEhvU6uceu0zKYtJERERs9ksKQdPy8UPf1CvtamwTA4//qYM9faLiIh+aEgivt0jaf+cU89bGp0sn7z6o0x8M1hCClqkt7lNzrzxhTTmK3YnZpNJUg6elsjv96rnbcgrliPPvCsmo2JtM9w/IJd3/S75l6LU8xaExKgWVyKK9cKJFz9SbReMer3E7zkiCX8e/dc4pGbL8Rc+FKvVKiKKHcuFD76TioR0tS+Zxy9K6Ki93JVrPPLUO6ptna5/QCK+2aPe8yvWcFdsPUREOqvr5MSLH0lTYZkyLrphid99WCK+26v2pSIhXQ499oZ6jb0tbXL+3W/UazQZDJL2z1k588aXapu67AI58PCr0tusWPMMdHZLyGe/SNzuw0r/jUbJORMmBx95Xb3G5qJy+efJd9Rr1PX2SeR3e+X8e98o/TebpSgsVv684xkZGRwSEcVO5sRLH0vqoTPqnIr/4x85/Pi/W/Olyp7bn5aWEsWar6uuUc6++eW/7Ad1w5K8/5Ts3vmEmIxGsVgsUpWcKfvufVG1H+xpbpOLH34v/zypWPMYR0Yk4+gF+Wnz/dLX1qFaIR54+DWJGp0f/e2dEvbFb/L7jsfFarWKUa+XnDNh8tPm+6UqKVOxOcwvlsNPvC3HR63JBjq6JOKbPfLttbeLXjcsJoNB8i9Gyq/bHlZtRlqKK+TYc++r1iRXrBF3rdghreXVYjYapehyvOze+YScfWuXWK1WaSuvlpMvfyJfr75VLGaz6Hr7JG73Yflq5U7JOx8hZqNRSqISZc/tT8veuxSblPaqOjnzxpfyyfzNMtDRJcN9/ZL41zH5+ppbJfSL38RsMkl5XKrsvfs5+WbNbWK1WqWzpkHOv/O1fDh7o9Rm5Mlw/4CkHDgl3669Q4489Y5YzGapTMyQffe9pNiimUyqHeRHc66T/EtRMjIwKGn/nJPvN9wt++59USxms1SlZMn+h16Vj+ZuEuPIiHQ3NEvIpz/Lx/Oul4zjF2RkcEgyjl+UH667V/bc9rRYLBapSc+Vg4++IR/O3iAjg4PS09gioV/8Kp8s2CxJ+06IfkgnWadC5KctD6g2mLUZeXL48bfkg5kbZKi7R3qaWuXyV7vls0VbJfa3g2LQDUvO2TD55YaH5OetD4rFYpH67EI58tS78sGM9dLf1iG9zW0S8e0e+XzJjRLx3Z9i0A1L7vlw+XXbI/LDpnuVNrlFcuzZ9+X9Geuku6FZ+lraJfKHv+SLq7ZJyOe/ikE3LHkXIuS37Y/Kd+vuFIvFIg15xXL8+Q/l/elrpaO6Xvpa2yX6p7/ly+Xb5eKH34theETyL0XJ7zc/Lt+suU0sFos05pfIiRc/kvenr5PW0irpa22XmF8PyK4VO+TcO1+LYXhECoKjZffOJ+SrVbeI1WqVxoJSOfnKp/L+jHXSVFAi/W0dEvf7Idl19c1y+vXPxTA8IoVhsfLHrU/KrhU7lO8pKJVTr34m789YJ/XZhUqb0fl18qVPxDiitNlz+9PyxVU3idlslqbCMjn9+ufy/ox1Up2WI/1tHRL/xz/y1apb5NhzH4jI/9jW/Wce/z62e0/HyuLb35etT30ridnl6r//dixK7BY9LHaLHpY3vz8hz352UO56/Te54alvZea2N+SHQ5flYmyO/PRPuNz8wo/y6Ad/SU//kCTllMtney7Ihke+lO6+Qekd0ElYYr7c/cbvsu9svIiI1Ld0ya59l+ShdxWbSZPJLJGpRXLHq79KaY2ija2dvfLhb2dl1z7FIs1stsiFmGy5/+0/xGQyK+dp7pRXvj4qoYn5IiJiMpnl4PlEefvHk+p1FNW0yfM/Bktnr6IbOoNJjmbUS3BBi/qZ+l6dxFR1qH8bTRZp7huWIYNJRBQtMZhM8kNEmUx8M1gaunViMYyIuadFjUUsJqOYGkvF3NUoIooWGpsqZSQz4l/n7e2SrgtHVNs6i9EonZFh0h5yQf1MX0GRlHy6Syxm5RpHenol5+vfpDk+VWljNkvxhXCJ+fxntU1rebUcffZ91bZOP6STqJ/+ltRR21qr1SqlMcly8uVP1DY9jS1y+vUvpDZTGTujXi/J+09J+Fe71TbKM/FN1bZusLNbLn38o+ScCVXuickk2adC5PRrn6vnbS4ql3+eeFu1rdP19UvEd39KzM/71f4XhcXKwUf+Fce1VymxyBXbupHBIYnffVi15rVYLFIelyp/3fOCDPX0iohiDXfmzS8lad9xEVGshFMOnJJDj72hWv5Wp+XI3/e9pFrz9bV1yKWPflCt+Yx6vWSdDFaseQ2GUfvhYjn06BuSdVKZdwOd3XL5q91y+Im3lWs2GiXvfIT8uu0R6aprEqvVKs3F5XL0mffk8ujYDfX0SdSP++T3HY+LxWIRs8kkRWGx8vuOx6QkMlFERNrKq+XESx/LsecUy9/hvn6J+/2wfLf+LsW2zmSS0ugk2XPb0xL3u2LD2FFdL2fe+EK1fR0ZGJSkfSfkmzW3qbZ1FQnp8tc9L8ip0XvSWdco59/9Rr6+5lYxGQyiH9JJ2uEz8t36uyTj2EWxWCxSnZItfz/wsuy54xllbjS1SvAnP8pni2+Q3qYWMeiGJePYBflh4z1y6aMfFL3MzJODj7wuX19zq2In19IuYaMaWxqTIobhEUVjN98vf9//svoecPjJt+WjudfJyOCQ9LW2S/jXf8hni2+QhD1HxDgyIrnnwuWXGx+Sn7Y8oGhSfokcfeY9eX/GOulr7ZD+tg6J/H6vfL50m1z+6g8xjoxI/qVI+W37o/L9xrvFarVKU2GZHH/hQ3l/xjrpqmuUgY4uifl5v6qXRr1eCkNjZPfOJ9T4pbm4Qk6+/Im8P32dtJRUymBnt6J9K3fK2bd2iVGvl+LwePnj1qdk19U3i8VikZaSSjn1mqJ9DblFMtjVI/F7jshXq26REy99LCaDQUoiEmTPHc/IF1dtE7PZLK1lVXLmzS/lg5nrpTo1W4a6eyXxr+PyzZrb5Ogz74nJYJCy6GTZe9dz8tniG8RsNktbebWce+dr+WDWBimLTZWh7l5J2ndctZw1G41SFpMsf93zgny6cIuYTCZpq6iRC+99Kx/O3iiFobEy1NMnKQdOyXfr7pQDD70qZqNRyuNS5e/7X5KP518vRoNB2itr5eIHSjyWez5chnr6JPXQGfl+w12y794XxWw0SkVCuux/4GX5aO4mMYyMSEdVnVz88Af5aO51knUyWIZ6+iTt8Fn5fsPdsvfOZ9U2Bx56VT6as1FGhoako6pOgj/5ST6et0nS/zknut4+ST9ybjSGe0rMJpNUJWXKwYdfkw9nb5ThgQHpqKqTkM9+kY/nXy8pBxSbz/92tnVWq5XisDgivv6DV+NPApB57AL1WYWg1VBwMQqxCrd99y7FYXEk7jmKiHD1Q7di7+hIyt+nMBuNuPp6s+bJe0jY/Y+6M7fji9fJ/DeQ3oId1+M9PpD43w8jVisOri7c9dsnhHz8k7rKtv3z12gvq1FXFscvnsuGFx/m0gc/0NPQjNbWlsdP/ErqwdMUhym7zOueewCvcYHE/XqI3qZWXH29eeLMbkI++pHKhAysFgsPHvyO5vxSMo6cZ6C9i7lb13HNY3cR/tVu6jMLsHNy5PmwAyTvO0HBxSiG+wbY/ukrOLi5kvzXCVqKyhlcv5Xk5du4sz6R4QvnMY3oeebSPqqTMlXQ2NUP3sr8GzcQ//thqhIzcXR35YWIwyTs/oeCi1EMdfVwzx+fY9SNkP7PORpzi5myaik7v3yD6B//pvhyPGKx8nz4QYpCYsk5HUp3XRObXn+CsfNmkrL/FJUJGbj5efNc2EFif95PwcUodD19PHbiVzqr6lWAyYIdm7jmsbtI2nuMkvAEbOzseD7sANknQ8g9e5m+5jZu/vJNHN1cyDh6gZqUbMbMnsZ9f35J/O+HKbgUjXF4hKcv7FUAK6dC6aisZfVjdzH92uWkHTpLRWwqTp7uPHVuDxn/nCP3bLhyjXu+YLhHAZg05pUw7drlXPfKY6QeOE1xWBwajYbHT++mLCpJzZq4/o2n8BwboILdPAL9eejQ96T8fZKCi1EYdMM8ePBb2stqyD4ZQmd1PYtv2cK8G9aTcfQCFXFpOLq58OCBbym4FE3euXCGe/u56dNXQYTsE8G0FFcQNH8mW956howj5ymJSESj0XDvn19Sn5lPzukwBju6WP3onQTMnELWiWAasgtx9fXm9h8/IG8UpGg2GLnlm3cYaO1Q4GlNrUpq8y2bVZiNvbMTt33/HpXx6Wr/1z//IA6uLiqkxXPsGG784AWyjl9SLAo1GnZ88TrtZdXknQtnpH+QBTddx/glc1WYjZOHGzd+8CIlEQmqLd3GVx7DOKRTYTZB82aw7O4d6lywdbBny9vP0JBdpGZnLL1jG27+PipkzsXHi40vP0reuXA1U2HDiw/T29iqXvOUlUuYsnKJCuNzcHVh3XMPUBGXRm1aLqDYSIrVqs4fj0B/rn7gFjKPX6KnvnnUquduWorK1R2R6euuxntcIHnnFRifo7srKx+6naKQGHUnfNk9Oxho66QiLg2xWhkzayqTr16sjpODmwtLb7+R6uQsFdY5d+taxKKQfa0WC27+vszftp7885HoevpwcHVh7tZ1tJVUqjsik5YvxNXXWwG5mM24+fswc/1KyqJTGOrqwd7ZiWnXLmegtYOmfCUbwHfqBILmzqDkcgJmoxE3Px8mr1xMXXoeA+1d2Ds5MXbhLCwmszq2XuMCGbtgJmXRKUrZkJ8P4xbMorW0iv6WdmwdHfCbPB4HNxd1F8VrfCD+0ydTk5KNSW/A1c8b38nj6W/poLepVal99fXGa3ygej+8xgfhNT6QprwSjMMjuPp54+rrPQqQasbG3g73AF/c/HxUC0bv8UG4+HrRUVGLQTeMq683to4O2NrZ0lXbiI2dHR6B/jh5uNFSpNgEek8Iws7Jkf6WDvSDQ7j4emFjY4udkwPddU1obW3xGjcGW0cHOipqEasVr/FBgKAfGGKkfxAXH09s7O2xsbOlt6FFtf9BhJ6GFsRqJXDOdGwd7Nk/UP4/O/T/Scf/GiN8vvcSA4MjfPPaXVitVr7ZH4beaKKyvo26li6a23s5/u0zfPHnJcKSlEyc95/cTn5FIxdjlXl47dKZTB3vz9HQVAxGM44Odnz0zE5+PBxOW5dSH/nqg1spq20lJCEPgBmTxvDsXRv56Pfz9A7o0Go1/PXRIxwOTiE2Q/ntPbjjGiYG+vLL0Uh6B3R4ubtw6Isn+GzPRdILFSDvL+/cT2l1C0dDU+kbHGbtVbN4/qGb+eF0OsV1nTjY2XDikzuIrukjpaabEZOF+1dMYOkkb4o7BukdMeFib8Od84No/7cd+sleTtjbaDBbLIgI30RUcTCtgdxnZ+KmMSg79J6BWFsqsPa0gNmIdtJCLH3dmKrysPa0ofUJxHbBdfTHhTJSXoBYzPg//Bq96Wn0JiVgbG/D98Yd2I+fRvOpc/Rl5WLr7saCPb9Q8ucRGi/HYOjpY/XuXbQ3tlN48hLtBaVM3bSGpc89TPzufyi5HI9Gq+X5ywfJPXuZ3DOX6W1sYdtHL+MR5E/64XNUJ2XiM2kcj534ldhfDqogzqfO/0ljbjHZJ0NoK61i+b03s2D7daQeOE1ZVDIOLk48E/w3GUfOk3f2MgPtXdzx84dYjGayjl+iPquAScsXctMnr5C87yRFITFYzRaePPuHAlg9FUJPfTMbXnyEwDnTyDh6gaqEDNz8fXj02M+kHjhN3vlI9AODPPD313TXNSl9KatWshDvumm0pCd51Cb4R4pCY8k9c5mhrh5u+OAFHJydyDoRTGNuMX7TJnHL12+RfvicQtY2mXlg/zc05ZWoYLoV9+1k4rIFaizi7OXBvXu+IO9cuKrlN+96i5G+fgWsV9PAlJVLWPnQbWQeu0hlfDq2jg7c+fNHVCdnqRp17dP34R7gS9bxS7SVVeMWoJRZZZ8KoTQyCavFws6v36a7pkEFxs7dspbpa1eQdfwSTfmlOLi5suPz1yiPTqY4LB6z0ciGlx9FLBYVOHzFJjDr+CXqMpSszxs+eJ7m/DIKg6Mx6Q0svnUrvpPHk3UimN7GFpy9PNn85lMUXIpSsw43vPQIgx3dCvxVN8yEqxYw5/o1ZB2/RFdNA/bOTmx46RFqUrJVW91ld2/H1sFevWZXX2/WPnM/WSeU+EWj1bL26ftor6ilLDoZsVqZfu1yAmZOJfeMEr84urlwzRP3UBKeoL4/LLt7OyP9g6ou+04ez5wta8k9HaZmZ6y4fyf1GflqpsLsTddg7+ykjpOLjxdLbttK/oVIBto6sXWwZ9HN19NZ3aBmEI5bNAe/qRMpConBpDfg4u3JvBvXUx6TSl9zGzZ2dszauIqR/kE1I9Vz3Bimrr6KwtGYx9nbkxlrV9CQXaS+t0y8aj42trZqdoNnUACTli+kNCoZw5AOZy8PJl41n86qerpqGxVL3RmTcQ/wVS3/PIICGDt/JjWpuegHBnH29CBg1hSGunqVLBCNBu/xgfhMHk9VYiZiteIRFIDf1Ik0F5Qy0j+osrmwWlVguffEsXiOHUNdeh5WiwWPoAA8Av3pqmlguLcfJw83hXXh4aZmM/pMGoeLjydN+WVYzWY8xo7Byd2VwY5udN29OLq74eDihJOnu5rN4DN5PA4uTrSX12IxmUZZaFrMeoWF5ejuiqObK3ZOjmpWi2JpqKG3Qcma9AwKwGw0odFqGezoUtq4u2Fja6NmUUxcthC/qRPYlRn234tyr9VqcR/jx0Bbl/pvV921ndLIJFL2nwJg5oaVOHt5sOL+WwiaN4PYXw4y49oVrHr4Dra8/QzBH/3ISP8gN7z/PFvfeZa0w+dI2H2Y+Tddx5a3nqEiPo343/9hzOypbP/4FTa99rhau7n4ls0sve0G8i9EkHrwDGPnz2Lr28+y7tn7yTh6AbPByMoHb2P2pjXknA4l/4JitzHvxvVqqvuY2dNY+/T9zLthPTlnwmgpqmDaNct4/NTvFFyKIvfsZfynTWL53duZv20DeecicHR3ZfEtWwiaP5OCi1GUx6QQNG8Gd/7yMfO3baTgYhR+0yax9I5tTF6xiIJL0UT0K9Z+O994DOPaeRSGxOA7ZTyzNqxi6jXLKAqJwXfqBJbcdgP+0ydRGBJLQ1YBQfNmcPMXrzNj7QqKQmPxmTiWGetXMnbBLDV1fNqa5bj6+TBtzTLKopLxmzqRzW89zcSr5lMSnoD/tEksu3s7PpPHUxKeQEdlLeMWzuaG955n4rKFlITH4zU+kLlb1hI4Zxol4Qm4+Hgyb+s63Px9mLRsIdUp2QTOnc6m1x5n3MLZlEQk4D0xiAU3XYfP5PGURiQw3NvPlFVLsXdxYtzC2ZRGJeMzeRwTl85nzKyplEYm4TdlPEtuuwH3MX5MWDKXpoIyJlw1H2cvD8bMnkZpZBKeQQEsuvl6fCaNozQyCRs7W+ZuWYuTh5ti1ZGQTtDc6fhPnYDf1ImURSXhNW4My+7ZgefYMZRFJdHT0MLUa67CztGBgJlTKI1MwmfSeKauugrvCUEKmXV8IItv3YKLjyeBc6ZTn1XAlFVLcQ/wxXfKBMqik/EMCmDm+pV4BPpTFp2MSW9g/rYNOLq74j9jMhVxaYxbMIugudPxGh9IeUwK7gG+LL3jRlz9vCmPTqGtvJq5W67FxdtDOW9UEj4TxzJrwyrcA/0pj07GydOdxbduxdnLg4AZk6lJyWH62hX4Th6P94QgSqOTcQ8MYP4N69TzDvX0MX/bRhxcXdT+jl80h0lXLcBj1EbH1d+HJbfdgLOXB+UxKbQUVzB/+3V4BPnjPWEsZdHJ+E+dwJjZ03Dz96UsJgVbR3sW3nw9ju6ulMcoZQEzN6xizOxpeI5VbOg8gvxZdPP1uPh4Uh6TwkB7Fwt3bMLZywOfSeMoj0lhwtJ5TFuzHPcxfpRFJ+Pq5/Ov88am0lxYzvxtG/CZOBav8UGUxyTjN30S4xfNwdXPh7KYZGzt7Jh/03XYuzhTHpNCTXouM9dfzfhFs/EMUu6J97hAFt+2FWdv5RqHunpZsP063Px9KI9JoSoxkwlL5+Ho5oqbv4/SZkIQi3ZuxsnDjbKYFPpb2lm4YxN+UydSHpNCZWIGE69aiM/Esbj4elMerfRtwU3X4eThTnlMCt31TSy+ZTPdi+dQFpNKdVImU69ZRtDcGTh7eSjfM2ksi2/Zot6PzpoGrrpzG4PtXbgH+FKZkMGsjauZcvVixSInJhmPQH+uunMb/tMmURaTQkdlLVfffwv6IR2uvl5UJmYw67rVTFm1BBcfb8qik3D182b5fTfTUlRBeUwKraVVrHr0DsQquHh7UpGQzrRrVzBt9VK8xo2hLDoZJ08PVj92Jx0VdZTHpNBcXMGap+7F1s4WZ093KhMz1EUY/2kTKYtOxsHNjWufvo/exlbKo5NpLixj9aN3obW1wc3fh8qEdCatWMikFYtoKaqgLDoZOydH1jxxD4Md3ZTHpNCUX8rVD92KRqPBc9wYKhPSmbB0PhOXLaC9vIay6BTsHOxY/cQ9DLZ3UhmXTmN+Ccvv3QFoaMgpojIhnfGL5zB+8Vy665ooi07BxtaGNU/dS39zO9Up2TTmFnPVndsQq5XmwnIqE9IJnDOd9c8/yP5H7v3/h2T+tzu0Wi1jfDyoqGtT/3727o1sfeo70gursbHRcvcNV2Or1fL6w1tZOmcSZ6OzWbNkBu8/dTPZxbV8tPs886aN48uXbuez52/lz1OxRGeU8sBNq3nu7uu4FJfHHydjWDpnEl++dDt55Q0cvJBI/+AIT92xgds2LeNURCanIjK4euE07tyygpiMUo6FpjJnShAvP7CF265fxqmIDHKK69iwfDYrFkzlUlwuZyIzmTExgMduWcutm67iXHQ2drY2bF89g0XTAwhLryY2t5ZpYzxYPNWfrPpeEqu6GOvhxMJAdwLdHantGWbQYMLZ3pZxnloG9GYG9CZsbLTY29lgY6PFYrEodfZaDR4BY0E/hNU4Ak5u2ExaiMYjAOltRePoiv3sadj4BGJurEDMJhwnTcdm210MT5vNSHkh9v4BBN5+Dy7TZzGQk4nTuHH4bdmE87ixdCWmMFRZjefsGSx681n8ly2kOToJ17GBTLxxE/5zplMVkYCdixOzrrsGVz9vJq9YRGVCBgEzp7D5jaeYsHguxeEJ+Ewex1V33KjUwkYk0tfcxsSrFrD5zacYv3gOpZFJeE8cy9RVSxX9j0jEZ/J4Ft18Pe4BvkxYMo/6rALGLpjFRr9HCJo7g9LIRLzGBTJj3Up8J4+nNDIRi9nMrA2rcHRzZey8GZTHpjJm1lSFFTN9EqVRyvP8qju34T7Gj3ELZtNRVTcaizgTMHMqZdHJeI0PYtbG1UpcEZWMi48nC0c1LHDOdGpSc5i4fCFe4wLxm6oQ/D2DApi/bSMeo/aruu4+5m5ei4OLM/7TJ1Eek8qYmVMYv3C2ov/RKXiMDVD039ebwDnTaS4oY8aGVbj4eOEzeTxlUcl4Twhk3LYNeAT6Ux6Tgq2DorlOnu4EzJhMZWImU1Yuxn/6pNF4JRmPQD+W3n4jrn6KrvU2tTJv2wYcPdyU80YnEzRnOlOuXoz7GD+Fqu7vq8YV5TEpNGQXMW/rOrzGjVH132dCEJOWL8LNz4eymBSsZjMLt29S44rK+HSmrVnGuAWzR/U/BfcxCk/BxduDsphUuusaWbDjOlx9vfCeqJx33IJZuPr54DHGj7KYFNx8vVh08/U4jcYV9aN98Z82Ea9xgYpeThzHtDXLVOtds9HI/G0bcHBV9L8qKZOpq69i4rIFeAT6KX0J9GfxLZtx8lR0uaehmQXbr1PHtiI+naC5M/CaEDSq/0pctHDHJpzcXSmLSaG1uJK511/LmJlT8Rw7hvK4NAJmKov+Lj5elEUl4+juyoLtm9SxbMovZfbma5nUN4D7GD8q49MYt2gOczatwdnTnbKYZOwcHFh861a8ximxYUNuMfO3bcRiNuPq501FbBpTViosGEc3V8pjktFotSy7ZzuBc6ZTHpNCXVYBi27ZjJ2DgxJvxaYxcflCFt58/ehcSMZqtrLigVvpKK+hLCaFuow8lt11Ey7enjh7eVARm8r4xXOVuHriWMpiUjDpDax+9E566pv/1eaeHbiP8VPaxKUxdsEsFm6/jsA5iv2gfkjHumfvZ6CtS4nH0nJYcvsNuAf44h7gS3lsKoGzp7Fg+3W0llRSHpPCcP8gG19+VLHJjvagJi2HRTdvxs3fG5+J4yiPTSVg+iTm3biBrup65XfW28/Glx9luLefSm9PatJymL9tI66+XopLQ2wqftMmMnfztfQ2tlIWncxQdy/rn38QXU8fNSk5VKdmM2fztbj6etFaXEl5bCo+k8YxZ/O19Da3UxGbwmBnN2ufuY+hzh7qMwuoScth9nWrWXzrVnbdGfa/rX//pV7oAeWFvr1T/burpoHbf/xg1CbpMu0VdVTEpRL/22G1lqY8NpXEP49Rn1WI1WzGZ/J4Ir7eQ2FwNK3FlRh0w1QnZhD38wEasgtpLizH3mkHcb8doiopk5rUHAU0l55HVUIGVYmZ1KTlsnDnZnW39Yp1U11mPmVRSZTFpFKfWcBgZzd1GXmURiZRnZSJ96Sxig95RAIVcWmj1OoexZMwPp2GrEKMumEacoupTMigLiMP/xlTGOzspjY1h7qMPJoLyzGbzHQUV1KfVUBDThFTVy9VCfhNeSV0ek4DVzA0NNJSWE5zQTlWs4WexhbaSqtoLizHwdUFw5COjqp62kqraCuvQaxCb2Mr7RW1tBRVYBxRKI7ddU20lVVj5+SI1Wymr7mNztF2Go2GkVFKeltZNQGzpmIyKETOzup6umqbRgmQffQ2NNNWWo1YBdOInoH2Ljqq6vETUejyvf101zfTWVWPVqvFOKKnv62TjopazAYjYrGonzGN1mQbh/X0t3bQUVmLja2tQv/u7qWzuh7vCUFoNAqVu7epjb6mNoVEarEw2NlDR2UdWhstWq0W/aCO3sZWXHwUCJ/FZGagvYvuumbsHB2wmMyM9A/SVduI1WrFxs5WIYQ2tzPU1YOtvVIfo+vuo6u2EXtnJ2wd7DEO6+lpaMYtwBdbBwfEKgx2dDHY3oWtgz029vbKeWsasHNywN5FofX2t7SrgCCNVouuu4++pja1Ntk4rKenvoVp1yzH0V0B3Qy0d2EYGlZ2KB0cGOkfpKehBRcfTxzdXUfptu24+Hjj5O6qnlfX24+juyv2zk4YdCP0Nbbi7OWO8ygpeKC9C42NFidPd2zs7RjuG2CoswdXP28YJQn3NbUxZeUSXH290Gq1DHX1YjVbcHR1xsHFGYNumMH2Llz8fHDx9sRqsTDQ2kHgnOm4+/tgY2fLcG8/xmE9Lt6eGHXDGEf0DLR34+LjhfuoG8JgRzc29na4+nhi5+ig7JgODOEW4IuNrULjH+rsYfLVi0cBhbbouvuwsbPF2csDexdnjLphhvsGcfPzwdXXG7Fa0XX24j9jEh5B/tg6KPdEzFbc/JX/bzIYGekfwtnHU+3LUFcv9i5OuPl5Ye/kiH5Qh8Vkws3PB3tnJ6xmC/qBIWzs7fEMCkBra8tI7wBotLj4eOHo5qLWfzu4uuDi6wUio4R4wXNcILb2dkoNmSjODMOe7liMRkx6A7Z2trgH+KLRaJRaNQH3QH/lPg4NI1bB3skJZ29PBYZpMCJWZfVca2szWt+mwdnLU6kRH9FjtVjR2tni5ucNIpj1RiwmMx6BAep81qDBwcUZJw+30d+lFRHBzd9HqREzmBCLGVdfb+ycHDHpjThpwMbeHmcvDyxmM1azBYvJhPeEsWhtbZU2KARoB1cXzEYzjihkZlcfT8RqxWK2KKvygX7YOthjMVmwiuDg7IyTuxsWkxl7Jw1itih9QQF+itWKq58P9k6OCrx0lLDs7OmO1WJBsMNqNOLu74vW1gaxWNFoNDi4ueLg4ozVYkWE0b54jZKJFaKxi6+XAg21WkGjwd7JCcdRQrVxRE9zUcX/PYH8n4MAHw86epR6XRGhsa2HMz88x5anv6OosonCiibORWfzy7EoRvRKXWxYciHPfnGYqoYOZW5o4cVd/5CYU0F5bSv2djaEJuYTnV5CdkkdlfXtbLp6Lrv2BZNWUE1GQTWTx/oRllRAbHopyXmVFFQ0UtvcSUx6CfFZ5SRkl+Hn4050WjGxmWXEZZbS1tlHXUsXSTkVRKWVkFFYQ9/gMIk55USmFpOUW8HksX40dQ6SUNBERnkbJQ39GM0WilsHKGwZoLJziBkBbgwazHQMGejSGdGbld/FiMmC3mzBYFYcLkQEsSr/7Rs24elsB2YjYjKA2aB8Rj+EDPcjQ71ovMYghhGsAz1Y+5S4SyxmzL1dmLvaMHe2AIJ5oB9jZxuG5gbs/f2x6A3o2zoYaWhkpKlZITx39aJrbGGgohrMZky6EYZa2+mtqcfV3xexKE4f3XVNdFTUotVq0fUP0tfSTkdFLdPXLFOe7V09dNc2MtjZjYigHxyir7md9rJqtKPuI0NdvXTWNCj6Nfo87W1soaehBa1Wi9loYrCjS7GUHM1RHekfoLu+WdXbK44WXTWN2NjbYTVbGO4boLu2kYlL56G1HdX/lnYG27tUIruup4/OqnrsHB2wsbPDMDRMb0OLWg9sNVsY7Oimr6UdGzs7bOxsFQp6bRM2drYKuX5Upy0mE1o7WyWu6Omnp75Z4ZfY2WEc1tNd30zQ/Jk4uDgjVisD7V0KUd7BXq097qlvwsndFUc3F8xGE33N7XhPHKtYP2u16Hr6GerswdHDHdOIAYNOsdNzcHXBydNdOW9bp0LEd3XG1t4O/cAQA62duHh74uDqrJ53zJwZuHh7KmT9rlGCv6uTov9DOvqa23D188Zl9Hk+0NqBR9AYXEefoSN9A0r2k7cXiAJm7m/twNnLE1c/5Xk+2NGFVmuDs6cb9s6OGIZ0DPf0K+f19lTittYOAmZOVQCFtraqu4CLjyeO7QpzRdfTh5uft6pzgx3duI/xxSMoQNV/44gBtzE+6Ad0ipNBTx/OXh7KebUadN292Ds54eLjqfbFqBvGdYyv4phgUWLagJlT8Bw7RnE/6ulXdMTfF11vPya9AePwCA6jGwCgEPqdPNzwHBegxjgWs0UZW40Gi8mkgK5tbfEIVCCM+v4h7AIcFccHF2eMw0q9t4OLs6pphuERrFYrXuMDsbGzxTA4jKOHG04ebji6uWDSG7CazNjY2at9MY3osZoto6BpBwy6EewcHbB3dlTcp4wmrGYl60cZFyVut44Csu1dnDGNGNBoNaorhFgsiv4bTXgG+WNrb6d8t8WCs6f7aL26EQ0axCq4+Xkrzy6LVclE9PNRYnKjCRHB3tkRZ093LCbzqIuAEbcAP8VNyWLFarXg5OWhODwYTYigxoNWiwIZNRtNCkzTzlaJZ6wWHN1cFIcqs2X0OaHB1dcbRfvBalHuia2DvVprb+fooNT1WyyKG5LZjHuAj+IYdaUe391tFCIuDPcN/AfG0f/O8V/vhd7fB/3AkPKgcHLEarXyybzNuPp4MnbBLGZvWsPye29mwwsPE/LJz8T8fIAlt93ArI2rSfzzKJHf/InflAlsefsZAudMJ+an/epO6YSl87FaLKPpRcqK2kj/IPVZhTi6uRA0ZzpDHd3UZRaotHrPoABqUnMY6RvAf9pE3AN80dopDyaLyaRadQyPWoDYaBXLLd2ojRUaDcbhEQY7e+ipb2agvQuT0YihtUMRtqp6fCaNo7epVXnxLqtmpG8AXVcv7eU1tJZU0VXTgNlgpLW4gqaCMpoLy9GtngFAX1EpjXkl9DW3qS+NdZkFNBeWM27hbJryS6lJyaY+q4Dhnn76mtuoTMigNi2X9opaDLoRKuLSqEzIoD5TWd1uLamkLDqZmpRsepvaGOzspjpZSWNqzCth1nWrqUzIGPXCzkaj0dBd00BhSAwVcWl0Vtcz3NtPwaVoSsITqMvIx9XHk5q0XAouRasLHT0NzeRfjKY0IoHmogpG+gcpCI6h8FIUVYmZeI8PpCm/hJzToZRFJdPb0MJAWxd1GXmUhCfQkF3I+MVzKb4cT+6ZywrQziq0lVaTeewiZVFJdFTWMtTVQ+axixSFxVGdnMW0a65SfEaPXaQ0KpmBtk46q+opCoujLCqJlqIKhnv6FK/1YOWaXH29qE7OIv3wOcqik+lvaaenoYXC4GhKI5NoyC7Cb9ok1Wu1IjYVEaE+q0DpW3SKcv9bO0jae5yS8ARq03IZu3A2+RciyT4Vqqw+9vbTnF9CWUwqZdHJtFfUMNjZpZQqXI6nOjkbZx9PikPjyD17mfKYVHQ9fbSX1Yxmd6TSXFiG59gxJP99ksLgGKqTMkGjoTw6ldKIBMqikxlo76KnvpmYn/ZTHp1MY14JftMmkXrgNAUXI6lKzMQ4PEJNai71GXmURafQ19xGX0s7MT/+TWlUMo05RTh7e5J1/BKlkUlUJmRg0A3TnF9KSVgcZdHK6raLrzfRP/5NSUQiDdmFaLRa8i9EUJOaS2V8OvrBIbqq64n45k8qYlPpqm3Ec1wgsb8eojw6mbrMAsRqpSwqmfbyGiri0tEPDNLb2Er4V39QEZtKZ3U9ju6upPx9ipqUbOoy8hGLhfqsAsqikqiMT2e4bwBHd1civvqDsugUNS0s83gwLYXl1KYrkLv2smoivt5DRVwaw739uPn5EP3jfmqSs2mvUNLni0Jj6WtupzYtF4vJRHd9E5d37aYiVrkfDi7OxP5ygKa8EjXlvjw2haKQaGpSlTZ9Le1c/uI3KhMy0HX3YuvoQMIfR2mvqFHTwipHFxdrU3OVALSlnfBdu6nLyGeoqwcbOzuS/z5JX1Ormn5Wk5pNZ1UdNSk5mI2KFV7Ud3tpLihjsLMbjY0N6YfPMtzTr6b212cV0F3fTH1mPmaDkUFnR2J+2k9HZR2DHV3KOB27hMVoUtMOG3JL6KptoimvBLPBiI2dDXG/HqS3oVVpA+ScDkOj0dA6+j1NucV0VtbRVlqFSW9Ao9GQuFuBYF5ZoM05E/YfUvCa88toL6uhq7oek96AWKwk/XUcw5BObZN75jIWk1lNjWsuLKO1uEKxzNEbcPHxJPnvkxiH9aqVTc6Zy5hG9GpqXEtROc35JQx2dGPSG3D29iRp7zEMg8MqIDHvXDjGoWF6m1oBxeLwSjnB/xz/d44xvu5qWrxGo6GxrYd1D3/J9AkBXL1wKqsWTuedx2/i8dvW8cb3J0jKqeDuG1byygNb+OFwOHtOxjJ76jjeffwmjgSn8suxSIxGM1tWL8DPy51BnZ6qhnYmjfNjztQgevqGyCyswc3FkWVzJ1PX3EVKfiUaDYzx8cBoMqPVahjU6XG0t8PP2x2Art5BtFotjvZ2WKxWevqH6B0cRqvVYjCa6e4borGth4lBvuj0Rjr6hmnoGESnN6EzmOnWGWkb0NM+aMBitTJgMNOvN9E7YsRWq8VsEQxmK3qzBZNVEMBqVYj3VqvyQu/lZIsYRxCTHqwWMOmRgW5ksAcZGUQsZqwdjVg6GrF0t6J188LU1Y6+thxDYw3m/l7MQ0PoykrRlRQxUleD86y59BcU0puRRX9+IVajieHGFlpiEulIzWKwph7jwBBVkQnUxKTQnJnPxNXLaMgpoigsjsqEDFVLSsKVUq3mgjJG+ocoDk+gKDSOqsQMnL08aCutIu9cOOXRyXTVNiqbI/HpFF+Opz6zAL+pE1Uv7/LYNIy6YTqq68k5GUJJRCLtZdUM9fSScyqEotBYqpOzGbdwNjWpOYrneVQyfc1t9DQ0UxaVTFmUooWzNq4i9+xlNWPSwcWZhuxC0v85P5qx10xfSwdViRmURCQqMY6/DwWXosk9E0Z5dAoG3TAtReXknwunLFrJjBrq7CFl/ymKR2MRv2mTKI1MIvPoBcqikxns7Ka9vIaqpCzKo5NpKSpnysrFpB48Q2FwNFWJmTi4OFMRm6LGFQPtXXTVNlGVlEVpZBKNOUU4uLqQ/s85Ci5EUhGfjsVooiYlWxnv6GR6m1rpb2kn/rfDlEYmUpdZgNf4QHJOhJB3PlzR2MEhGvKKacotUbLBqusZu3A28b8dojg8gbr0PBxcnSk4H0VJRAIVsamM9A/SVlpNVWIm5TGpdFTWYutgT9xvhykOi6MmLRerxUJpRAI1qblUxKWh6+6lp76ZqO/2Uh6TQltZNe6B/iT/dYLSqGRqR/WyJiWHjqp6KmJTGerqob+1nchv/qQsOpnWkkrsnZ1IP3yOmtQcalJzMBuMNBeWUZeRR3lMKoOd3WjtbIn8eg9lMSmqjuWfi6SluEItHeuqaSTi6z1qpqCLjxdxvxyiJjVbBfBWxqYy0N5NdVKmuugTvms35TEp9Ld2YGNvR/K+4zTnl6op943ZhTRmF1CZmIlpRI+dkyOXP/+dqqRMFdqX/s95uqrracorQURoKiilt7FFjce0dnZEfr2H+qxCFWqbdTKYwfYuGnOLERFaCssJ++I3qhIyVOu0qO/30VpUoepW3tnLGIdHaMwpQkRoG415atPzMAzpcPH2JPbng3TVNNDbqMD0Ci5GURQSS0N2ISJCR0UNkd/tpSmvFMOQDidPdxL2HKG/pUMFChZfjqc8LpWmvFLEaqWruoGoH/6mrbRqtJzRjaS9xxgZtSAGKAlPpDwmlZaiCqVNTQNxvx6iq6YR/eAQDm4upB44pVgmjkIhSyMTKY1Mor28BrFa6a5rJGH3Efpb2pU2Ls6kHjyNWW9Ur6csOoXSiEQ6qxuUNvVNJP11HF1XL/rBIeydHEk9cBqDbkS9P2UxSkli72jJXU9Ds0LrH7W/tXV0IGX/KQyDOhVc3FFZi4u35/8Z8fvfrsL/Tz7+P4ECXvVdrEJKRERaSirlNb8l8iQT5d0pa+Tc21/J50tulPenr5NXfBbJvntfkMjv98qx5z6QnzbfL1+t2inVaTmSevC0nH7tc/lq5U6pTMqQhtwiSfrruBx8+DU5++aXCiQvMUMuf7Vbftv+qOh1w9Lf1iFZp0Lk0GNvSPapELGYzVKfUyjh3/whJ1/6WEQUiEjuucuy/8FXpKu2UQFB5RZJyOe/SPwf/yif6e6VzBOX5MjT74rFYlFBVmfe3CWViRkiosDIkv8+IZd3/S4iCsCkIj5Njj//gQrF665vkqgf/pLs0wrY5QpQaudbR2Xme6EqIOP8u99IS0mliCiQtrRDZyR+zxERkVF4Wpacef0LFRjX09QqEd/tlZJRsItRr5f8S1EqKOXKec+9/ZUKjNP19knSvhOSfuScct5RqMn5d79RgXHd9U0S+vmvUpuRr/Y3+3SIRP/8t3rehtwiOf3aZzIyMCgiCrwm5pcDkndBAfKYTSYpDo+Xix98r86BtooaOfvWLmmvqBERBbCSvP+kJOw5ql5jZVKmnHz5439dY2OLhHz6k5RGJyvXODIiWSeDJXgUMncFfHLsufelr1WBDA10dEnk93+pgB6z0SiFoTFy4sWP1GtsLauSky99LLUZeSIyCojZfVjCRu+jxWyW0uhkOfjwayoUr7O2Qc6+/ZV6H/VDOkk5eFqdU1arVapTsmT/A69IW0W1iIj0tbRL8Cc/SeQPf6n3KPPEJfn7vpfEZDSqY3nw0delODxeHcvwr/9QoY9mo1HyL0TI7p1PSH97p4iINBdXyNFn31Pnh663T6J/3i/77ntRrFarAjIKj5ffdzym3sf2ylo5+fKnKvhnZHBIEv48Kj9teUD0umEF6heXKn/c+pQKN+yqa5Szb+2Svx94WZkLumFJ3n9Svl17h7RV1Ixec7b8dffz6j3pa2mXCx98Jz9uuk8sZrMY9XpJO3JOvllzuxSFxSlQv8x82f/Ay3LosTfUexby6c/yxbKbZKCjS8xGo2SfDpHvN9ytQiob80vk0KNvyE/X3y9Wq1WGunvl8le75ZMFm6U2PVfMJpPkXoiQH6+/T449q4B/Wkoq5J8n35ZPF20V/fCwDPf1S+QPf8knCzZL6sHTYjGbpTA0Rn654SH55caH1Xl67Nn35d2pa6SztlFGBgYl5pcD8umiG+TCB9+LxWKRkshE+XX7o/LlKKito6ZeTrz4kbw9cZU05BWLfkgn8bsPy+dLt8mpVz4Vq9UqZbEpsnvnE/L5UgVW09XQLKde+0zemXyNVI8CPxP3HpMvl++Qo8+8J1arVSoTM2TPbU/Lpwu3itlkkt6WNjn71i55d8oaKY1OHgVLnZSvVu6UQ4+9oTwnUrJk713PycfzFPBMX1uHnHv3G3lv6hopCI0Rk8EgqYfOyNerb5X9D74iZpNJajPy5K97XpAPZ28Uw/CwCsZ8f/payT0bJiaDQTKOnpdvrr1d/rrnBTGbTFKfUyR/3/+SfDhLAQEOdvXIpY9/lA9mrJfM45fEaDBI5olL8t26O+XPOxRYTUNesex/8BX5YOZ60fX1y2B3r4R8+rN8OGu9pB46IyaDQbJPhcj3G+75f9j7y+C4jn5tH71GzCzZkizLzMxsxxA7ieNwHid2OA4zMzgMDjlgx8xsCy2WLGZmZuaZkYanz4c1WXnynn2qzqm99/nXrnd3lT6MavVa3b3g/jVdtzhw99PCqNeLtrIqceLxN8WH0zYIdf+gUA8MiqgvfxUfz9okUg+flwCQV6PEj5sfFL/f8aQw6HSivbxanHziLfHBlHVC1TcgVP0DIvrr38Uns7eI5AOnhV6rFUWWZ2X/bY8Jg073v1C8/8b0f7ZtU3uvGLP+hX/8LyK5UDgteVLYLnhM3LznG/HUJ0fF4vs/EtO3vyV81jwnPv71ivj2aKR49rPjYuNjX4oH3/pDZBTWij8vJYkXvzwp1j7yhWjrHhAZhbVi/5lYcf9r+8XxkBQxMKwW0Wkl4sP9V8TjHx6S3pGWbnEiNFXsfOM3UdXYIbQ6vUjJqxIf/XpF/HgyWgghRFv3gDgZliae+OiwMBiMQqc3iNT8avHG9+dEfFaZEEKIls5+cehykvjsgPS91OqNIrW0XbxzJFX0DY8KIYRoHxoVlwrbRHxVtxBCCL3RJBr71SKzeUAIIemGRm8U3cMaMao3yv/TGwxi/beJ4t4/0iXomlYtjIN/Q/HM2hFhaKsSxn4J6mc2GoSupUpoim7I59B1tYn+qItC3y/phlGtFn0JsaIvUdJps8kkBvILRc0P+2Uonrq9U5T+fEh0Z+ULIYQwaLSiIjRWZP78Nyy4raRSXHnrS6Hul+qg7h8UyX+ckrXRaDCIyvhUEfbRPvn+9ja0iNCP9on2MgmEqFWPiOwz10SSBcD2F1Tu4qt7ZSjeUGe3iP7mD1EWLdXJoNOJotBYEbH3Z/m87WXV4uIrn8rgX/XAkLjx2wmRfvSCEELS8oq4VHHhlU/ltuupbxZX3/la1KXnCSEkLcw4fklc//I3uSx16bni1J53xMjgkBDib3Bbzrkw6T5qNCL3Qri4YIHMyhC2PW/LdVT29ImY7w6I2O//lNpFrxfFYXHi6MOvCoNOJ5W/vEacfeFDURKRIISQtDzx1+MyUNhkNIry2GTx5/3PyXXsbWgRl9/8QiT9ekIuf+qhc+LIrpfkWLUmOVv8ef/zoi4tVyp/a4cIef87cfVtCSisG9WIzFNXxf7bHhMjQ8PCbDaLhuxCcfShV0XGcSl2Gu7qERF7fxZHdr8it3/epUjx05Zdor20SoLIFZWLE0+8JcI+lmI9lQXq99OW3cKg0wmjXi8KQ2LETzfvlsG/7eXV4vQz74rjj74u1zn+p8Pi65V3icH2ThlkuP/WR0XMtweEEBZdfvEj8dPNu6V3RqkSSb+dFF8s2S5qUrKFyWQSlfFp4vc7nhRnnpGAwr2NLeLia5+JzxfeKjRKldCNjIqUQ2fFV8t2iJSDZ2QQ84F7nxG/3PKwEEKI/tYOGSLXXlYtdKMakX7skvh65V3iokXL6zLy/4bIWXQ55P3vxPuT1oqSyASh12pF9ulr4ts194jDu16yxDxF4siul8WH0zYI3eioGO7uFeGf/ig+nLpe5JwLFUa9XuReCBPfr79fHLjnGSGEEC2FZeLYI6+JD6duECPDSqHqGxDXv9gvPp6xUaQdvSBBIi9fFz9sfED8tuMJYTKZRFuppJfvT14rVH0DQj0wKGnfrE0i6dcTwmQ0Svdjy24Jtms0ivbyGnFqzzvi/UlrxVBHtxgZGhYx3x0Un865WcTu+1MYjUZRHB4nft72sPhpy25hNBhEV3WDOPPs++L9SWtFf3ObGB1WWmKrbSLqq9+EwWAQpdeTxP7bHhX7btopjHq96K5rFOde+FC8P2mt6K5rEhqVWiT8fFR8tuAWEbH3J2E0GERFbLL4dfvj4vt19wmjXi96GprFuRc/Fu9PXCM6KmuFRqUWib+eEF8suk2Efvi9MOj1ojIhTfy240nx7eq7hUGnE71NreLCK5+K9yetFe2lVUKjUosbv58SXy7ZLq6+87UEAkzKEL/fsUd8vfxOYdDpRF9zm7j02mfi/UlrRWtRudCo1SL54Bnx5dId4vKbX/yXxQj/o6B4f6W9c25m9+GvmbRiEfUZ+VTEJOPs7UnEJz8xZe1Sbv3wJfobW7n8+hcMtnaw+Y2nmLRiIVFf/EprYTlOXh7sufArSfuPUxqeAAoF9/34IT21TWSfuirbqM3cvJrUg2elpeYO9uy5/AfJv52kIiYFYTZzxxdvolOPkHrwrAT3mj2Ne3/4gGtvf01rUQVWNjY8c+0gxSGxZJ+6hlGvZ+3TDzJ59RJC3v2WofYuHNxceSvjMtfe/obSyEQAHjmxD2VnD9c//xWdeoQZm1Zz+97XOP/CR7QWlmPrYM9ryRfIOnGFlANnEGYzt338MmNnTOby618w3NFN0cOvY54yjUdyLlIakQDA85HH6CitInLvL+hHNSx9YAfrnt3N+ec/or20CnsXZ97NDSX+hyOkHz6PEIJ/7f8UB1dnrr71NaqePoKXzOPRkz9w/oWPqE7MwNrWllcTz1IRm0rstwcw6vRsfPkxZm1dx4WXPqW3rgknT3feL4jg2jvfkHchAoAnzv2Cqqef8I9+QDOsYva29Wz/5BXOv/AxzXkS+O/NtMukH7lA6sGzmE0mbv/sdXwmBnH1zS8Z7uzBZ2IQz0ce48JLn1AVn4ZCoeC58CM0ZBYQv+8QBq2O5Q/dzZJ/befiK3vprWvC3sWZN9Iucf2z/RRekfas7PxtL/pRLdc/249WqSJ46Xzu3fc+F1/6hNaiCqxtbXk+8ih558LIOnkVs8nETS8/RsCsqYR9sA9Vbz+O7q68HH+GS6/slSEtjxzfR0tBKakHzmLU65m1bT0rH76bq29/w2Brh2TNE3aY+H2HqIhJAeDWj15GmEwk/HgE/agGn4lB3P/zx1x+/Qt6ahtRWFnx6Il9FF6NpjgkVga7BM6dTsw3B9AMq7BzcuSxMz8T8dHfFjp3fvUWHWU15J0Px2wyMX7xXJY/dBdRn/+Kum8AKxsbdh34gtQ/z8pQszVPPYAwC7JPXsWo12Pn7MR9P3xAxCc/yVZqd371FuWWWRWQ7FoC5kyXLXSsbGy465t3SPrlmDxauv65h+ipbaIyLhWQgGtLdt5Oyh+nZfuVbe89L8EELTOqc269CYWVFWWRiQghUFhbs/nVJ6TRW4ulyZo9D1CfnifPRPvPnMLYmVMoDo2TbUPWPbOL/IuRMgxzzm0bGWztkEfWrW1tWXTvLRRcjpKtbZbs3EF1YoY8qxy0YBZWNjYymAZgwd3bKItIlO3jZm5ZS0dZtdxOzt6eEqvAAqYBmLV1HbXJ2bLtyfhFc1D1DsgjxACTVy+Rn6e/frcWlssWgJ5B/lhZ/w1YAQheOo+WvFLZOiVw7gz6Gltl6zdrW1u8xgf8Y5lX4LwZ8og3SFYqmmHlP+xifCaNl4GgAH5TJ9Jb3/y3fYyrC1Y21owODsvHeAUHyvcdwCNwLMquXvl+SG3j8Q+7O/eAMfKIN0j2dzr1qGznB5K94L9fx8XHS54lB7CysUahsJLvIUg2QJphpfzbwc0FrVLNvydrO1vZhg6QtyX9lWzs7WT7IjmPre0/rmPr6CBbD/2V4ifb/C8U778p/Z8xglZnwG3F06iyD2JvZ8vFmBxaOvvRaHUcC0ljxkR/jn3+JGcjM/n8zzC0OgP733sInd7A98ejaO0aYOOyWTx211p+PRtPdmk9drY2HP7kccKTiwhJzMdgNPHWY7diFoLTERl09Q0zIcCbb1/fyXfHrpNb1oi1tRXHP3+S2IxyLsXmoNUZ2L19FWsWTuOLQ2G0dg3g4mRPzIE32XsghJgMCfL463u76RsaYd+JKFQjWlYtmMI3bz/ORyczKW8ewM7Gigsf3EZWh4rrFV2YBdy3MJCbpvmS3TLIqMGEg40V988LpEulRa2T3psgDwccbKwwWt6jld+msHS8Gwe2eYNBCworFN4TMLdXYu6U2tNqwnyE3oA2NxqhUWPl4Yf9mnvpDz2FtrYMrKzwe/wNlAWFdF05j9Dr8d56Gy4LV1L1xXeMNjRh4+rCkgunKP72VxouhErX/vVLhtVaEj/eh2ZgiOB1y7np63c5/8LHNGTkY2Nvx+spF8m/EEHiL8cxG41se+95xi+aw+XXPmegpR13fz/eSLvMxZc/lWOcZ0P/pKOslqgvfkU/qmHRvbey/rndXHjxEzrKa7B3duKNtMvE7ztEzpkQhBDc+8MH2NjbE/7hPkYGhgicO4OHjnzDhRc/pjG7CCsbG16IPEpJeAKpB89iMhhY+8wupq5dxtW3vpLjuNeTz3P1ra9lXdt96Gv6GltJ+PEIBo2W6TetZNOrT3Dptc/prWvCxt6O5yOOcuO3kxSHxAKw7d3ncHBzIfqrP9AqVbj7+/H4mZ+4+Mpe2kuqUCgUPHLyBypjUiQYs8nEwntuYdqGFUR++jPqvgFsHR146vLvXN/7i2znt+Pz1xls7STz2GWMej0Bc6az+bUnCP1gH8Md3VjZ2PDQ4W/IPH5JAt4CKx+7DycPN1IOnJFnjHcf+oqwD/bJenPX129LKyIsNrWT1yxh6rrlJP1yHJ16BCsbG+7/6SOS9h+XV6Kte+4hlJ09FIdKlrOuft7c9OKjxO87xOiQEoVCwW2fvELhlShZl2dtW4+ThxsFl6Mkaztra2794AWSfzslf/fXPbub5twSWZd9pwQzZc1S2c4XYNOrT5B7LkyeHZ13+ybU/UM0ZORLHw+FgjVP/ovsU9dkXV7x8D0yQwAkPXX29pDbCSQI7l8wPpBs9rqr6ulrbAUkO7wJyxdQFZ8m6/K8HVuoScqUreDGL5qDVjUi2/mCZAMsrSyVNHbahhW0FVXIFoDuAX44urv9w5ZuytqlNGQUyBo7bsEsBls65JhHqsN02kur5d/jl8ylrajyb5vd8YHoRzX/0FT/WVP/YZk7duYU+upb5La1c3bCwcVJXhUH4Dd1Aj21TfJvz6AAVD19/9BQN39flJ1/b6P2Gh8oz8aDpNtGne4f9nCuft6yzS5I9rD/fl1p65uDHCeBFIP9ZYMondf1H/ENSDZ5/57H0cNNttkFKT4wW7bs/ZX+T73/a0vnvyeFQvHPPA72/6jPuPkzOa6u/U/HCP8jO/Q/bd7FhhceZsGdWwGI3Psz4R//CIDP5GBufmMPto6S32FpZCIL7t7G2qceoK+xlbwLEfTUNPDIse+xtrWlJiWbpJ+PcdtHLxG0YDajw0qSfjmOtY012959HiEEVQlp5JwJZedvn2Hv5CgtK/7lGFPWLGXe9k0Y9XqKw+JpK67kjs9eB6CjopbUg2fY8vpTeI0PQDOsJPd8ODb2dqx69D7MZjN1abmUhidw1zfvYGVlxUBrB9mnrzH9ppVMWrEIvUZLRUwy/c3tbHr5cYQQtJdWkXc+nJvffgYndzfUfQMUhcTi4uPJgju3YjIYqEvLY09cJ05+PkS/so6euibyL0Wy4M6b8Z85FY1Som9qlSpWP/4vzGYzzXkllITFc9vHL2Nja8tgexclYXGMmTGZGTetQq/RUnMji86KWra8vkdaulNWTeHVaFY/uRPPwLGoevspj7qBtZ0dS3fejlGvpz4jn5obWWz/+BUAeuqaKAmNY+r65UxYOp/RoWF5WftNLzyCyWikOa+E4tB4tr37LI5urvQ3t1F2PQmPgLHMv2MLWvUINTeyaMkvY/vHL2M2m2krqqAoJJZlu+5g7PTJ8nI9s9HImj0PoNdoqUvLpSImhTu/egtrGxs6ymsoDU8geOk8Zm5eg7Knj6r4dPobW7nl/Rcw6HQ0ZhVSFBLLzW89g/tYX7qr6ymLSm9Ag8MAAQAASURBVMbZy52Vj9zLyMAQVYkZNGTkce++DzEbjTTmFFMcGsuie25hwrIF9DW0UB6djE49wta3n2V0aJia5GxKIxK578cPsXWwpyW/lNKIRALnz2DxvbfR19RKZVwaXRV13Pfjh2hVampTcym8GsXNbz6N35QJtBZVUB6VhJ2zE5tffZKB1g6qEjKoTkzn4aPfYdTpqUvLpTgklnl3bGHWzetoL6mkPDoFdd8A937/PkMd3VQnZlAUEssDv3+Gg4sz9Rn5lITFM3bmZNY+vYvO8hoqYlNoKSjn8dM/oezupTopi8Ir17n5zWcYN38GDZkFlEYkYm1ny51fvkVnZR2VcalURCfz1JUD6EdGqbmRRcGVKOZu38Ti+26lMauQsqgbDLd38+jJH+iuaaAqPp2CK1HsOvglzp7u1CRnU3QthjHTJrL1nWdpyimmLOoGTTnFvBh1nL6GFirj0ym8cp3Nr+1h0spF1CRnURwah5WVFbsOfklTbgkVMcmURSXzfORRtMMqqhLSKbwSxexbNrDy0fuoTZHo/oOtHTwfcZSW/FIqYlMpConlwQNfSACfhHSKrkbjM2k8d375JrUpOZREJNCUXcRrKRfprqyjIjaVwitRbHzlCaatX051YgaFV6MBeOLsz9Sm5lIWmUhlXBrPXz+KdlhNZVwqhVeimbF5Deue3UVNUiaF12IYauvi1aRz1KflUXY9ibLrSew+9DVOHm5UxqdReCWKgHkz2P7Ry1QnZVIcEkt3TSNvpF2iKbuI8qgblEQkcO++D2Qg0V/QzTu/eovqxAyKQ+PoLK/lzfRLNOeVUh6dTElYPDu+eJOx0ydRmZBO0ZVoPIMDuPf796lJyrR86yp4I+0SbUWVVMSkUBwax60fvsi4+TOpTsig8Fo0rn4+/OuXT6i5kUVpeALN+SW8lnyRropaOc+WN/YwYflC6Rm8Fo2jhxsP/vGF5LZgadtXE8/RU9so5QmL46YXHmHKuuWW5zYGeycndh/+mtqUHEojEmjILOCluNMMNLVREZtCSWgcq598gFk3r6EqIYPi0Fis7Wx5+Oh31KXkUBqZSH16Pi/GnGCotZPKuFSKQ+NZ8fA9zNl+EzWJmRSHxoJCwWMnf5DvYV1qLs9FHkHV3U9VXBpFobEs3bmD+XdsoeaG9AyazSZeTTjLjFmz/rdD/9+U/qMYwXft8xRc+oygsV4YDEZ2v3uQawlS0L5m4TQeuWM1QkBb9wCxmWV8/MydLJs7iZrmLk6EpuHsaM9Xr9yP0WjiakI+V+JyOfDRo3i6OdPa2c++E1GsXTKdezYvxWg0cSEmm8LKZr57fScKhYLyujZ+PRfPG4/ewuSgMSjVGs5EZmBlZcXT992E2Wwmo7CWK/F5fPf6TmxsrGnvGeRESCprFk1j3ZIZaHUGYtJLqWnu4s3HbkUIQXXbIJdT63ju9rl4uTqi1BpIb+jHxc6GtVN8MAtBl0pLp1LH4nEeAOiNZpRaAy721jjY2iCEwGAwMuPjWO5dPI5v7pknLbUfHQY3P6ysrBB6Dea+dhSOzlh5+kv75ruaMA90YT93jXSOnk5Gy/JwXrQSW09fjColysI8hNmM94bNmI1GlCXl9GdkMvHZPVhZW6NqbqMtKgHvhXPxW74InUpN440shlvbWf7cI5jNZloLyykKiWHTK4/j4u3FYHsX5VE3cPbyYOHd2yQtT82hIauQ7R+9LMcixaFxzNuxmXHzZqLs6aMyLhWdaoR1z+zGqNfTkFlASUQCd3z+BjZ2dnTXNFAakYj/7KnM2baBkYEhqpMy6aqs49YPXsRkMNCUW0JRSCwbnn8Y7+BAei1abutoz+rH7kejVMkMpXu+fx+EoKWgjOKwOGZvXc+UNUsZaO2gIjYVVU8ft7z7PFr1CHWpORSHxXPnl2/i6O5GW3EFZZFJ+Ewaz7IH72Coo1vatlZYxv0/foReo7UQ6KNZ+8xuAudMp6OsmvLoZFAouPmNp1B291KVmElFTDK7//wKYTbTkFVIcWgc029aybzbN9NVVU9FbAqDLR3cu+8D1H0DVFu2JNz19Tu4jvGmKaeY0ogEPIMC2PD8w/TUNlIZl0ZDZgGPnvwBzZCSmuQsCq9Es2bPTiavWkxTbgll1xMx6o3c/c07Fl1OozQikcdO/4gwC2pTsikOiWPK2iWsePgeWvJLKYtKpreuicdP/0RfYytVCZL+3/3te3iP96c2NZeSsDjcxvpx20cv0VpYTkVsKrUp2TwffoThzh6qEzPJvxTJmid3MnPLGurSciXXGo2Ghw9/S2tRBRWxKZSGJ7Dn0u8Is1nS5SvRTFq1iA0vPEJ9eh6lEYl0Vdfz4vXjtJdWURknaezd370nb90ovBqNi68X9/3woZTnehJ1KTm8mnSOgaY2KuPSKLgSxYpH7mH+DkkHiq7FoFWpeebqQeoz8imPSqI0MomnL/+O2SzkmGfi8vnc/OYz1NzIpCg0jq7KOl5PvURLXinl0TcoDollxxdv4j9zihy/uPh68cBvn1FzI4uSsHgas4t4PfUiPdUNVMSkUBQSy/rnHmLGptWy/tva2/PIie8ljQ1PoD4jn1fizzDQ0k5FTCrFITGsfOw+5m7fRHVCOoXXYgDBE+f2U5ucTVlkIjUpObwYdRxVd598nSU7b2fxfbdRlZBOcUgMBq2eZ64dpMaSpzoxk2fDD6MZHKYyToqt5t+xheW775aewZAYtEo1z4Udps6isVUJ6ey59DtGnZ7K2FSKQmKYtXU9q5/8l7SVJiSWkYEhXog4Sp0lTqqMS+WJc78gzILK+DSKrsUwbcMKNjz/sBzzKLt6eSH6BA3p+ZRH36AiJoVHjn+PlY0N1QlSXDFp5SI2vvI4NUmZUmzY3sVLMSdpzCykLCqJipgUdv35FfbOTlLMExJD8JJ5bHl9D7XJWRSHxTPQ0s7LcadpyCigIiaZ8qhkdv72GY4erlJZQmIJWjiH3Ye+YvqMGf93Ue7/ShLpXhrRUfcNsPWdZ7GysSH0/e8Ybu/CydOd7FPX5BnvMTMmc3jni/IoqGdQABnHLhP2wffyCNTCu7cR8enPVMamoh/VsHz3nSTtP07qn+foLK/B0d2V1U/uJOmXY9TcyEbV04fPxCBivj1A0bUYmvNKmbh8AfUZ+ST/fkreX7P0wTsttnVSJ2TzG3soiUiQ9nDHpWFtZ8u6Z3dLFmnRybTklfBMyCGyz4RQHBpHVVwq0zeuYsbGVWSfvkbZ9Rv0NbSw8rH7yDsXRmlkElUJ6dzxxRvUJGdRcDmKkvB4BnY8z5gAiP/hMMVhcdSn5zP9ppUUXoumODSO0ohEFt93K5NWLib/YgTFIbEMtXez7tndVMWnURQSS0VMCrsPfU1tao48I+w7OZilD+yg4PJ1Cq9G05RdxOL7t1NSEC/vKdvw4iN0lNeQfymSoqsxaJQqbnrxUUojEii8Ek1FbArPhR2mNiWbgstRFF6NZuq6ZczfsZmCy1EUXL5OZ0Ut655+QPrAX46iNDyBO756i5bCMgouXafgchQObi6sf243RddiKLgcRc2NLObv2ExFXCr5FyMpuhbD8ofuoru2UcpjsTzb/Poeam9kkncxkvKoGzx68gcaMvPJuxhJwaXrBM6bwWB7FwWXr5N/MZLWwnLWPvMgTdmF5F+MpCQsnq3vPkdrkWSPk38xEhQKtr37PEXXYsi7EEHNjSxmb1tPZVwqeRciKLoWw/w7ttBd00DehQjyL0Qw3NnDtnefpT49n/wLEVTEpvLAb3upTckm70IEBZej8J0STH+zZH2TdyGCtuJK1j29i8Kr0eRdiKAsMpENLz5CU24xeefD5bIMtnRQGplI7vlwGjLymbllDWWW3yWhcUzfvJr20ipyz4eTdz4cde8AQ+1dNOeVyrZ0d371NlXxaeSdD6fwajQegWPpqW0k73w4uefD6a6qZ93TD5J3IULeJ7/qsXupTckm91wYBZejsLa1ocvSuf/LymbGptUUXY0m93w45VHJTFq1iMasAnLPhZN/KRLNkMSXKAmLl62Etr79LCXhCRZuQQJu/n40ZRdSeC2W/AsRDLZ1svqJf5FzNpTcc2E0ZOSz8J5tlEXdIO98OCVh8Vjb29GcW0Jdag5558Ppb2pj2oaV5F+Q6lOXkkPA3OlUJaSTdz6comuxGLQ6+htbKYtMIu98uGyFWHA5itzz4VQnZkiOBPFplEUmUXQ1mtEhJSMDg2Sfukru+XC6KuuYtmEFxaFx5J4LozIuDVsnR+rS8mjOkewHR/oHmbxmCXnnwsg9H057SRXek8ZTdC1GemdiUjAZjbQVS/vSCy5dR9XTh0egP/kXI8k9F0ZrYTnu/n7knAmlOjGD8us3MOr1NOeVUJucTf7FSGnFgEJBweXrsk2Q6xgfUg6eo62oQrYJqknOoiWvRLb802u15JwJoSQsnobMAlx8vUj48SgDTW2y5V9pRCJdlXXkXYhgoLmdwPkzST14ltrkbOrScnHy8iDqi1/RKtXybEb+pev0NUn16WtoIWDOdOL3HaK1qIK6lBwc3F0Jef9bbGxtZTuowtBYeuqbKbcEg/5zphHx6c/0N7ZScyMLexcnLr38CW5jfGU7ovLoG/TUNlCXmkt3dQP+s6dx5Y0v0QwpJTK+kyMXXvwYD/8xlEYmMjo4TGVCGh0V1bQVVdJVWcfYWVM48/R70iBvfDrW9nZceeNLnDzcJFZF/yC1KTm0FpXTV98i2U7Omc6pJ9/5f0Yo/y9OY3zc6e4fJmisFwPKEU5+sYfHra25FJtDVWMH3h6ufPL7NUpqpBm0nNIGPvz1Knnl0uzYrevm89FvV/npVAxanQFnR3tS86vZdyKa3PJGjEYTQWO9effnS1yNy6WxvY8FM8YTn1XOT6diyCyuY0Sj5/6ty/nz0g1iM8sor2vn+Z2buByXy9nITFLzq3Gwt+Wp+27i6NUU4rLKqahv5/RXz3D0agphyYUk51axbvF0bt24gktp9dwo7aCtT83OjdNJax4ir2WQsk4lDywKokOppXFwlLZhDdYKBfP83VBqDah1RjQGE062jphMJkwmEwNqLWYBHg5WCGUPQqMEox6FkzumgU7MA+2IwS6sJi3E3N2MsakCQ0slVk6uWAfPZrQkl9HyfLTNdTjOnM9QTQbD2RkM52bhvXkbI/UN9MQm0Jt4A8PgMIE776MjIY22yDg6k9JZdWgfLWk5VIXGUh0ay9iFc5i242YprrgSTWthOSsfvY+6tDwKr0RTEhbHrR++RFtJpaTlVyT2xk0vPEJRSKzM0Zm+cSVViRkSq+ZqNPPv2EJvQwsFlyLJv3SdAcvkSH16HvmXrlN2Pcky6FssafmlSHwnjWf1k/+i8GoM+RcjaMwqZMXDd1MamSjFSqFx3PTSY3RU1JJ/MYL8i5HoRzVse+dZSiMTybsQQVVCBpNWLqY6KUOy3r0SzfSNK+ltaJHz9Na3sOX1PVTEpJB/UdrDf/d379GYXSjFCBcjcfXzZrizh/xLkeSdD6cxu4jlD91DcVgc+RciKAmLZ+Vj99FWXCHp8IUIDBotg22dVMVLOlaTnM2EpfOpiE0h/0IEhVejmbhiIV3V9eRfiCDXooVb3nyK6qQMScvj07ntwxelWOR8OAWXo3D0cKO/sVXWjtaiCpY9uIOCK1HkWbR80f23SeW3xCImg5G++hZqkrNkvQleMoeScEnbS8ITCJw7nZaCMnLPh8txkaqnlzrLtevSctn4yuNUxKRIuhwSi7OXB62F5RRbYoS+hhaWPrBDjmdqbmQx55YNspb/NajeWVFLY2YBuefC6KqqZ/ziORReibIwldLxnRJMbUoO+RekOo8OKRnu7KEhPY/cc5Kt7vKH7qI4NE6qc3SyPFtfGZcm6/LCe28h50wIeefDaSkoY9KqxZRESPFL2fUkrKytaS4oo7VQsh8c7ugmaOFs8i6Ey/fZO3gcpRGJlITGUhKeIN/X5pxi2b5v9i0bKLgstX99eh7O3p6UhCVQl5oja+xASzvZp6/JMY//7GkUh8TKMY+9qzMFl67TUV5DcUgsWpWazopadKoRcs+H01vXxJjpk8k5fY3yqGSqkzKxdXQg6+RVVF29FF6NRjOsojG7EISQbQ59p04g+fdTNGTkU5WQgZWtDWkHz2LUGyi8EiVZzHm4YWVtTdHVGDrKa/CZHEzM139IMWN8OgorBQk/H8PJzUW2RnRwcwWkffF/xUmhH3yPsksaXBBCcP3zX/GdNF62drZ3dSHhp6M0ZRfRWliO98QgLr38KUadXrIUNxqJ+eYgXuP9KY1IRNnVi72zE9Ff/kZnRR0t+aV4BQdy4rE3sXdypOx6Eka9gYSfjuLq40l1YibDnT3YOTkS+v53DLV30ZRTjGeQP4f+9SKuvp6UX7+BQasj+Y9T2Dk50JRdzFB7F47ubkR++vN/ie79j+3QD1s69Ea9gW9W3IXZZCJo4WwmLJuP37RJPB9xlJLweC699hnztm9i7m0baSupJPrL3zCbzax+4n4W3LmF1INnyTh2iclrlrDovlspuhZD2p/n8Js6kQ0vPMLEFQvJOCbNeI1fNIf7f/qY3HNhZJ28gmdQACsfXcWY6ZPIPRuKlY0Nk1Yuwt7ZEc8gf4pDYvEcN5Z1z+zCbYwPds5OuPh4MXvrOmzsbHFwcaKjvBbv4ECWPbgDO0d7EAInD1emrluKQqEAwMViczJ3+ybMJjPVCek4e3kwa+t6jHoDBo0WB1cXxi+aw0j/EPqRUS7bO+Hj4cyU6UvRDCvRqUawc3RgwrIFqPsG0QwpZcuvCcvmo+4bpDG7CCcPN4IWzma4s4fRgSHZhm38ojkyLMrZ24OAOdMZbO1EayGq+k6ZwLj5M+WH2t3fD/9ZUyVifnUD9i5O+EwaLx3T1YuVjQ0egWMZO3MywUvn4eDmgqO7Kz6Tghi3YBY69Si2jg54BIxh7IzJDLZ2YmNrg7OXBz6TxhO0cBaaIaV0TOBY/GdNkZaOWUsUar8pwQQtmIWtvR12To54BI4hYM50zCYzNna2OHt74jd1IgPN7SgUCuycnfAKCiBw3gyJCmpthauvN2OnT0LV3YcCBY4Wu5aAOdMkYqednVTP2VMZapeWCDt6uOE3JZiB5naEWWDrYI/nuLH4z5oqUS6FkJZfz5hsWZ4l0cK9ggPxnTxeIozb2OA21pexMyejUCgwG004urviNyWYobZOzCYz1na2eARKnp1YHAKcvT0ZM30S/U1tGA0G7Jwc8Z4wjr6GFgx6Azb29riP9cV3SrBMAv3rvJphFSajCWtb6b64+/thNhokiqe3J76TgzHq9WhVI9hazjvY2oleq0dhsZP0CByLyWSWgGEebvhMGk9/Uyt6jRYbezs8gwLoa2jFoNVj7+yEq683nuPGSgTkEQ32Lk54TxhHW1EFulENVjbWuAf44eDmikGvx6TX4+TpjkfgWMzCjMbyTHuOD2C4q9dCeZdI6xK93Cy9G24u0jLurh70oxps7GzxHOfPYFuXBGtxd8XF2xMnT3cQoFOPYufshHuAH901jWiGlCisFLj7+9Lf1IZBq8NgaTuJkmqSnlcHe9zG+jI6pEQzpMTaxgZXP2/66lswm0wyydbJ0x2tegTDqAZrW8lXfaR/EI1S8sF18fbExt4OBUh5nB1x8nBD1duPZlgCabn6eqHq6UM/qsGo0+Pk4WYhrZoxarXYOtjj6OGGqqcP7bAahbVE1R/u7AEhMGh0koeqgz1mowmz0YC1rQ2O7q4YtDqMWh1mB3ucvTwYau/Cytoag0aLnZOjxfFBor4qrK1xcHOxwHXMGPUGHN0lwVUorDCbTJJTg6MDZoMBa1tbCz3eGd3IqLSEXavDwdUZSyZAgY2dHTYO9pgMBuycnDBqddg7O6JVqrC1t5PdEwAQAmsba6ysrSXyvdGIk4c7ZqMJOydHNMMqrG1sLMR/B0sWM3ZODmiHldjY22E2GnH29sBkKS+Dw1hZWWFlbY2tvWQBajaZcXR3ZXRw2EK9NuLo7oYwC2wsx4CQCdMACisFE5cvgIyw/zY9/N/0/57GervLYLzWrgFWv/E7Y3zcmDkpgHs2L2HRzGCyz37MoSs32H82ju3rF/DOk9tJyK7gq0PhLJsziff23M6u21by+/kEskvquWnZTNYtmcHZyEwOXbnBjEn+bFs9jw1LZnA8VFpmvXnFbILGenMmMoMrsblMGT+Gd/fczqzJAZyPymasjwd3bVyMj4cL/j4eFNe0MHX8GJ7duRE/bzeuxOXi5eHMrevm4erigKO9La5ODswM8mTH8gnY2Vpzo6QdDyc7Vk1wwFqhQAhwsrPGz8UOo1lym1DpjNhYKXC2s0EIifavsJLcXIQQKLXSclxPFwcU9s5gNiFQgLUtVm7eYNRjNhpQWNtg5e6L8B2H0I0ijAasnd2wCwzGpB7GrNVgZWuP4/gJGPr7MCqHsXZwwN7PD5dpU9D19qGuqcXGxQW3KRPwnDsTbd8A1jY2uEwIwnfWNFQd3di5OOPk6Y7f1IkELZqNVqXG1sEer/EBBMyeylBbJzb2drj6euM3dQLjF82RXWA8g/wJmD2N4Y5uFFZWuPp54zdlAkELZ2Pr5Ii9ixNe4wMYN28GJr0BWwd7XMf4MGb6JAYsYGIHV2e8ggMJWjALIQQ2dhLle+yMydJyYMW/6/90FFYKbOxscff3I2D2NGlrmJUVTl4ejJlmOa8wS7HHOH8C5kzD2s4OhZVCiitmTJa2DFkpsHdxxnvCOMZMn4QQAitra9zG+OA/ayq6kVFMRiMObi74TpnAQEuH9E21t8MjcCxjpk8CBZj/Tf+7qyQXob/037O+BbPJKLWNpd4KKyuMOr1khztlAqqefsxGMzb2dniM88drfAAmkwmzyWyJlSYwOjiMbmQUOydHvCaMk+IMi8e221hfvIIDpZUbWh2O7q74Tg6mq6oeoyX28AwKoLeuGaPeIJ/XOzgQFAp0I6M4uDjhPXEcqt5+DBqdrP8uPl6YjSaMej2OHm7SilelCt2IBjtHB7yDAxlql7TcylqyM3Xx8cJsNqPXaLF3dcZrfCA9dU1oVWo59uxvasOgkUjwzt6ekmOPwkqOcTzGjWVkYAjNkAoUCtzG+tJT1yTF3JY6uvh6YdTr0Y9opHsS4Ieqpw/NkAoHFyeJ8u7kiDCbJS13ccbFx0t2I7K2scF9rC/Kzh50KjUmgxEnT3fJtQCB3hIHu/h4MdjaIS3/VihwG+PDUFsnRp1OjuPsXZwl9xuNRo5xdSOjjA4pcfH2xMXHi4GWDhQK0I1ocHBxxs5ZcijQazRY21hLsYlKjX5Eg8lgwNnLnT4rKxQKMOr02Do6YO/shF6rlZbnKxTSsvRhFZile+9gcU8CMBtN2NjbY2dxORJg6eO4MTo4jI2dtIXN3sVJymPZTmlta2tx6hnBxs4Wk9GEg5uLZXuoBBa3c3K0kOPN2Njbo7BSYOvogFapwsHVWSL8uzih6gErKwUISZutrK0xm0zYuzhJTkEO9hiVehxcnGRXgL+SlY0NNna20nUsRHvDqET5N+r02Ds5yu8alrr9dQ3pOmbc/LwlQLq9nXQ9ezsUCgW2DvYA2Dk7EjBn2n+J7v2P7dD/tbfWI2AML8ee4petD9NSUEZHRS0eAWP49ZZH/iYch8RQEZNCR3mNtG9UYUVpZCINGfm0l1ZjMhhpzi3GZJCo1yajiaGOHtpLKmnJl2zksFIwMjBId3UjWpUaFx8vNMNKVD396FQjOLi6WKyYjFLnxNkJ98CxGLRarG2ssXN2wnPcWGwd7GQBcfP3Y3RQiRACR3c33Pz98J08Hisbayl/gB8+E8dh5yg9uF7jA/CdPJ7+5na5g+E3dQJjpk+SrZ78Z02hs64Z/YAtns52jJk+gb7GVvoaWqVOir8f4+bPpL+pDfeAMdg5OjB+0RyG2iXao7WtDf4zp6Dq6WewtRMXH0/c/HyYuGIhyq5etOoRbO3tmbB0nkyednB1xmVikEyV9hw3FmcvD6auWya9tPZ2WNvaMnH5AvSjGpTdfbj4SJ3E6RtXMTooBdWO7m5Mv2kluhGN3KkKXjofk9HEyMAQHoFj8A4ex+xt69FZbOgcXJyZsWkVJqORkYFhHL088B4fKNl4qEbwDPLHM3Asc2/biFFvkATU1ZnpG1eBQsHo4LDsJWvr6IBeo8Wo0+E+1o+52zdKljfqEXkAwNrODp16RAo0Zk2VPxwd5TW4+Hgx7/bNWNtIdjEuvt6MmzcDexdnSyfXnbHTJ0sdRyTLCxdfL+Zu34iNgz069Qhu/r5MXrUYRw83zEYjqt4BfCcH4+TlIVmeKdW4+HoxYek8HFxdMGp1eIwby8TlC3Hx9UahgMacYnwmBuERMMbygVPj5ufNtA0rJcswgxErayuCl8zDdYwPVtbWGHV6vIL8CZwzHQdXqYPm4uvN7G0bcPWTLNp6G5oZv2iO5Tm2Rzuswt3fl9lb1+Hk6Y5Bp8dtjA+zbl6HR8AYFNbW1CRL3qL+M6dI1jWqEVx9PVl07624+HhKQqfRMnPzGjyD/CVbtJFRxs6YxLR1y6QOpkaHs6c7i++XfH8VCugor2XGxlWMmTYJOycHNMNKvIMDmbR6iWTRZjDi6OHGovtuk+1iquLTmLJ6CROXzcfe1QWtSo2bvy+rHrsPVz9vzGYzmiElC++5Ba/xAdjY26FTjzJ+0Vw8xo3FycNNstTzdGf14/fh7u+LwkpBe0k18+7YQuCc6dg5O6FVjTBmxmRmblqNs7cnJr0BB1cXVj1+Px7j/LGysaYmMYOZN69j6rrlOLg6o1ON4B08jvXP7sbVzxuT0YRmSMnKR+/Fd9J4rO3tKA6JZfLqJXgGBeBoKYurnxfrn38Yd38/BAq6q+tZtvsughbOwc7JkYJLkQTOm8G0DStw8fbEoJM68huefwiPwDEorKxoKShj2a47GWztxN7FifyL1wmYPY2F99yC2xgfTCYjdk4ObHjxEfymTcLazpbGrEKWPLADnUqNo7sreefDCZg1lVVP/Av3sb5km83YOtix4YWHqUvNxcbejrrUXJbcfxsKKyucvNzJPRfGmGkT2fTak3gGBQDXsLazYcOLj9CSX4qdkyPVSRksvu9WnDzccPbxJO9cOL6TJ7Dx5ccomzZRsqURgptefFQaOHR1pio+jQX33IJPcCAuft7kng3FZ1IQG154mOrETKxOXcOg07Hh+Yel/a/urlREp7DgjpvxnRyM57ix5JwJwXtiEOuf3U1jViHZp66iVY+y/oVHGB0YwtHTnfLrN5h/x2Z8gsfhOyWYnDOheE8Yx+o9O2kvriT79DVGB5X/ZWL9v+n/+zTGW5qhB1gyeyIh+1/mlme+p7tfycmwNEa1ev68nIR6VNrHGJVWws9nYqlr6aahrRdnJ3tOhqVTWNlERX0HvQMqyuvaqajvoKyuDVsbaxraesgurae8vh2TSaA3SGT62uYuDAYT3h4uDAyrUY9q0eqMeLo7IwCt3oDeYMLVxQEvd2eMJhNms8DN2ZHx/j4oACuFAjdnR8b5eWFtLQXUHq4O+Hu7EjzWC4QCZ3sbfF3sGOfhiKu9NdYKBa52Nng42GKFQgoara2ws7HCzmSNwuLPZqVQMKSRmA+eTvZgY/kzGqQBNQcXFM4eKLQjYGOPwt4JK+8ArEaGMetGUVhbYxcwHpNKiXF4AOzssPPxxHnadAyDfdj6+mHj6oL7gnnoB4cQZskG03PuTIxKNbruXuy9PXEb50/w2mVo+wcBgb2zE1PXLUOnUqMdUmLv4oS7/yyMOj3qvkE8xkkDzTM2r0GjVNNT14SdowNT1y2zHDMg6fSUCQDyAKmbnw+ztm3AoNNjMpmwc3Fi6tplIASjg8N4BPgxdsYUbOzt0Y9q0AwpcfbyYM4tGxBms8VGzZ2AWVOxtpNs6LwnBuE3ZQL2zpZOgKszzl4ezN62HitriSPi6udD8JJ52Dk5YtTqsLazw2dCEI53SVtFDTq9nMfWwR6tagSPgDEEL5kn2YEZTQy0tOMVFMCie27B2saG0aFhXLw9pYkjV8mG1is4kPEL51jstLB09sew8J5bsHV0QKMawcXXm5mb10h2sZbO8bh5M3H188bKxgbdiAZ3f1/GzbfEKxot7mN8mLFxlWxf1lFWg//saXgEjsXGYqXmOsaHCUvny3GFi7cH0zeslCxara0RCMZMm4j/rCk4uEidOmdvTxbevQ03P28QAnXfIFPXLsNznD/WdrZolSP4TBjH9JtWygPMTl7uLLhzK+5jJc1tzi1h0sqFjJk+CTtnR0aVajwCxzJzy1pJcw1GbB3smb9jC57j/LGxkwZ6gxfPY8rqJfIgtLOPJ8sfugu3MT4Is5mhti7m3b7JEndLNrQBs6cydsZkS4yjw8nTnRUP3YVHgB9YKWjMKmT2tnUELZyNvYuk/76Tgph/51ZcfL0xm8worK1YvvsuqY62NpRFJjF13XJmblmLg5sLupFR3Pz9WPv0g1JZhGCwrYulu3YwZvpEbOztKLh0neDF8wicOx1nL3ep/F6erH36Qdz9/VAoFDTlSx7yE5YtwM7Zibxz4YyZPpml/9qOi683Jr0BG3tb1j2zS+Lv2FhTFZ/OnNs2gtmMvZsLeefC8BofwIYXH8V1jA9mi93tmqd3Wd4TO8qjkpm1VeIaOHt5kH0mBM9x/mx8+TE8AsYACrRKFWuf2WVhYtlTGpnEzC1r8A4OxMXHk+zTIbj7+7Hx5cfxCh6HwtoKVU8/a59+kJ7qBhxcnSkOjWPGxlUELZiFq5832aeu4TbGR16xYWVjzVB7F2uffpChtk4c3V0puhrDtA0rmbZhBW5jfck+dRVXPx82vfI4dWl52DjY09/QyrqndzM6NIyzlwcFV6KYsm4Z0zaswHvCOHJOX8PFx4uNLz9GS34Zto72dFc3su6ZBzEbpEmugsvXmbx6CVPXLqM8JpnsU9dw8vJg06tP0FVZh52zE50Vtax96kEUVgrc/LzJu3SdKasWM2n1EmqTs8k6dRVhNuM3deJ/ie79j9xDn336GgVXonj22p/0NbaSfeoqnkH+JP5yHK/xATzw22cIs5mrb31F3oUIHjzwBfPv2EL8D0dI+f0UvlOCeT3lIlknr5L0y3H6m9p4KeYkWpWa1INnKY+6weond7Lu2V1kHL1EzpkQrG1seDXpHBWxKWSfvEprUQW7D32Fk6cHuWdDKY1IJHjpPHYd/JKMY5fIvxCBsruPN1Iv0pQjLeeqT89j8xtPMefWDWQcuUhxWDx2Tg68mxdOyh+nKbwSRVdVPU9fO4hRoyXzxBWqEzOZvW0993z/HrHf/UlpeDwapZoPiq7LS5Cb80q46+u3mbRyEfE/HqEwrYjYJz5mz/JApqdJS6z6m9p4LfkCA83tpP15jvqMfFY8fDdb336GyM/2S1ATIfioPI6MoxfJORtKV2UdDx3+Bs8gf2K/+5O6lBzGL5nL05f/IOLTnygOiUXVO8D7hZE0ZOSTdug8LQVlbHnzaZbuvJ2IT3+iKj4dexdnPq6MI/abA+Sdj2CgpZ2nrx3EbDQRv+8QTTnFzN2+kft++JDQD76n7PoNTAYDH5ZEk38xkszjl+mpbeTub99l/KI5RH72C/Xp+fhNCebVxHOEffQDRddiGOkf5PWUi3SUVZP82yk6ymtY/eRO1j71AGEf7qPmRhZ2jg68XxRJwk/HyDsXhrK7j4eOfoutvT1x3x2ktaiCKWuXsevgl4S896201Nlg5J3sEIpCYsk8donBtk62vvMsk1ctJvKz/bTkleDq582bmdcIe/87SsIT0KlHeOban3RX15Ny4Az9TW0svHsbG158hPAPf6AhswBbB3teT7nIjd9OUnglCs2winu+fw9bBwcSfjpKb10TAbOn8dDRbwl591tqU3IQJhMvRp+gJDyB3LOhjAwMseapB5i8arG0VKmqHmcvD56LOML1vb9QnZiJUa9n959f0V3TSObxy6j7Bpi2YQXrn3uIyL2/0FFWjY29Hc9c+5PUg2coj07GqNOz9e1nsLazI/XgWcvy7rE8+MfnhH/0g2y18sjx7ymNTKI0PB6DVsfCe7YRvHguSftPMNzZg4ObK7sOfkH8D0dozpVge9s/fZXe2iYKLdYogfNmsPLRe4nfd1ieDX7gt71knrhCY1YhQghWPnovVtbW5J0Pl4OCWz54gcQfj8oAlR17X6MyPo26NGkf59T1y/GfNZXsU9fQqUewdXTglvefJ/3wBRnqs+bpB+mtbaLmRhbCbMYjcCyL7r2FjGOX0SolYMrNbz9D4eUoGSI359YNmE2STZ7ZJK2eWPrAHeSeC5UhK6sev5/6tDzZxs5/1lR8JgZRHp2M2WTC2s6WpQ/soCQ0TgbczLn1JvoaW2XAjZOnO1PWLKEsKlmG1Sy69xaqEjJkIFzQwtnSgJLFYsfOyZHJa5ZQnZgp55m+aTVtheUyFMdtrC+uft4ycMjG3o6JKxbSkFEgw92Cl8ylr7FNhsg4e3ngHjBGvo61nS1BC2bRWlgh5/GdEox2WI2qt18uv9sYH9lezsrGhrEzJ9NT3SiDdFz9vBFCoO6Vtj45erjh4uNJb53U1gpra2kGpq1LzuPi640wm+WyObi54ujhKtmAInnFu/p6MTqo/DuPjxdms4nRgWFLHhfsnBzlrVsoFDh7eaBVqWUonouPFBj+dU8dXF2wsrVh9N/gQs7eHmhVI3IeZ29PjHo9OpUE0pNWHY3nmLL6f/fQ/zel/yhGeP27s3h7uPLenttJK6gho6gWd1cnvvgzjDs3LmbfGzsprW3j1W/PUlrbytWfXsLPy41vj13nQnQ2D21fxSfP3cXBS0kcvpKMQqEg+di7pORXc+hKMnnljex/dzeTx4/hRGgaIYn5zJ0axLHPn+RMZCZnIzLp6Bsi5sAb1DZ3cy4qi5T8ap7fuYkdNy3kTGQmIQn52NvZknLiPc5EZnIlLo+K+nZOfvk0IDgflUV8VgXrl0znlw/3cDypntjCdoZH9YS9v4nqgVHSG/up7R3hXwsDWT/Fl6peNR1KLfY2VuyYNYbBUT0qnQGDSTDO3REHawUmo4HEql6eOV/KgQfmcXOgkJbcC4HCfyqiqwFzTzNidBjryYsRWKMvS8fY1YiVhy+OG3cxlBDKaFk+JtUQY5//iJGaWvrjIhmtq8Hnlh14rL2ZxgOHGcjMxsrOlmVXz1Nz6DTNVyIZaW5l5Z/70NnZkf3TYdqzCpmwYSVbfv2ciI9/oCw8AZ16lPeKoymNTCT9yAU6K2q5fe9rTN+4ishPf6Y2ORs3f1/eywsn4tOf5e10L8edZrCtk6Sfj0lLwnfdyda3nyH0g++pik/HytqaD4qjSDt0juxT1xhs6+SB3z/D3d+P6K9+pzm3hPFL5rHnwq+EvPctZZFJ6NQjvJV1jeqEdNIOX6CvoYWNrzzOvNs3E/HxjzRkFuDs5cHbOSFc/2y/vO3qifO/MtI3QNIvx+muaWD2LRvY/skrhL4v7V+2srbircxrcrw10j/Ijs/fwCvIn5hvDtBZUYvv5GCeCfmTkHe+oTI+DaNOzwvXj1ObnEXm8csou/tY/tBdLLhzK9c/+4XWogoJ0Bt3mpiv/6As6gYGjZYHfv8Mde8AKQfPMtzRzcQVC9n+8cuEffQjLXklKKyteT7yKFknrshLtTe9+iQegWNI/PkYg60duPr58MS5nwn7YB+N2UUIs5mHj39PXUoO+Rcj0alHmLt9E7Nv2UDcdwfpb2rD3tmJx07/SMJPR6lLzZUBzqqefnLOhKJVqvCbNpFt7zxL1Be/0VvfjEKhYPfhb8g9F0ZNUiZmk4llu+/ExceLrOOXGbWsLr3rm3eI33dIhu3t+Ox16jPyqYxLw2w0MnHFQqZtWEHqwbPyqqq7vnqL9CMXZbjbmqceQNXdJ8ecrn7erH16F8m/n5L15dYPX6I4NFbWy5lb1uLo7kpJWDxGvR57VxfWPv0A2Seuytq35qkHaM4tobWwHJDgcMFL5lF4NRqjTo/C2pq1Tz1A4ZVoGbY757aNqLr7ZKifo6c7s7euozgkVgaoLdt1B1UJGbJujZsvTUT9ZY1q6+jArK3rqIhOlvPM2rqO9tJqGTTr7OXB2JlTZNiuwsqKmVvWUJuSI8Pdxi+ei6q7TwYBOri7MnbGZJoskEWQ4HvNeaVyHu8J4zCbzDLU18HVBd8pwbLFHkDQojl0V9XL4DkXXy9sHR1k7bZ3ccI7eBydFbVyHr+pExnu6JaBg84+ntja28mrYv+aqOyrb5bzuI3xRacekfO4+HhhZWMtt5udsxPOXu4MtXXJeVx8vdGPamSgnbO3JworhRyb/LU6YaR/8B95dOoRuQ3+mqz7Kz6zdbCXJgFV6n/L42XJI90fd38/pq5bxtd50f/5GOE/zcn/b07/Ecq/Ii5VfL3iTvl37oVw8ZztFPE0weJZm8ki5IPvxbX3vhVnn/tA/Lh5lwj75AfRWlQuCq5EibCPfxB//ut5oddqRX9zmygOixPHHnlNNOYUCbPZLLprG0XCL8fE9S9+FUJIVho1KdnizLPvC92oZBUz3N0r4n88LIrD4oQQkvVH9Y1MEWmx1hJCiOGePhGx92fR19gqH1MckSAyT16Rj+lvbhMRe3+W7U6Mer3IPHFZ1Gfky8e0lVTKVndCCKFRj4jYfX/KtnVms1lUJmaI4vB4+Zj8siYR/HaE+DNZsjczGgwi+8w10V5e8/d5S6tk+zDpvGoR/9MR2dLNbDaL8tgUUZ2UKR8z0NohUixWZkIIYdDrRdqRC2KgtUP+X1N+qSi8Fi3/Vg8Oi4Sfj8qWbiaTSRReixaNucXyMV3V9SL92EX5t06jEQk/HxWjw0r5f5WJGaL0epL8e7C9S7a6E0IIg8Eg0o9eFB2VdX+XJbdYZJ2++ndZBgZF1Ne/y3U0mUwi92K4qPq3OnZU1IrEX4793S4qlYj57qBszWc2m0VpVJLIPR8mH9Pb2CIi9v4s11Gv0Yik307ItnVCCFGdnPWP8w51dItr730j29YZ9HqRfuyiKLgWIx/TmFMswj7+Uf6t6usXYR//INfRaDSK3PNhIvmPU/IxbSWV4sLLnwijwSCEkCzzrn/5m2xbZzKZRGFIjGwDI4TU/mee+0AMd0nWfFr1iIj74ZBIO3xernNZdLI4+9z7ch17GprF+Zc+FvWZBVKe0VGR9OsJEf7pT3KeqqQMcWTXy0I7Ir03/S0d4tIbn8vPnV6rFamHzokzz74v56lLzxWHdr4guiz2g4MdXeLau9/Ilj8GnU5knLgsDt77rDAaDMJsNovGnCJxZPfLoiRSsuZR9vSJsI/2ibMWezmjXi9yzoWKn7c+JJQ9fUIIIZoLy8SxR18XCT9Lz5C6f1BEfv6L+OOup4TZbBZGg0G20GnILpTb9uSTb4uLr+6V8gwOiehv/hDfr7tPaEdHhcloFEWhseKXbQ+LjOOXhBCStd2ZZ94TB++VrGJGhoZF7Pd/ii+X3i566puEyWgUJREJ4tftj4uQ976V78fZ5z8U3666W5iMRjGqVIn4n46ILxZvFyWRiZLVULRkG3j4wZeEEJJt4IWXPxGfzN4iVH39YlSpEkn7j4uvlu0Qsd8flO3w/rjrKbHvpp3Sc9vQLC6+9pn4cNoG0VVdLzQqtUg+cFp8vfJOce29bySrwcQMceDeZ8Q3q+4WZrNZ9DW1istvfiE+nLpBtJVUWKx6zolvVt0tLr3xuWRplJIt/vzX8+Kr5XdIeZrbxNW3vxIfTbtJNOYUC93IqEg7ekF8t+Zecf7FjyRLydQccWjnC+KLxbcJk8kkBlo7xLX3vhUfz9goalNzZHuf79fdJ848877FajNXHNn1kmTvYzRK1kkffCc+nrFRVCWkS9ZJJ6+KfRv+JU4+Idnu1Wfmi6O7XxF7522V8rR3idCP9omPZ20SpdeThG5UI7JOXxX7btopjj3ymmS3lFUojj78qtg7d6sw6PVioL1LhH/yo/hk9mZRFBordKMakX0mROzb+IA4sutl+Zk8/ujr4tM5W4Req/1f27r/xvQfte03RyLES19J30Wz2Sw+/u2qsF3wmLBd8JgI3PiS+OxAiHjnp4vi2b3HxbpHvhAXo7NFTmm9OHc9U7z+3Vnx+ndnhdFoElWNHeJsZKbY9fYfYlA5IgwGoyiubhGf/HZVnL8u6YZqRCNCEwvE2z9ckCzgzGZR19Il3v/5kqhskLRRo9WLyzE54tDlJLmM1U2d4oP9l4XBYJSPOXYtRSTlVMjlLqhoEvvPxsp5lCN6cTCmSvQNa+VjStqHRFZTv3zMiM4oyruG5d8mk0kMa/RCozfI/7uc2yyC344QmfV9lmOMwjTc87dtndksjAOdwjjwt7ab1MNCW5n992+jUSjzUoWur/vvazfWiYH0FPm3XqUSLafPy7Z1ZrNZtMfcEL05BfIxgw0tovjEpb/zaLUi5Y/TQtU3IP+vNi33HzGOsqdPxP/8t/6bTCaRfTZEtJVWyv9rK62U7WWFEGJUKWn5X7Z1ZrNZFIfHi4q4VPmYnvrmf8QVeo1GJPxyTPQ1tcn/q76RKbL/LXYabO8SkZ//8nccZzCItKMXZNs6ISQt/3f9/0vL1QODUh6LluddjpSPaS+tEuGf/Ph3+YeVIurL30Rr8d/PR1FonEj67YR8THdtg7j0+ueybZ12ZETE/3RElETEy3kq4tP+of99zW3i4mt7RX+zZFun12pF8oHTcqxnNptFbVquOPfCh3IdB9u7xNW3vxI1KdLzYNDpRMbxS/8ob2N2oTj+6OtiZEh6FpU9fSL0w30i8+RluZ1yzoXK+i/E37rcWiLdR/WApMuRn+8XQkjPXMHVKPHn/c/Ldeworxan9rwjCq5GCSEkjY359oA4+5x0XpPJJIrD48Wvtz8hBto6hRBCdFbXi7PPfSBb/mlUahH/4xFx4O6nJWtek0mUxSSL33Y8IapvSO95T12TOP/SJ+L8S59Y2nZUJP56XPxw006hUapka7s/7npKbru+plZx6bXPxB93Py2EkOz8kg+eEd+uult0lFcLs9ksqm9kioP3PiuuvCVZ/g20dogrb30lvl19jzDo9UKv0Yi0I+fFt6vvEfmXJSvqWkuc9Oe/nrfcj05x7b1vxN55W8VQZ7fQa7Ui88Rl8f26+0TkZ7/ItoFHdr8svltzjzCbzWKwo0uEfrhPfDxzk6hLz5UsgE9b9HLP25IdXl6xOPbwa+LTOTcLg15vscP7SXwye7MoDI0Veq1W5JwPEz9uekAcsVjoNeeXihOPvSE+mb1Z6DUaMdzTJyI/3y8+nXuzyDkfarEnjBA/bdktDt73nMVeuVycfPIt8fHMTUKrVgtlb7+I+uo3sXfeVpFx/JIw6HSi4GqU+Hnbw3KM1lpSKU499Y74aMZGMTqsFCqL1fBnC24RqX+eFQadThSGxIhfbnlE/Hr7E5IlZmmlOP30u+Kj6RuFun9AqPoHRez3B8XnC28Vib8cE0a9XhSFxYn9tz0qfrnlEYs9d7U4+9wH4qPpNwlld69Q9Q+KuB8OiS8W3ybifjgk2UVGxItftz8mft4q2R53lNeIs89/KD6ctkEMdnQLVf+giP/xsPhi8XYR/c0fkt11ZKL4bccT4sfNu4QQ/7GO/f+a/kfO0LeXVvH7jif5ojFNWiZuZ0ttSg4H73oao97ASzEnaC2sIOLTn9EqVWx44RHGTJtI7LcHGWzrxNXXm91HvuH6Z/vlWcPHz/xMdVImmccvYzYaWXjPLSx9YAeXXv2MwdYO7JwceSPtErHfHiTvfDgA9//0EfauLoS8+y2qnj6CFsziyQu/cvHlTymPTkZhZcWbaZeoTckh5psDjA4Os+GFR1i26w4uv/Y5DZkFOHm680lVAtFf/kbG0UtoVWqeOL8fW3s7wj78gY6yambdvJbdh77m6ttfy1ZlHxRHUR6dTOJPR+lvamPHZ68ze9t6Qt77jsyabrJ2vsyX26dhH3pJglf09PFKwhk0QyppJDqvhOUP3c3te18l7IN9FIfGoVAo+LQmkZwzoaQePEtPbSO7Dn5JwJzpRH76E1WJmQQvnsML148Tufdncs+FM9I/yLt5YXSU1ZD4y3Gac4vZ/NqTrNmzk/CPf6Q0IhE7J0c+a0gh8aejZB6/TF9DC09fPYCdowOx3/0pAUxuvYkHD3zB9b0/U3BFmrn9sDSa8qhk0g+fp624kru+fptpG1YQ/dXvlEcn4x08jrcyrxL99R/kng1lqL2L11MuMtDcTvIfp2nIyGfV4/ez+fU9RH/5GyVh8VhZW/FBaQyZxy6RfeoaPbWN7D78Da6+Xtz49STViRlMXLGQx07/SMxXv1NwJRqdaoS3Mq9Qk5xN5vHLtJdUsfXtZ5i1bT2JPx2lPCoZRw83Pii+Tsw3B2SwyzMhh1D19JFx5AKN2UUsuGsr2959jvh9hygJT0BhZcVbGZfJPR9B3rkw+hpbufu79/AIGEPaoXPUJmczduYUnrzwK/H7DlloqSMSaTOrkJwzIXRV1bNmz07m3HoTqQfPUhmXhoObC68knCHtz3MySGT34a/RDKnIPnWVtuJKpq5fzrZ3nyPlj9OURyWjsFLwbNhhyiITZXja1neexTMogOyTV2jMLsLd348nzv1C8u+nZEjLo6d+or2kkvwL0sqLhffcwpxbNpB54gp1qTk4uLny2KkfKLh0naKQWHTqEXZ88QZGjY7cc2H01jcTMHc6W996hszjl6lOysTK2ppdf35JXWquPNux6vH78ZkYJK8ccfJ05/6fPyb3bKg0Im8ycefXb1ugPRJkbuq65cy5dQM5Z0NpL6nC1tGBu795h8q4NMqjkzEZDKx//iGsrKzJvyitqPEIGMvm158k52woLfmlKKysuPWjl+goqaI0MhGjTs/c225izPTJMjDO3tWFm996mrLIRHmkfP3zD6HuHZDbaezMKczdvkluJ2s7W2566VGasoqoS8sFYP6dN2Pv7ERxaBw69QgO7q6s3fMAhVeiZPub1U/8i76GFmlFgRCMXzyXgDnTKLoWK+0vd3Rg5aP3Up2QIa8OmLdjM/pRrWx/4+rrzbwdmyUwzZASKxsblvxrOy0FZfLqgEkrF+Ho7iq3rYOLM/PuvJny60mMDAyhsLZmzi0bGGhul60RfadMYOz0SZRb3CUcXJyZsWUN9Wl5qHr7UVhZMXnVYnTqEXmFh7OXB5NWLaYyNhWjXo+DqzOTVi6mraRSGk1XKAiYNRUbixMESLPiQYvmUJeSI++/C5w7g/6mNtkm0CNwLO4BY+Tvu7O3J/4zJ0szClqdzGsYHVQy1N4FSKPtXuMD/u060h7Pzso6iR/g7IyLtztCIM9CuPp54zbWV569+Wsv5lBrp7Qv1M0VtzE+nDW3/u8M/X9T+o9ihJNhaUSmFHPh++cZUo3i6uTA7xcSeP27c7i5OJJ7/hN+PRvHHxeTMBpN/PLubtq6BzlwMRGlWsOWlbO5c+Nivj9+ncb2PuztbAjd/wo/noiW7eU+fe4uHB3s2HsgBPWojqnBYzj7zbO8/PVpMoqk8kQfeJ3Uglp+OBmNRqvn8bvWseu2lbz23TmKq1twc3Ek/8KnfH88ihNhaWh1Bg598hjOTg589OtV6lq6WbNwGie/e5Gvr5aRUNoJQnDtnY00KjVElncxMGrgjrn+bJ7uR1H7MD1qHfY2Vtwx25+BER1KrRGzEAS4OeBgo8BoMHA8s5mvYuuJfnEl0+xViFFplZDCfxrm7kbM7TUIjQrrKYtR2LugLUjA1GmZod/6KMMJYagLMzGPKBn73IdoWlvpDbsizdBvux2vrXfQ+Mef9KekobCxYXnoFRpOXqDp7FXUjS0s++Nb8PYm6/sDtKRkM37dcrYd/o6Yz/dTeOk6WqWKtwoiqU3NJeWP07QWlnPbxy8z/44tRH3+K2VRN3Dx8eKjshhivjlAzukQBlraeSn2FFqlmqRfjklbfHbezu17X+P65/ul2Mks+LBUAspmHr9MV2UdO3/7jDHTJhL/w2Gq4tMJnDeD58IOE/XlbxRcus5I/yBvpl+htbCM9CMXac4rYePLj7H0gR3EfX+I0kgpxvmwNJqkn4+Rey6cgZZ2nrzwKyaDkdSDZ6lPy2XW1nXc/d17xH57kOLQOEwGA29lXqUkLJ6c0yF01zRw+2evEzhnGil/nKYqIQOv4EBejj1F7LcHKLgSzUj/IC9GH6ejrJask1doL6li+UN3s/yhu7jx6wkqolOwdbTnjdRLpB+5IGv5A79/BkDm8cs05RQzcfkC7tn3AUm/HKMkPAFhMvP89WNUxaWSez5cgge+8jiB82eSeewSdam5OHt78nzEEW78dkqGpz16Yh+99c3knpOAsXNu28jy3XeSfuQi1YkZ2Dk5sufibxRekeDHo4PDbP/0FWxsbck5E0pHeQ1+Uydy97fvkH74AuUxKSAEDx/9lsbsIgky19vP8ofuYtz8WeScCZGspz3ceODAFxKYzgJ/veubdySAoAUyN3HFQpY9eAc5Z0JozC7C1sGe+376iKqEDAn+qtGy7tld2Lu4yLrs4uPF7XtfI/dsKHVpuSgUCnZ8/gadFbWyLs/auo7xi+fKMD57F2du/fBFKqKTZV3e8MLD6NSjMpTVb8oElu66g7zz4XRXN2Bta8uWN/bQnFdKVUI6wmxm/h1bcPH1/hsY5+bKhhcfpjgkjo7yGgDWPv0gAy0d8iqEoAWzmbhigRzn2TjYs2bPTupScmgrrgRg/h1bEEJI8DeDAUcPN5bvupN8C8BPYWXFsl130lleQ0uB9G2bsGw+HoFjJfibTo+tkyNLd26nPDpFnumft2Mzyq5e2ebYKziQCUvny2BdW0cH5m3fRENmgTzTP2XNUsxms2wT6OThxvSNqyiPTkY/KjERpq5fQWdlrWx36z9rKs5eHnKc5OThxqRVi6lNyZFWXjrYM37xXIY7e2RbXbcxPoyZMZm6lByEEDh5ujFu/ixa8stkPofvlAkYtDp5+7aLr5fFWrgQYTbj6OHOmGkT6K5uQDOswsbBHldfb+wcHeTY6q+YobWwXM7jEeDHcEc3o0PSVmJ7F2dcfL3otqxUdPXzwXWMN10VdZhNJlz9fJi4YgE/lN/4v5tyL4QAhYKDdz9DV2Ud/nOm4eTuxsigkqUP7GDCsvnEff8nU9ctZfF921n79IOkHb5AZ0UNc7atZ972TTRmF5L48zEmLJ3HsgfvYMfe10g/ehEnT3cW3XML827fRGlkIpWxqVLn6tx+bnnvebJOXmX84rlMWbOUBXdtpfCK9EKNsQD5alOyKbwSje+UCUxauZjF92+XCKqTg5m0YhEvx52mLOoGLfmluPh4cd+PH7F8910UXoshcM50AmZPY+KKhZSEJ4AQeI0P5JHj31OTlElFbCoe4/zZ+NJjzLp5HSVhcYxfPJfgJfN48vx+rC+kkNUMfl5u3PTVW8y/YwulEQn4TpmA9/hAghbOpux6Eo4ebvhMCOLBPz5n0X230pBRgLO3J5tefYJpG1ZQdj2JcfNnMnH5Qh4+9j0VMclohtU4e3lw51dvM+fWm6iMS8MzKIBx82cRtHA25dHJ+E4JZuyMKTzw22csuPNmOivqcHBxZuvbzzB13TIqYlPxmzqRgNnT8JkcTGVsKlY21ngGjuWub95h1rb11KXk4jbGl3XP7CJ4yVwq49IIWjibicsXcv/PH1MZl8ZwZw/OXh7c9uGLTFu/nMr4NDzHBzB59RLGzpxCVXwabmP9CJg1VTrvzWtpKSjDzc+bLa/vYeLyBVQlpOM/YzITVy7Ce8I4qhLSMer0+EwI4va9rzFtwwpqbmTjMc6f9c/uJmjBLCotoj9t/Qpc/XyYsXkNvXVNuI3x5dYPXmTy6iVUxafhHRzInFvWM3bGZKoS0nF0cyF4yTxu/+x1pm1YQWN2EV7B49jyxlNMWDqPqoQMxk6fxOxt6/GZOI6qxExGBgYJnDOdWz98icmrl1CdmIF3cCATls5j3PyZVCVm4DclmLnbN+EROJZpG1bQXlpFwOxpbH3nWSYsX0B1YgY+E4KYsGw+/rOmUJ2YKS2z2rwGV19vJq9ZSl1qjrxXbPyiOVQnZcqOBn5TgqlOzKC/pYPJa5bi6O7KxOULqUpIx29qMDM2rpTsyizE96UP7MArOJDqxAya80qZvG4ZPhODGL9krlT+CUHM2LgS/9lTqU7MxKDRsvCeW/AIHMOklYuovpHJhKXzmbB0PkELZlGVKAU2a556AL9pE6lJyqSrqp75d2zBa3wAE5bNpzI+Hf+ZU5i/YwuB82ZSnZgu71v3mSyVvyGzgDm3bWTcglmMXzxHukcTgpi3fSNjZ06mOikTVU8/Kx65R3oWEjOoTkhn2rplzNy0mnELZlGVkI7HOH/WPv0gftMmUp2YQXtJFSseuYeA2VOpScqiIi6VwLkzCZw7ncC5M6hKzMDa1oa1Tz2A39QJVCdmUJuSw+L7bmPKmqUELZpNZVwavlOCWXT3NvxnTaUqIZ3hzh7WPvUAY6ZPojopk6r4NGZsWYOdowOB82ZQlZCO13h/1j2zi7HTJ1GVkEF7aRWrn/gXwUvmUZ2YQWVcKsGL5xK0aA6Bc6dTFZ+Gla0ta/bsxHdKMFUJGTRmFbDo3luZvnGVJU8aAXOnM3/HFvxnTaUyPh29RsO6Zx4kcM40qhIzqE/PZ9G92xBmQXViJpXxaQQvncfy3XcxxvK8a5QqbnrpUSaukJ6V+rQ8lu7aga2Dg5QnLpVJqxaz+rH75HdE3T/Iplcfp62kiurEDOpSc1n5xP24eHnIZQteMo9Vj99P0PxZVManoeodYNt7z9FVWU91YgY1ydmse3Y3XkH+VCWkUxmXxrgFs1j12H005RTLbbv9k1fpa2iR86x/bjde4wOoTc6W22DlI/fSWlRBVXwaQx3d3PHlmwx39lryZLF6z068ggJoyMinMj4N/1nTWL77TjrKa6lKSGOorYtHjn/H2Yd3/j8tm/9XpX/fQz+kGmXTE19jMJpYOCOYGRP96egd4tWHt7F+6Ux+P5/A8rmTeOb+Cbzx6C38cDIaVycH9ty7gcfvWsf11GKuJeSzeOYEwn97jcqGDg5dvsGS2RPZsmoOj925lstxubR1DzBvWhCJR94htaCGC1HZTJ8QwMbls3nszrVcjMkh0M+DtYunk3L8PaLSSsguqSfQz5Nf3t3N43ev43JsLvOmBbFw5gTWL55O2I1CtDoD47yd+fHxpeTU9nGjrJNALydmBLqzINCDvJZBgjwc8XayY+0kbzqVWpRaA9ZWCnxc7HFxsGVEZ8TWxkqCR1pZodRJ8zherk4oXDxQOKkxa9VgbYN14HSsPMZg7m9H4eKFtYcfjuvuwdheh9COYO3ojOe2+3CcMR9NTSk2nj54BE3CccJklIW52Hr74jQ+iGnvvsngxg2oqmuwcXVm2nOP4bNyCd1J6bhNn4zH7Bm4TxhHY3wawmzCbYwvt3/5FjNuXkddchZu/n6sfuJfjF80h8rYFMYtmM34hXO4/5dPmBefRl9jK45urtz6gUX/49LwmRiE7+RgxkybSGVcmgVSO4G7v3mH2VvX0ZhdjNtYXza+/JikG3FpBMyeytR1y/EcN5bKeOm75REwhh17X2P6TSupSkjHM8if8YtmEzB3BlXxafhNm8iEZQu46+u3mbF5NV0VdbiN8WXrO88yceUiqhMy8JkYRNDC2fhZvrM2drYEzpnOjs+kuKI+PQ+v8QFseuVxxi+eS3VCOoGzpzLv9s2yzehwZw++k4Nl/a9KzMBr/DimrFlG4NzpkuYGjmHGptUWTs4KWgrK8Z06ga1vP8uEZVKM4zMpiKnrVjBmuvSdNekNEqvH3ZXJq5dQm5LNmKkTCJw7naBFc6hOzGDMjMks3Xk7PhODqE7MoLu2ifFL5rHt3efk2Ml7YhBzbr2JgLkzqEnKxNHDlQV3bcUjcCxT1iyhMauQ4KXz8J08nuAlc6lKzMB7wjjm3raJMdMlzR0ZGGLubRstHZuFVCdlEjBvBpNXL2HcgllS/DJpPKsevx/fKZJ9XHtpNXNu3WCJheZb6jieRffeSuCc6VQnZWBlbcOKh+/Ge8I4qpMyqUvNYfrGlQQtnM34RbOpTszAa3wgS3bejv/MyVQnZjLQ0s6SB26XOqeJGVRZdG3mljUEzptBdUI6nkEBrHv6QcZY9L85r5QlO28ncO50xi+ZR2VcKmNmTGbSikX4z55GdUI6JoOR1U/8C99J46lOyqQ6KZO52zcxdf1yghZKMaXXxCBWPny3ZEuXmEFffTOrHv8XY6ZPluL+uFQmr17Cwrt9pNgvPh03fylG9ps2keqkTJpziln5yD1MtFjBVsWnETB3BlPXLSNg9jSqEtIxaHWstuh/dVImNTeyWHDXzczetp7qJEmXfSaPZ/Xj/5Li6IR0+pvbWfPULktslUF1UqbMV6hOyqIyLhXfqRNY9+xuxkyfRFVCOj11Tax5+kHLFsAMqhIzmLV1Lb5TJshl8Rw3lrXP7JKv013dwIYXH6avvkWKvxIzmHfHZoLmz8J/1hQqLXXe8PzDjF80h6qEdDora9n06pMMd3ZTlZBOdWIGi3fezuRViyXr3fh0XHy92PTqEzTnlVKdmE57aTVb33lWdrmpSkhn8X23MWnVIgLmTKcyPg1nTw+2vv0srUUVVCem01ZcxW0fv4RBo5Pqk5DBwnu2MWnFQhoyC6hKSMfB1Zmb35L6o1WJGbQWVXD73lcxG03U3MiiylKficsX0JxbQlWCtCX5rq/f4Yfbb/yndc/qP32G/wfSX9ALrVKFg4szz4b8yZS1S2nKLqIiNoWhtk5+vfVRvl97H8WhcdRnFHDx1b28N34V55//kNKIRGrT8vjjjj0c/teLks1CTQORn/3CiUdfJ+GHwzTnFlOVmMGl1z4n6vNf5VG/pP3HifxsP9mnr0m+2QnpxH7zB+mHz1MZm8pQRzfpRy+S+uc5Cq9Go+rtpyoxg9Q/z1Jw6TptRRUMtHaQczbUYsGViF6joToxgzyLDclASzt9ja2SXUtoHPXpeeg1WqoSMigJT6A86gY69QhdVfWURiZSFnVDGkVSqqhKzKCmWNrn6uFkS1txpeQHHpOCuncAVW8/NTekl7atqELyfc8vlR62hHTMBiMDLe3UpeVSlZDOQEsH+lENTTlF1NzIojGrACEEPTUN1GfkU5WQjlalZmRgiKbcYmqTs+mubsBsMtFeVk1DZiE1ydkIIRjq6KYlv4yapEzUvf0YNFo6SqupT8+jrbgSIQR9Da0055ZQk5yFSW9gdHCY9pIq6lJzGWztxGQw0F3dQGN2kTwbOtzZQ2tRBbU3stCpRtCPjNJd3UBDZgHdNQ2YzWYGmttpKSynPj0fIQQjg8N0VtZRl5aHqm8Ak15PX2MrzXmltJdWSyTgrl7aS6upTc3BZDCiU4/SU9tEY1YhQ21dmI1Ghto6aS0sl0cpR/oH6aqsoz4tD4NGI9meNbXRkldKb33L3+ctq5HLr1Wq6KltoiGzgNHBYUwGI4Pt3bQWltNVUYcQgtGBIbqq6qnPkMqv12jpb2qjObcEZXc/wmxG2d1He2k1bcVVEsxPqaanton69HxMBgNGvYHBti5aCsoYbO2Q9i5bytuSXyaTzPub22nMLsKg0WI2mVB29dJWUkWfZX+bZlhFT20jzbklEoHUYJDaoaAMrVLaK6TuG6CzopbumgasrazQjYzS19BCU04x1jYS/XO4s4e24grU/YMoFDA6qKSruoHOshpsnRww6vQMtHbSWlCOlbU1CIGqp5/20mqU3X0orBRoVSP01DXTXlyJo7urdE/au2gtrMBsNqOwspLarrKOobYubBzs0I9q6G9qo62kGicPNwCp7UqqLNReBZphJT01jfQ1tuLk6S61XWsnHaXVOLg6o7CyQt07QGd5LQatDoUQ6NSj9NY301vXjIuPB2aTieHOHqk+jg5Y2VgzOjBEd1U9mmEVtg72GDRaBprb6atvwcVbghopu3rprKjF2sYarCztXdOIqqcfJw83+T721jXj6OGOwsoKVe8AXVX1WNlIPtNalZre+mYpj7cnZqOR4Y5ueutbsHNywMrGhpGBYXpqGjEZjNj8W1lUPX3YOTkgzGaGu3rps7ADFIBmWEVvbRP6kVEU1jaWe9Tx9150QNXTT199CwoUGLQ6dKoR+hpa0Y9qMJvMmI0mhju6UXb3Wc5jzUj/IH0NLdLzpVTL90g/qkGnGrE8L71SHq0Wk9HI6JDS4lIBqu4BDFodAy0dGDRa1H0DEu27px9lT79EIh7VoFWqLKRfK/pb2jHqDQy1d2PQaFF19SLMgpH+IVS9Axj1BjRDw+jUIwy1SbP4vQ0tclsaRrXycaNDStS9gxh1OpTd/ehHNQy3d4MQVCdl/feL4v+mfyQ/bze6+6VZ5wkBPsT++RYerk4UVjVzNSGPsppW1j78Bfe+up/E7ApyyhrY+ebvTLvtLb4+HEFOaQOnwtO57bl9PLP3OFfi86hv7eHN78/z7GfHOXothermLs5HZfH69+f48VQM0Wml1LX08O2x6+w7HsXluFy6+oa4EpfH98evczoig/yKJqoaOzl4KYkToWmEJhUwrNYQdqOQY9dSCEnMp7G9j7K6Nk5HZHAlLo+U/GrUWgM3yrqIKe4gubIXlcZA8+Ao+a1DlHYq6VTp0BnNdCm1dKp09IzoJfcQo5lRvZFRvRGTxQ3FbDIyOGLZv+loC7oRaQ+9RokCQKvGPNiFebALtGqEUY+ppxVTZyOmbknDDL0d6Jpq0NVVILSjmNQqRmurGKkoRdfegjCZGKmtY7i4hOH8AhACTWcPgwWl9KbnoOnqxaDR0ltSSWdWHr1F5Qgh6K9voTW3mPobmZi0OkYHhmgrqqA2NZe+hhZMRqOs//Xp0izfcGcPrYXl1NzIQjOkRDcySmdFLfUZ+fJe3P6mNprzy6hNycZsNDE6OExneS31abkou3oxGQz01rfQnFtMW2GFfN72kkrqUnMx6vRo1aP01DbSmFVIf2MbwmxmoLWDtqIK2bJrZGCY7qp66tJy0SrVGHV/xRUldFXV/1tcUUV9eh7CbNGNuiYasgpR9vRjMhoZtMQVf8VFI/2Dkv6n52M2GuW4oim3hMHWLln/O0qrpRVGQoIC9tZJcYV+VItJr5fjlb6Glr/PW1lHU3YxCisr6bvb2EpTdhGaYRVmk1nW/27L6i2tUkVPXRON2UVY21hL39C2TlryS1H3Dkrt0D9IZ0UtHeW1WFlbyd/zppxiEFjK20tbcSVKy6qq0SEl3TWNtBaWY+fogEGnZ7C1k5b8MsxGyZVB3TtAR1kNg62dKBRW6NRSXNFaUIaDixNmk0mKMwvK0Ws0Mvi4q6qe3voWbB0lQOFAczuthRXYOTuBsOh/aRUapRora2u0w0p6ahvpqqqXgX9DbV20FVdKdHKFAnXfIB3ltYwOKVFYW6Eb0dDX0EJ3VT1OXh5SHTt7aC+txsraGmsbG0YsZVF298mw5IGWDimPuxsKhQJVTx8dZdUIJEblXzHOUFuX5MRiKUtXVT2Ori4W/RyyzPiaUSis0I+M0t/YKoGtvSX48HBnD93VDdja22NjZyu1d3UD+lEtds6OUlma2xls7cTJ08NSln56ahqxc3TAbDKiVarprWtGpxqRYjS9gcG2TgbbJPaRwkqBum+AntomFEKB2WhEPzJKX2OrxJVRKOTYb7C1E6NBcl8YHRymr16aXdePaNBbYhHpHTJI7013H0NtXZgMJgkarFTR19iK2STQDA1h0OoYautCq1SjGVKhsNyj4Y5uzCYzupFRdOoR+pvaMRtNKLt7Mer1DHd0o1WqpX3vZukdHu7owWQyoe4bQD+qYaC5Q3ov/3rXunrRKlWMDioxaHVohlUMd/RgNguGO3swaHVSf0VvoL+xVeYEaYdVaIZVaIfVaFUjKLv6MJvM0vfjvyD9j5yht7LYbwx39WI2C5J/O8mkVYsx6g0Md3SzbPedbHj+YTKPXybkve+YsXEVc7dvYs6tNxH1xa9Y29oy46aVuI/1JWn/cXLPhuI7KZjJKxfj4OrMQEsHLj5eTF27FP3IKEPtXRK11FcaAR1o7aQ+PQ8HN1fGLZhFT20j1nZ2FlsVL7yC/C3WTkbsHCULNztHBynwt7bC3sVZ6gjpDZgMBulFsJZsRCSLLMnu6a8Hxd7VGZPBgE49IlliDask+urQMCP9g6h7BzAZDGiGVRKdftQAHuBqIxhq75IC4R6p0zfY1slgayfDnT24B4xBM6Skr0F68dW9AxgtHea+hhaGOywPZlsn3TWNDLR0YG1ri25klPayGnrrmhnu6MaoN9BZUUtXZR39zW0EzpvBUEc3bUUV9NQ2MtzZg1GnoymnmI7yGino1urorKyjtbCc3vpmvCeMY6R/kIasQjor66QgW6+nJbeE1qIK+hpb0arU9NQ105hdJH2IRkbRqkeoTcmhvaSSgdZODBqt1NnPLqSntgn3gDEMtLRTm5JNR2m15Kk9oqEqPo3m3BL6GlrQqUdpKSinLjWXropanH28UHb3UhGXRmthOUPt3ehHNdSn5dKQWUBPbRNapYr2smqqLaPFI30DjAwMURZ1g+bcEgZaOtCqR+XZ2M7KOhzcXOiubqAyNpXWgjKLNeCw5LiQWUBffTMa1Qi1KdlUJ6TTUVqNvaszfQ0tlEQk0JRTjLKzl9HBYWqSs6lNzZW9VOvT8yiPTqaloIyR/iEGWjooDo2jMbNAen6HVJSEx1OdmEFHWQ029nY05xZTGpFAc24J6r4BBtu6qIxNoTYlh/7GVjTDKkojEqmIlQZ/7JwcaSkok86bVYi6b4Dhjm4q49KkEfyaRgLnz6TsehJl12/QnCc5RLQVV1ISFk99ej6q7j5UPf3knQ+XRlcr6giYO53ymBRKwuOlQEKpprO8lrrUHGpuZDHY1om6b4Dc8+FUxaXRXlKFg7srlXHplIbHU5+eh25klO6aRmk5elImA83t+M+eSt75cCpiUmgpKEeYTNQkZVGTlEltSo7UuWtuJ6uxlZqkTHrrmvGbZkX+xUjKo27QnFuMUaenPqOAtqIKeTZhuKuXrBNXqErMoKu6AWcvdwqvxVCbnE1DZgFmo5G24kpUPf1UJ2ai6u1npG+AzGOXqE7MpL2sBoVCQWlkIi15pVLAqNfTU9vIQEs71YkS9MbG3o7M41eoTc6Wl89VJaTT39hGzY0s+d3MOnGF6sQM2dM091wYLXkltORLy+eac4upTdZSk5SJflSDuneQjGOXqE7MYKClHYW1NcWhsXRX1csDU12V9Qx39FCTlCUJoVJNxvHLNGQUyMv/yyMTGe7qpTFTEqPe2iayT0ogT61KjY2DPdmnrtFeXCkva6uMSUWnHqE+Ix+EYKC5nYxjF6m9kS1Z8tnYkHchnJ6aJhl2VHsjExRWlgDYzGBLB9mnrtGYVSjDZ/IvRzLU1iXDjurT82gvsQTNJhMDLZ3kngunraickf5BCWoUEicNGFq2DDTkFNFZVU9TdpFlsK6L/EvX6aqsQ9Xbj72rC2URiRg0OjlPc3YRnaXVtBaWSwNb7d0UXZMgpMruPhzcXOXl+f+b/v+X/t22ToLSZfLQ7WuwslIwbYI/T96znt23r2bfiSgOXb7BusUzePzOdZyPzubbY9eZGjyG3dtXMTHQl/1n4yiqamZSkB/PPbCJo9dsaWjrxc/LjVvXzkOnN9DQ2ou9nQ2Tg3xZOX8KDa09WFkpcHVxZNGsYGpbJPiSg70d48Z4MtbHHRsba6wUCpwcbPHzdMPO1gaNVo+drQ1uzo5YW1uh0elxdrLH2kqysNUZTIzqjFhcmCwddhNmITALgcEsMJjMGM3SDLxJCExmgUkIqSOFkAjaGj3OdtbYWQmEyQAmo2RdZzaDdgR0o6DTgNmM0Kgxqwcxjw6DyYQw6DH0dmEa7MOkHpacSjrb0XW2Y+jvxd4/EP3gICMNjWjbO9APDGI2GBgqrURV18hoeydmrZahhmZ6y6sZbmzD0dcL7bCK1vwSeqrr/44rKitpK6mk36L/UqdQ0n9VTz96jZa61BzaS6ulyQeNlraiCprzSumta8LRzYXhzh7q0/PpLK+RBuK0WmpuZNGSX0pfQys69SjtlomFzsp6bB3sGRkYotoywzbY2oFuZJS24goaMwsknZs3g67qBmqSMmkrqWKooweNUkVlbApNuSUMNLejGxmlPj2PurQ8OitqGTtzCn2NrbKeDnf2olWqpdVjGfn01jahU4/SlF1EVYI0i4iQOghl15NoyilmqK0TrVItTWCk5NBZUYvflGBa8kupiEmhtbBcGsTs7rVMZuXLHaPy6GTpvCVV+E4JpqO0irLrSTTnlaLq6We4u4+65GxqU3LoqWtGq1TLk0GtheUgoMuy9LwxswBlVy+q3gGackuoTsyks7Iez/EBVCVmUhqZREt+GaMDQ/TUNFISnkBtSg5D7d2MDAxRcPk6FbGpdJRW4T0xiNqUHErC4iT9H1LSa4nzapIy6W9qY3RwWMpjKYu1rQ316XkUh8ZRl5bL6JBSnoioTsygr74Fz3H+FF6JkmKR3BL0Ixqasouotui/um+A4c4esk9fozoxg66qejzG+VN0LZayyAQaMwsx6vS05JfSWV4r6XJ3H+refrJPXZPil3JpsL4sIpGaG1nUpeZi0OrorqqnObuI6sRMhtq7cPf3I+vkFSrj06WJNL2ByvhUaYLrRpal09hO5okrcvziOc6fnLNh1CZny6C8urQ8hlo7qUrMkAaau3rIOHpRil/qm7F3cabgShQteSUSuFAI2ooraCkoozoxA82wCvXAEOmHL1CdlElPTSNCCErDE+mpbZQ1tq++mSyLlo8ODmNlbU3O6RCacorlbXk1N7IZHRymLiVHntzKPH6Z6oQMRvoHsXd2IvdsGB3lNXSUSpOMDRkFNGQUUJuSg8lgQNXTR+bxS9Qm56Dq7cfWwYH8y9fpb2ilzbItrzm3mO6qempTcjDq9Zb2vyrFw5Y4qehaLMqefnnLQFtROSN9A9QkZ2PQ6lD39pN7JpR2Sx/A2taWssgktKoReYtde1k16v5BGjMLMWi0jPQPkn8pkp7aJgbbOlFYW1MRk4wwm2nOk/J0lteg7OqhtaAc/aiG0YEhCq9EM9jWKU02WFlRlZCBlbW1XLbO8hoGWzroLK+V4HijozLg7z+d/tO78P+b0/8nUMAXi26TYRVNeSXizbFLxNMEi6cJFiEffC8O3vus+OGmnWLv3JvF1be/Frnnw0TkZ7+IY4+8Jn6/c4/ob24TpdcTRfQ3f4iD9z4rGrILxUBbpygMiREh738nYr49IEwmk+ioqBVph8+LU0+/K3Sjo0I3qhFVSRki/JMfZdBYf0u7yDx5RUR/84cQ4m+QXsgH38nAuIHWDpF+9ILIt0BP9FqtqEpMF1Ff/iaDRnobWkTSbydES1G5EEII3cioKIlMlEF6EqChRsR+f1AGxo0ODYu8ixGiKilDCCEBQN45ckMEvx0h+tUSNGSos1uk/HlW9Da0yOUrj00RRWF/w3a6ahpE4v5jMjBOo1SJvIsRojm/VL52Y06RyDp9Tc4z1Nktkv84JcNrDDqdKItK+gdkprOyViQfOC3D1EaHhkXmqauio6pWLm9tWq7Iv/Q3DKa/pV0k7j8mdCMjUltpNKIwJEbUpuXIZWkpLJOhbUIIoertF8kHTouBFgnsYjQYLHWM+0cd43868jcwblgpMk9dFU25Jf8oS/rxvwE9/S3tInbfIbmOulGNyL98XZRFJcllacorEXE/HJLrONzdKxL3HxMdFTVyu5REJv4D0NNeXiMi9v4sNGoJijcyOCRSD58TFfFpUlmMRlGVmC7i9h2S8/TUN4vwT3+UAT0alVpkn74qss9ck8tfl54nQt7/Tq7jQGuHiP76d1GXkfeP8sf9cOgf5b/46l6h6pUAScNdPSL+xyMi72KEXP6isDhx5e2v5Dq2l1WLi6/uFW2lVVL79w2IpN9PivgfD8vtXxaTLE7teVuG4nVV14srb38lw41Gh4ZF2uHz4vJbX8p1rkxMF0cfekX0NkrPam9Diwj7aJ8M/tGo1CLr1BVx7JHXZCheXXqeOPbwa/L3oL+lXUR+vl9cfedruc4558PEb3c8KZS9/fKzfPLJt0TakQtCCAlSGP3NH+LIbglqptdqRf6VKPHLtkdEU36J/MydeeY9EfK+BK9T9vSJuB8OiZ9u3i20o6MWoEq82H/bYyLvQrjcTudf/Fgc2f2yEEKC7yXuPy6+XnGn6K5rlNopKkn8vuNJEfm5BNXsrKoTF1/bK/bdtFMYDQYxMjgkbvxxSnyxeLsoi0kWJqNRBtwdf+wNIYQExbvy1ldi77ytQtnbJ0aHlSL10Dnx1bIdIv6nI8JkMonqpAxx8P7nxA8bHxBms1n0NrSIa+9+Iz6YvE405RYLrXpEZJy4JL5eeZc4+9wHMqzu8AMviU9mbxY6jUb0N7eJkA/3ifcmrhG558OFbmRUZJ2+Kr5bc6/4bceTwmw2i/rMfHFk9yvivQmrxcjgkBho6xQRn/4kPpiyTiT/cVq6H2dDxffr7xe/bHtYmEwm0ZhTJI498pp4d/wqMdzVI4Y6ukXkZ7+ID6dtEPE/HhZ6rVbkXowQ+27aKX7c/KAw6PWiKb9EnHz8TfHu+FWiv7ldDHf3iqivfhcfzdgoor/+XRh0OpF/JUr8uOlB8cNNO4VOoxEthWXi5JNvi3fGrxTddY1C1dsvYr49ID6ZtVmEf/qT0Gu1ojAkRvx0827x/br7hW5kVLSVVonTT78r3glaKdrLa4Sqb0DEfH9QfDpniwj9cJ/QjYyIorBY8fPWh8S3q+8RGpVatJVVizPPvifeGb9StBSV/y8U778x/UdtazAYhd3Cx4VqRCOEEOJSbI5wWbZH2C54TLgs2yO+OhQu7n7lF7Hx8a/E7DvfFSdCUsSJ0FTx0a9XxINv/S5e+uqUqG3uElfj88TeAyHivtd/FX2DSlHT1CXOXs8Ur35zRlyOzRF6vUHkljWI/Wdixfu/XBJms1n0D6lERHKheOP7c6KupVsCzNa1id/Px4tT4elCCCGU6lERmVIkPvrtijAYjPIxP5+OEVklEvR0WDUqQhMLxKHLN4QQFgBu25A4FF8rBi3artIaRHbzgCjr/BuS26fWidpe1d9tYTSJoVGt0Bn+BtM9+GeGWPnl35A5s14jjEP/BsUz6IWxu1kYh3rkPMaeNqGr/RtmZ1QOCWVWojAqB4UQQpgMeqEsyhPDhbnyMSNNzaL10hUZiqdXqkTL1QgxZNFGs8kkOrIKRPWV63Ke4fYukf7HSTnG0Wu1ojg8Xv6+S3CrKpF66JycRz0wJNKOnBe99c1SWSz6+e+A3t6GFpHw81Gh/wsYpx4ROefDRENWoXzehuzCfwB6hzq6RcLPR8Vwd+8/yvIXgPWvssT/eFhuO3X/oEj586xoK5G00WgwiIq4VJHxb/rfXdsorn/5m1xHjVIlMk9eERWxElDwr1gk9t/0X9LyP0RPfZMQ4m8t/ysm+0vLQz/8XgbGDXf1iPifjvwDXlccHi9i9/0pn7e9rFpcefsrMdTZ83f5D5yRwb9/lf/qO1/LdeyqaRDX3vtWNOdLsdPosFKkH7so4iz6//9i7y+D4zr6d134mhGzJUuWmZnZMcVhdDh5wszMHCexHduJ48QxM5OMskUWMzMzM2s0o2Ho98NSluP97r3rnPM8e586tf9d5VSNsnpNr+6edf+arvtvOOrZ936Qn7G7vkkEr98ut4lRqxMZZ6+KS19ulstfk5YjTr7xtQzF7W1uE9e37JGBgia9XuRcChXHX/lcmI1GGcJ2+t3vRclg3fV3dImoPw+Jy19vufHMQVHiwFPvir5WCeDYXFgmAj76SYbXabp7Reyu4+LoC5/IUNzi8Hix97G3ZChuW3m1uPjFLyJwEF6r7VOJxAOnxc77XhK6frWky9HJYv8T74j0U1fkdr7y7W/iyPMfy+2ccvSC2Hbrv0RraZWkywnp4vCzH8pAwe76JnFt3Tbxx+3PCLPJJAwDWpF+6rLYuuoJURAUJcODj774iTj20mdy3whe/5f4ZcEDoq+lXQK1DmpsxO/75b59/NUvxJ+3PyNsNptQtXaIsM17xM8z7xRVSZnCpNeL7Ash4s87nhWn/obi5RSKk298LX6edZfQawZEf0eXiPj9gPhpxp0i6dA5CVYXGC7+uucF8dc9L0iwuoJScfqd78S3Y1eIzpp6oenqEVF/HBLrZ90tAr/bKkHkgqPEzvtfFluWPCz9hoorxNn314mvRy8TjfklYqCnT8TsOCo2zL1PXPhso7CYzaIwNEbsXvuq+GXhg8JsNIrW0koR8NFP4uvRy0RNeq7Q9qlE3J4T4pcFD4iz7/8grBbLINjwDbFx/v3CqNOJtooaceHTDeKbMbeIivg0oVP1i/i9p8SmRQ+KU299I42NohLFvsfeEhvm3CsMA1rRWdMgLn3xi/h27HJRHB4v9GqNSDhwRmxe8rA48eoXwqjXS/Dgx98W62fdLbSqftFZ2yAuf7VFfDtuhci/Gil0ao1IPizFY8de+lToB7SiIj5dHHjqXfHT9DvEQG/ffyRG+P/kCj3cOEdvNhgYNnkc32RcZfcDrzLQ3cvifz2I1Wzh4qcbaCmqYP7j9zFy9jSKQmLJOheE53A/BNJs19+WFkuefZimvBKSDpylKa+EhU89SH1GHtF/HqHgWhT2To7c/dkbpJ+8QurRC/S3dfL0zp+xWa2E/bKb2tQcxiyYxfJXniR43R9knrmG2WBk7kN3URGbSuiGnXTVNHD7h68wau4Mrny5maKQWFy8PFjzwYsk7j1N5NYDaHtVvHF+NyatnkufbaQuI59Z961h7kN3EvzjdpIOnkWhUDDvkXsojUziypebJSjeL18wdNxoLn62kSSDL8xbiZudIHLbQcI27sKg1vBp3DnU7Z0EfPgzjTlFLHvxcSavWkrQD9tIOnAWRzdXFj/zMGWRSVz+cjP9rR08f2AzTu6uMuhvwrL5LHziPiJ/P0j4lr1YTWYmrlhEc34pAR/+RHtZNXd99gYjZ0/lyle/knHqCu6+Pix/5UnSjl3k2vfb0PaqePvKfsw6AwHv/0htWi5z1t7JjHtWE/LzX8TtPI6dowOzH7yDxuwiLn32C33NbTy65Ss8/f248PF6isPiGDZlAkuff0Qqy+Y9mA1GPk+8QHtFLQEf/EhHRS3LX3mS8YvncvnLzWSeuYqzpwdLnnuEnPMhBP2wDX2/hhcO/YrNZuXce+tozCli4vKFzHvoLq79sI2k/WdQ2Nkx/c4VFIfGcvnLLWg6u7n7i7fwHjOSc++voyohA3dfH1a8/jQRm/cQ/ecRrGYzbwceoL28houfbKS3sYW5D9/FpFVLuPDxeopCYnB0dWHx02uJvRjG9U27MesNPPbbNwibjfMf/kRHRS3+Uyey6Om1XP5CAsAoFAqmrFpKfmA4wT9ux6AZYMWrT+EzbjQB76+juaAMZ08PVrz6JOFb9pF69AJCCF44uIXW4kqufrsVbU8fE1csYuqaWzj3/jrq0vOwc3BgwWP3knNxFwl7T2GzWrnri7ewGE1c/nIz6vYu3HyGsOyFx7jw0c9UxKUBMH7JXDJOXSFm+1GsZjNz1t6J95iRXPrsF3obW3BwdmLp848S8dt+yRoRcHJzoSG7kMjf9mM2GBk2ZQJTb13GhY/XS7Y1SiWzH7idS5/9Qn5gBADLXnwcg3qA67/sxqjV4ejqwoLH7yPwm9/kGeMRs6aQuO802edDBss2j+jthwn5WYJjKu3tKQyKIm7ncXnFW2lnR1ViBhmnAhE2G86e7iTsO03wuj9km7cpty7l7Ds/yIC1GXev5vRb35J69AI2qxWlvT3xu04Qve2QbFvjO340MTuOyfCXoePHcO6DH0k6cFayk1MoSD4UQMbJKzLIzSZs/HHb01QlZABg5+DAxU83knzwnGy/lnsxlNOvfy1DZkbOmcZfdz1PeUyK9GJUKLjy5RayA4Jl2xp3v6HEbD8iQ2ac3N3Y/cArlIQnyO/T61v2UjoIpgGwmkz8NPV22aoPhYK9D71OeXSKnCfp4FlOvf6VbA3jOdyPn6ffKQNjAPasfZ3awWMiAEkHznDlqy0YNAPSbZVKNsy6W7a2A9j1wCs0592wuon+8zAhP/8l28cplErWz7xbXvUH2HHPC3RW1UsrjEDI+h1E/LpPtgQEWD/jLtmuEODPNc+gbu/CZpW2c4au30HsX0fQ9d3I8+PU226aPd+6/DFMOoNsCdhWUkXczmNy2QC+n7AKbXef/PnXJY/AWP4r/W9M9vZ2+Hl70N7dzzAfwQOr5hJ54Cse/3Qnvt4efPDcXSRkl/PVn+epb+nG1cUZX293zoamEZtZxoO3zkdnMBGRUsTZsDTslErqW7uJTC3m6JVEGtp6GOE3hOCEfPZfiCU+q5yp44fz1pO3s/lQMBcjM9HqjaxdM5/YjFJ2nImksr6d1x67lYUzxvH9zstEpBbh7uLE+0/fxeErCew5F01Xn4bD61/HbLbyzV8XyCyq5dZF03jq/uXsvF7B1cxGrDZYM3MY1b1arhS20a018cAMf8b7uFLYpqZVbcDZXsmkoW70682o9EZsAoZ72mFvtWAxGujTGhniYo+wWhCqdoSmR9rf6+qFtbsNS00uGHXYTV6ETWGHITMMS1MlSm9/HMbPRp0cgTouBGE24ThyHPqmJlqO7cPQUMfQe9biPH4ytbv20h4Ugr2HO8MfuI/Gq+GUbNqOqaeXxXt/wywE8V9spCU5kzG3LWf8vWuI2bybpB1HAZhyx0qqEjK48PF6uuuaePCnj/GdMIaLn24k70o43mNGsvzlJ4jZcYzQ9TswDmj5KPIUqtYOzr2/jpbCchY/8xCTVy0h8NutpBwOwMndjYVPPUDJ9QQCv/6Vge5ent61HgcXJwLe/5Hq5CzGLJjFwifuJ3TDTmL+Ooqw2Zi4fCHVSVkyJPm2D15m+LRJnP/oZ4rD4nD19mL5K08Sv/ukpOUGI28E7KK/rYPzH/5MR2UtM+5ezYy7VnHp81/IDgiWfNIfvYfUYxclLVdreGj9pzi6uRLw/jqa8kvxGTuK5S89ztXvfiflcABCCMYsmEllXDqB3/zGQHcvS557hFGzp3Lu/R+pScnGyd2NZS89QcKek8TvOoHNauXp3RtQtbRz6fNN9Ld2MHbhbOY8eAfnP/yZsqgklPb2zHnwDuJ3nyDq94NYTCZu//AVHF1d5Pp38fJgxatPcfnLzRQGRQMwYsYkSsITub5pNyadnhl3r2bU7Gmc//An2strsHdyZPEzD5Gw56Ssyw+s+5DuuiZZl33GjmLuQ3cS8MGPtBSWo1AomH7XSq5v2k3GySsIIVj0r7Uo7e249v02dH39OLg4s+TZh7n2wx+yLg8dN4r8K+EkHTyHsNkYPW8Gw6dNJPAbCVqttLdn7kN3SZDCQcu2lW88Q1tpFfF7TmGzWGTbtytf/yrD3ybespCr326lIjYVgKlrbuHK11uI/esYFpMJpb096ScvE/X7IdlC13O4L5lnrsoa6zXCn6B1fxC17aC0U1ehIOd8MBmnr/7DDvd29j78BoXBUt3aOTgQ/OOfxO86IWts0ew4Ln+5Wd69NnzGZA48+S55l69LLz6Fguub95Bx8oqssS5eHqQfvyyD9eydHDny3EfknA+RNTZh32mKQ2NlHdP19bNpwQNynIRCwbEXPpEAioMam3vpOoFf/yrHSW5Dvdmy5GF5xRvg7DvfSxa6gxpr5+hA8sFzDHRLVnAKpZItSx6SdxMCnH33Bxqzi2Q7XG1vH5mnr8r2fgBbFj8k7WAZTKff+JrOyno5TmotriD/SoQcWwFsWrCWjoobccaxFz9F09mDxSjlacotoTAo+qbjg+tn3S3HTQAHn3oPm9kix1YN2YUUhsTI1nYAP02T7Af/Tvsffxt7J0fZ2q4+s4DCkNib7G933vsy/5H0b08J/C9O/6NZixOvfSlidhwVVotFXPxso/jEa7b4edZdYvPih0Ty0fOiPC5V5FwOE2fe/V5eyR3oVYm8wHBx4dMNwjK4Eq1q7xSB322VVxptNpsovh53kz2bqr1ThGzYIdvWWS0WkXMxVJTHpsjXdFTV3WQvZ9TqRNLhc7JNhs1mE3UZebLVnRDSqnLSwbM32Z0Uh8fJK/RCCNFRXS+yL4bIn6VV2UChHZz1tNlsoi6rQFQkpMvXvHYoRcz8Llj+bDYaRVFYnOiorpPztJVXi6LBVWYhpNnGjDOBNyzdLBZRlZQp6rNuWK/1NLaInMvXb3rGvMAIoWrrkO/bmFcsrzILIc0Qp58OvGHpZjCI0qikm+q7rbxa5F29Ydc20CuV5e+ZXYvZLKqSs+RZZiEkq7h/7hbQqzUi98p10VEtzV5brVZRn1140wp9X0u7NKs4+IxGrU4UhcXK1ms2m000F5bdZC3Y39Elko8EyM9oMhhEWXSyKPiHDUxbWZWI231CfkZNd69IPx0oGvOKpfKbTKIqKVNeof/bHjFy20HZtk7bpxI5l0JFcXi8/Mw1aTnyivffzxyz46g8e63rV4v8a5Fyea0Wi6jPLhTBP2+XV+h7GltEwr5TsjWfXjMgikJj5Rl6q9UqGvOKxdXvf5dt6/pa2kXykQDZmseo1YmSyERx5ZvfZEuX5sIyEbz+L9maT9XWIVJPXBJRg/c16vSiLCZFnH3vB2HQ6qTdJcUVImzTbpEzuBqj7uwWGWevisuDK/QmvbT75cw734mOqjq5biO27pft5TRdPSLz3DVx/JXPhcVsFiaDQVQmZohzH/woiiMShM1mE+0VNSLqj4PyfQd6+kTOpVBx4Kl3hbqrR5iNRlGVnCUufLpBJOw/c8OucsdRcfRFaYZ+oFclci5fF/ufeEfUZeYLi8kkalKzxaUvN4nAb6V66KxpEHG7T4idD7wsDDqd0PapRN7VCHHw6fdF+ukrwmI2i9r0XHHl6y3i6IufSm1Y2yji954Sf9z+jOisqRc6Vb/IvxYpDj/3kQjZsEPKk5EnAr/bKrbf/bywWiyiq65RJB44I/647WlRfD1O6PrVoiA4Whx98RNx4tUvhMVsFnWZ+eLaD9vE5sVrxUBPr+iubxJJh8+JP+94VkRvPyz0ao0oDI0Vx17+XGy/63lhMZtFfVaBCP55u9gw515Rn10oehqaRfKR82L7Xc+Js+/9IPRqjSgKixUnXvtCbJh7rzBotVL/Wv+X2DDnHpF64pLoaWwRKccuiL/ueUHsfOAVodcMiOLrceLkG1+JHybdKnoaW0RDTpEI3bhTbJh7rwjbvFv0NrWK1OMXxY77XhLb1jwt5QmPF6ff+lb8MOlW0VZZKxpyi0TYpl1i4/z7RfDP2wfzXBI7739ZbF31hDAMaKU8b38rvp+4WrSUVIrGvGJxfcse8cuCB6TdUc1tIu3EJbHrgVfEb8sfE4YBrSiJSBBn3v1efD9xtWjILRINuUXi+mYpz+UvN0l5Tl4Wux58VWxZ+ojQawZu5JmwStRm5Enf8+tesWnhg+LCZxtFX0u7SDt5Wex56DWxafFaOc+5D9aJ7yeuEjVpOf+1Qv+/MP2P6nbhU+tESl6l6NfoxMMfbBcjb/9IzH/yB3HH67+Ka7E5Iia9RJwLSxMvfLNPpORVSu+bLpU4eDFO/HbkhuaW17aKL/8IEH39gxajZos4GpgowpJuWK+W1rSIP09clzVAqzOI3WejRF3zjRXu9IJqcTEyU87T1asWe85FybZ1ZrNFhCXmi6yiGvmamqYOcTbshq2q1mAW17KaRO/gCr3NZhN1PQOi9B82dXqzRTT0auXPNptNaI0meYVeCCGWb4kWzx1MvXGN1SKsmt6bbetUXcKq6pKvsQ70C1Nt0Y3PJqPQluQJU1+3nEfXUCfU+Tdsd019KtEWdl1eobeaTKIzJUP0/cNerq+mQVT9Y7egvl8t8i8EC+2gpZvVYhG1GXk32cv2NrWK9DM3rOOMWp0oCI4WbeXVclmaCkpF/rUb9+1v7xTJR87LtnV/a3lVcpacp628+mar254+kX76iuhplHZaWkwmyULvH3FFZ02DiN97Sq47napf5FwMFfXZBTeVP+3UzZbFsTuPybZ1es2AKAiKkq15rVaraMgtknVPCEmXEw+cke2HjVqdKAlPuGkHZ3NRuQjbtOumFfrU45dEWbS0a9I0uJr4984/m80mWkurROgvu+TdjerObpFxJlCuB5PBICoS0sXV77cKq9Uq11P41n2iOiVLrqfsC8FyXGExmUR1Sra48OkGoVX1yxobvf2wvPNP26cSuVeuyzptMZlETVqOuPDZRtFSXCGEGNy1uuu4iPrzsFy3+dcixcnXvxJmo1HWvstf3dj511XXKOL3nRKXvtwk1a1aIwqCo8WRFz4Wvc1tcpwU+N1WEbfnpNweiQfPiqMvfSpsNpsUJ4XFiaMvfioqEzOE1WIRDblFIujHP+WV/96mVpF8JEDsfuh1oVdrZE068doXIuX4RTm2CtmwQxx98RO5DVOPXxQ77n1JtJRUyLHVyTe+FkE//iGsVqtoKigVYZt2ib/ufl6YTSahau0QaScvi533vyxyr1wXRq1OlEUni9PvfCeOvfyZHI9d37JH/HrLo0LV1iFUbR0i40yg2PXgKyLit303xWPb73xOylNULiK27hebFq8VVYmZor+9U2ScvSb2PPS6OPXWN4N9JUUEfPST2Dj/fqHTDIiW4grZdjfhwBnR39ElMs8Fib2PvCl23PuiHMMFfPyzWDflNtFaViVaS6tE1J+HxZZlj4iLn20U/R1dIisgSOx7/G3xy4IHhEGnExXxaeLCpxvED5NvFaVRSaKtrEpE/3VE/HrLo+LUm18LdWe3yL4QIvY/8Y5YP+ceodNoRGVCurj4+Ubxw+Q1ojA09kae5Y+J4698LjRdPSL7Qog48NS7Yv2su6U8iRni4he/iB8mrxG5geGirbxaxOw4KraueFwcef5joenqETmXwsTBp98XP824Uwz0qURlQrq49OVmsW7KGpF1Pli0lVeL2J3HxNaVT4hDz3wgfc/FUHHo6Q/Ej9NuFwO9vaIyMUNc/mqzWDflNpFxJlC0V9SI2F3HxdZVT4r9T74rNN29IudSmDj07Idi3dTbhE6t+T98hd7fF3V7F0o7O5784weGTZ1AwPs/YrNa8RkzksKgaOJ3n8RqNnP3l2/dtFLtPXoEK19/mvMf/iSvNE65dSkl1+OJ+euodA7/+UcZv3QeV7/7nerETFAoWPnav4g6cpCsgGDay6p5bv8mlPb2RG49QHVSJsOnT2Lx02uJ3HqAwuAY2kqr+D4/jPrMfNKOXaIyPp1Vbz3LmAWziPrjEKXhCWh7+1n6wqNknQsm91IYlfHpvH52BwqFgqQDZykOi2PUnOnMvl+yJSsMjqYhq5Cfb4ulMauQjNOBFIfFc9fnb+A/ZQJJB89S2uqG0kEChORcCCH3cjilEYl8FHESs95I2vFLFFyLYuqaZUxetYT0k1couBpJU14Jc9beSXViJtnnQyi4FsVjv32N5/BhpJ+8Qn5gBI5uLsx76E5yL18nb/C+32YHoW7vIvPMNfKuhLP46bWMXTibrHNB5F2+Tld1A4ufXkt5dDI5F8MouBrJq6e34+jqQtbZa+ReCmPYlAnMvOdW8i5fJ/dSGFWJmUy/cyVtJZVkBQSTdzmcu798i2FTxpMdEEzOxTBMWh2Ln15LUUgMORfDKAqO4dPYs7QUV5B1Lojci2HMuHsVU1YvIffSdXIuhNJSVM7Cfz1IVUIGORdCybsSzjO7fsZj2FCyA4LJPh+MxzBfFjx+HwXXosg+H0xFTCpT1txCbVoOWQHB5F4MY/XbzzF2wWyyzweTc16yPFvx+r8ouR5PzvkQCoNjeC/oMM0FpWQFSNdMWL6Q2Q/eQe6lMLIDgmnOL2XJcw9Tk5xF9vkQ8gMjeHTLV7RX1EhlCQjGaZDUnh8YQXZAMBWxaUxZvYTKhHSyA4LJvXSdpS88yuTVS8g5H0J2QDDqjm5ue/8lymNSyBq0dXnt7A7qMvLIOhdEzoVQxi6czZJnHibnYijZ54JoLixn6YuPUpuWS3ZAMIXBMdz/wwc05ZeQdS6I7PMh2Ds6ctdnr8vlr07KYvLqJRRfjyPrXDAFVyNZ+OT9tJZWkR0QTNa5IHR9/dzxyWtUJ2aSFRBMRWwqzx3YLJVtsH+MmDWVzup66XsCgumorOOWV56kNi2XrHNBlEUlc9dnr1OVmCHXv4OLM53V9RReiyLrXJBsxZd9Xqq3kusJzHrgNmrTc+VnNusNMiQo61wwDVkFPPbr1+RdCR8EVMbgO3EsjTlFcpupWjtY/soTJO4/Q9a5IGrTcln5xtMUBkdL9RQUjaO7Kw2ZBZSEJ5AdEExPfTNTVi8l+dC5/2E92axWWooqaMyWvqurup67Pn+TtOOXpHaOS8N7zAhKIhLJu3xdtu9b+vyjxGw/IoE8y2uY9+g9ZJwOJPtcEOUxqTh7eVAcnkBVfAZ5l6+j7VUxeeViYnceJzsgmNbiCkbNmSb3r5KIRBRKBXUZebQWV5J7MYyB7l68RvoTv+ek1E8LyvAaMYzMM9coComR7W966puI+r1ItvybvGoJifvPkB0QTGNOEc6e7mSfD6E2NUe2v5mwdD5R2w7KdkpDJ4whaf8Zci6GUp9ZgIOLM+nHL9JZWS/b33iPHYlBPUDOhVD6mtvwHjeKyK37KYtKpjYtF3snR+L3nETb3StBRnV67J2dsJrMZJ8Pkc4jjhlJ0LptNGQVUZ2chZ2DA1G/HwSFgsJrURi1OoRNYDFbKLwWRXddE95jRnDhk/V0VdVTnZSFws6OkJ//wn2ot2zBaLPZMGq0VMSm0lXTwJDRwzn5+ldou3qpjE9HoVQS8dv+/5fV8v/MNNxXOke/Yv4ULm//kC+2BbD3fAxuLk6MH+XH5kPBXImWVuruWT6HC+GZHLwcj8ViZe2a+cSkl/Dp1rOU17Xh7OTAq4+u5ue9VzkbloZKo+P3z5/BZrOx5XAIuWUNTJ8wgufXrmDDvqtcTy6kqb2XZXMmklpQzdEriWQU1fDqo6tZNHM8W4+GEp1WgkZn4IUHV3AmLI3LUdmkFVRzZMPr2NnZse9CHNHpJUybMIJH7lhMQFoDCWWdlLb0EzjxVto0RjIaeylp13D7ZF8m+LhR16ejc8CI2SoYM8QFrdGC1mRBb7Lg7+mCzWrFZjah0poYMsoDYbMiBnoQ2n4w6VC6zMLW14m1ox5bTwv24+dgs3fEXJ2HuVHiRtiPnYGuOBt9SQ76yiL83/4Ofb8aVXIs6qxUPBYuw2XSVDrDI+hOSERXV4ffHbfTmZxBa1AE7RFxzP11HUoPdyovBFMTFInriGGMv+dWiq+EUxwYTm18Gh/lhNFV0yhp+eXr3PrO84wc5KLkXgpD09nDkqfXUhwWR87FMAqDong/5CjtQNbZa+RcDGPiLQuYetst5F2+Ts7FMBqzi5j/2D3UpeeRfT6EvMvhPLrlK3zGjpTiiguhODg7sfCJ+ykMjpF5Kt9kBdGQUyTHFUuefYjxy+aTezGM7PMh9NQ1sfyVJ6iITZNjp9fO/EVbWbWkP+dDGDFrCnPX3knelQhyzgdTm5bHvMfupTm/VHqmy+Hc/937DJ8+iewASXNtFisrX3+awqAosgZ5MJ8lnKc2LYfs8yHkXAhl3iN3M/3OleRcCBm0Umti5etPU5OaI2v5Cwe30JRfIulyQDB+k8ax7MXHyLt8naxzQbKtbsv1OLIDgskPjOTOT1+jraxaKktACGajkTs/fUMqyzmJgfN+6DHKY1PJDggm7/J1ZtyzWrKxG9SXvqZW1rz3IkUhsTLP5sk/f6A6OUvWcu/Rw+ltbCF7MH5pyi9l4RP3k3MxlKxzQRSHxbHqrWepy8wfjNFCQAi665spuR5PdkAwdel5jJ43nfxrkWSfC6IwOIbJq5fQmFc8qHUhDHT3ctsHL8vlr07KZO36TykKiyP7XBD5VyPx9PeltaSSnPMhsi4vfPJ+Uo9dJOtcEJXx6Sx97mFKo5LIPhdE3pVw7Bwk+HR5TIqsy6PmziTj1BWyzgVRHp0iOfzEpcoxmwRCbKDgqhS/tBZXcNuHr0gx0LkgSiIS8RzuR2VcGgVB0ZJ9X2c38x+9h7jdJ6R6yith9gO3k3spjKxzQZSExePg4kRVUha1Kdmyxo6eN5PEfafJCpBiHv+pE+R4sigkBovJTGtpJfnXIsk5H0JfcxtLnn2YpINS/FKblouHvy95F0MpjUikMDgGk07P7AfvIPqPQ2QHSJZ/45ctIOXIBSnmSc7C0c2V0vBEGrILZcu/kbOmEvvXUamf1jUxZPRwUg4FkD/IIBJCUJWUSW99s2TFqxnA2cuDuF3SM3dW1eEx3I/Yv45RFZ9ORVwawmajOCwOs05P3pVw9P0aTFqdXE8dFbV4+vsStmEnzfllsk1gzoVQnNxcZZtArUpN5LaDFA2O3Tz8fLj6zW/0NrRQFp2CzWIh+XAAfhPGyBaS/jMmEfzTdqoSM2ktrsDd14ez767DqNFSGpmEzWIhdudxRs+bQUFgJJquHobPmMylz36huaCU5oIy3H19CPlp+39E8/5fGdC/8cYbHDlyBLPZjL39/7MieA73ozm/FIvJRMxfR7GaLdz56eu0V9TgO2EMT/25jlvffYErX21h5r1rmHHnSla98TTxe05JwKyZU/g46jSFwdHE7znF8OmTmHXvGmbdfxvJB8/hM24UY+bP4rUzO8gOCKI0IhF3Px/u//4DJixfSMapQHwnjGHK6qV4jRgmD15ch3hx37fvMXL2NHIvheHh68PIWVPxGu6H76SxDJ8+Ce/RI7j78zfxmziW+qxC7J2cWPLsw3j4+eDp74vXiGGMmjOd1W8/h6e/LygUOLm5suzFx3D18cJzuB9Obi5MuXUpKBS4eHngO2GMbBmmOFGIl8mI0s6O2Q/cjtLeHic3F1y9vfCfOoGFT9yHg7MT7n4+OLu7MefB21EqFXj6+2Lv6MD4ZfMx6fQo7e0YMtIfr5H+zLpvDQD6fjV2Dg5MXXMLFqMJOwd7HF1d8Bk7khn3rEYIgd+kcbgO8WTqmmVYDBJASqFUMm7xXGkLrBC4envhPXo4k1cvwWwwYu/ogIOzE+OXzZc8H50csXN0ZPiMyUxdcwtWkxmvEcNw9/VhwrL5GNQDEtzC3p7R82ai6erFZrHg6OYq25+ZtDq8x4zE2cOdMfNnMtDdi4uXBw6ODgyfPolJKxdh1htw9fbC09+XsYtmD1LmzTi4ODNi5mSm3LoMYRM4ODkydPwYxi+dj1GjxdPfF1dvL0bPncFAdx+dlXXYOTjgP3UiE1cswqQ34ODijOeIYYxZMAtdrwq3od44ubsyfPokpty6FDsHB+ydnBg6YQzjlszDoNHi7OmBu68Po+ZMR9PVi65XJXlmThrHxBWLMBuMKB0dGTJquHTfvn7ch3rj4uWJ//RJTL51KS2F5dg7OUiWbkvmYdRosXN0wN1vqHxfB2cnnNxc8Js4lokrFmGzCRycnG7cV6XG0dUFlyGeg+VdRl9TK/ZOjviMGy3Vg1aP0s4OD7+hjJozjYHuXpzc3XD2cGPY5HFMXrWYxpxiHF2cGTJ6OOMWzUbfr8HOTomrjxcjZk5B3dGNzWrFwcUZ34ljmXDLAiwmM3b29ngO92P0vBnoelUo7e1xGeKJ/9QJTFyxkO7aJhycnQZt6+ZjHNChVCpx8xvKyNnT0HRJnqxO7m74TRrHhFsWSFR+Z2e8Rgxj7IKZ6FVqUCpx8/Fi+IzJMp3UwdWFoeNHM37pPCoTMrB3cJDLou1VoVAqcfHyYNiU8YxZOJuu2gYcXF3wHjOSsYvmYNBoUdgpcPcdLEtnD0oHe5zcXPGbNJYxC2fRmFOMvaMjXiOl/qFXqVEoFLj5DMF/+iQJJGk24+jqzNBxoxg9fya1abmgUOA53I9Rc6ej7VGhHCyL/7RJqFo66Gtpw9nTHZ+xIxk9bwY1qTnYbDaG+PkwctaUG2Vxd5XfR21l1XLbj5o7nZqUbBQI3IZ6D9ZLFwqFAhdPd3wnjGH49EkSFE5I7+GRs6eh79egsFPiOthGquY29Botzh7u+Iwbhf+0ibQUlmOz2fD092XErKnS1kknJ5w93fGbPJ7exlYGevpwcndnyOjhDJs6gZbCchwcHXH39cZ/+iQGuntxcHLEbag3vhPH0l3XhKarFzcfLxycHPGbPI6WwnJch3gMvu8mounswd7RHs/hw/AZNwqvmgb627vwHO4HgN/kcZKw+vng5jMEv8nj6W/vQmlvj8+YkVgMJjyH+9Hf1onP2FHS72bSWJoLynD19sLdzwffiWNRtXagtLPDb8IYuc+o27uYsGw+FMX+p+Tz/4j0n4gR/rau61ENsONMJGNG+PDiQytwcXZipN8QAn5/j5S8Sn7aE8jty2bw4sMr+fSle9l+MoKxI4dy5y2zSDvzI2dD0whJyGfiaD+2f/0cj9+1mEOX45k6bjj3r57LnCljOBWcQkdPP8N8PPn982e4dfF0zoWl4+87hEWzJjB13HACrqczeaw/E0b58dO7jzFnyhhS86twdXHi9cfXMH6kH5eishjt78OCGeP49MV7GDdiKCaLBVcne55YOgY/DycSK5xxd7JnxBAXHOwUeDjZ4+fuhLODHWOHuOBop2TAaEGhUODqaI9CAUoFKJUKFEolZoUdOrONIW6OKJR24DoEFErQ24NCgcLTFzubDezswMkVhasH9mOmg0KJMGhR2NnhPGkGDF6jdHLG3m8IHguWgEKBo58/dm5ueC9dirDZcPT1RWlnh/f82Vg0WgCchnrjPmo4o9bcgtViAZsNeycnxi1fhEmrw87RAXtnJ/ynTWTq7cuxmi14jxmJ21BvJq5YhHFAS1dNI0o7O8YsnM1ATx82qxVnDzd8xoyUrtHqcff1xsndjbGL5qDt7cfJzRV7R0eGT5/E5FVLsBiMuPt64+Hnw7jFc2TosL2TEyNnT5MI+BYLDs5OePhJsYdxQMuQ0SNwHeLJqLnT0XT10Fo8FKW9PcOmjGfi8gWYdHqc3F3xGuHH2IWz5G3iTm6ujJgxicm3LkOhVN4UVxg0Wlx9vHDz8WLknOlM6+pF1dIue2ZPWrEIi8GIg5OjFHvMn4m2tx8Pf1+cPdzwnzaRyauX4ujmioOL86CGSdro6OqC+6A2Tr+jB5vViqOrC76D+m81W7BzdGDISP/BuEKNk4e79D6fJsUVXdX1/9D/eRi1Ouzs7fDw82Hk7KlouiQXFid3V4ZNHseklYuoz7DD3smRIf/QOTsHe1x9hjBixmQmr16CQT0glXfCGCbcsgCT3oDS3g5Pf8meTdvTh72jo6RzUycwaeVi2kqrcHRxxudvzVUPgEKJu68PI2ZNRdPZg6Obi6z/E1cspCYlBwdnJ7xGDGPMoP4r7exw85ZipwnL5jPQ04edowPeY0cyfslcjANSf/cYNpRRc6cz0N0rxSKe7gybMp7xS+fTWlKJg5urrP969YCk5UO9GTFzCpqObuwdHXB0c8V3omTfV5uej4OTI14j/OQ4Tqkc1M9B/R/o6cPRTYqtxy6cRXVSlqT//r6D8Vaf9Fv0cGPY5PH0zZlGR2UtTq4uDBk1nNHzZ0r1Arj7ejNi5mQ0Hd0oHRwH234MI2dPozGvRI63Rs2dPnhMTSHp57SJEqDaYMTJ052h40czYtZUGrILUQCe/n6MmjMNba8KO3s7ySZy6gR6m1rpb+vE0dUZ79HDGTFzMvVZhQghcPeT2miguw87B3ucPd3xnTiWnvpmeuqbsbOzY8io4QyfMYn6rEKUCiWu3p74T5souRspFLgO8WTo+NEMHTeK7jopFnTxdGf49EnUZRbg7Oku639/WxdCSP7vPuNGyXlcvDxwGxwT1WUW4OLpjpu3F36Tx9HX3I5NCLxGDsdmteEzdiTdtY14DvfDzdeHYVPGU9/Xj4uHOx7DfPGdOIbexlZsNhu+E8ag7VHJeXzGjcLV2wvfiWOk+MbNlSGjhqNT9dNd14zNZmXi8oUQdOLf1s3/7QP6mJgYLIPnD/+d5Dncj/72LuwdHVnx6lMceOJdqpMyAZj38N0EfPgTzQVlaHv68B47kt76Zsqik+mqacRsMNBZVUdBUDQtheUMdPXQVdNIR2Ud9ZkF9Da1YufkSH97J9XJ2XRW1WPSGTDq9PQ1tkpWT3/bIGkG6KyqwzigxWq2IAappPp+NUp7eywmExaDUbbDUCgUku2YTrLUsHdyhEE7GRQKyUZjMCmUShxcnOVzLnaDgwJnD3cUCoX8Y3bx8pDug3ReRocdI+ykPI6uLrj7euPqMwR7RwdpAObvh7uvN87ubgB4+A2VOurQISiUSpzcnPAeMwKPYUNxdHVBqVTiM3YkXiP8UNpJTofufj74jB2Ju58P9k6OODg7M2zyeJlArlAoGDp+ND7jRqHu6JJfcMOmSEG6LKwzJtNRUYvVYkWhUOA7fjTDpowftNeQXjwjZ0+lrawa1yGe2NnbM2LWVLpqm7ANnuXxGTeKkbOm0lZahZObCy6eHoyZP1Oi3A7xRGlnx8jZU+lrbqO/tROlvb00cJ0/k46KWly8PHByc2Xcojn0NrTIL9eRs6ai7uims7IWR1cX3HyGMH7JXLprG3Hz9cHRxZlxS+aiapUo+HZ2dgyfMRltr4qOyjpcvDzwHObLxFsW0NvYKk1aODkxfsk8NJ099Da24ujijP/UiYPWXo24Dx2C+1BvJq1chKq1QxpEOzoyfuk8dCrJSs3VywPv0SNkyxPP4X64eXsxZfVSBrp60fdrcHR1lSYJBq3U3Id64zdxrGzrYrNYcPHyZMqaZej6+ultaMHZ0wOfsaNk6zoPPx98x49BcYcCTVcvSjslzh7uTLvtFoyD/d5tqDcjZ06R7tvSjoe/Lz5jRjL9rlVoe1WSbZqPF1PXLMOk09NV24S7rw9j5s8CoL+9C0O/Gu9Rw5lx9yr0KjU9dU24+3ozas40rIN2cR7DhjJ67gzJLq67D5vFypBRw5l57xr5Gd2GDmHSysWSXVxrB84e7oyaPU2yaOnrp7+1A+9R/vhNGI3FaKKnoUWqt1uXgUKBpqOLvtYORsyYjIOzk2T7V12Pu78vE1culq3r3HyGMHn1UpR2dgx092HU6hk+fSJe/r6YtFJZPHx9mP3A7bJdjNLensmrl2Lv5Iiur5++pjb8p09k1NzpgxZETbj6eDH7gdsA0HR009vYysQVi3D2cEevHqCzqgHfCaMZOWsqVpOZ3qY2nL3cpUk7OzsGunsxavWMWzSHoWNGYtTq6KppZMjo4cx/7F657ZVKaaLPztERXZ8aVWsHYxbOYryDg9T2dc24DfVhweP3AZKlj6qlnen3rMLV2wuDeoCe+iZGzJzCqDnTsJhM9Da24OLlwYIn7pdt9Bpzi5m6ZinDJo/DOKCjt6EF3wmjWfDkA1gtVlTNbdg5ObDgyftlsnRlXJokbgjMeoNku+Pnw6J/rUUIULd1YjVbWPDE/bj5DEHX1095dDITls7HZYgnFqMJVUsHbkO9WfzMQ5L1TkcXBq2OeY/eg8+YERKNOiKRsYtmM3T8GGwWK6q2TlyHeLD46bU4ODsx0N2Lrk/N3IfvorOqHqNWR8n1eEbPn8GY+TOlPtbejesQT5Y88zDuQ73R9qoY6Oph7to7UbV3YTYYKQqJQWlv92/r3f9J6T8VI/gPrtAPHeLOv+5dyuMf76S+tRtnJwfWLJ7G9pMRNLb10NM/QERqMd29GrJL66hp6mRa73BySuoITymiqKqZ5o5emtt7KapuJqe0nt7+ATp7+6lu7CA1v4qWzj60eiNGk5n88kYaWrsRCLR6I529aupaujCZLZgtVqxWG62dfegMJhQKBTYh0GgNaA1GnBztsdkENpsNndGCg6MT2ElhmlUI7O2VuDnZyZZW9koFLg52OAzqslKhwEGpwH7wszSYV2CnVKJAgUKhQK2XzqYOcZFiBpR2KJT2CDt7QAFKJTg6o7B3QmFnL8Uaru4oXNzBJp2FVbq4YefljZ2rB9jbo7R3wNHPH4ch3ti5uqFQKHAc5ofTsGEY29tBqcTe0wO3caNx8ffFzs1F0uGJ4+grr8aildgdnqOHM3TCWLpKJScWZw8pSG8rqcTFywOlUon/tIl0VUsxGcCQkf6MmDGZ1uJKHN1ccXR1YfTcGXRW1ePo4oxSqWT49En0NbXR29iCnYM9nv7SBG1HRY00ye/szOj5s+ipb0bV2olCocB/6gTU7Z20l9fg6OaCu68P4xZL+u/u6429oyNjFsySXZCUdnYMmzIBXV8/nVX1uHh54DrEi/FL59PT0IKw2rBzcGDMwtlounrpqWvCwcVZuu+SuXTVNsqT8xNvWUD/4ASh0s5OHvR1VNbh7OnB0HGjmbRiEX2NrdLCjIc7k1Yulq2JHV2cGT1vpmzr5urjhfcoaQFFNWjT5eTmyuRVS9D19dNV04irlwfuk8ZJetTQguewoXiNGMbU225B09WD1WzG0dWFSSsXSbao1fW4DR3CyNnTZM11dHPF09+PaXeskBxhWjtxGeLJ5FVLZKs9dz8fRs6cIvXFjm762zrx8BvK9DtXYujXDN7XG9/xoyUL3+Z2vEb4MXzapBuaO6DFY9hQZty9CuOgRZuHnzcTly+UNVehVOI/ZYJs0dbb2IrnsKEMmzxeslttaMF9qDcTblko6X9nN51VDfhPmYCTmyvGAS2d1fV4+EkLLDaLddA6zpvxS+ejtLdnoEeFtleF34TReI8cJul/bSNuQ72Ycfcq2eLMbDAyfsk8HJyd0KnUdNc34zN+NGMXzRmMRZpxGeLBzHtWS9ZvXT20lVYzdtEcXL2HYNRo6aiqx3v0CCbcskCuFxcvd2bcvXrQhlaFtqeP0fNmMGzKeMx6gzQIHTaUuQ/fhW2wXoxaPTPuXoWDs6MUb9U3M2LWFDz8hkpxRWMrrt5ezH/0Htm6rr2ilqm3LcdzmC8GjZae2kZ8J45lyq1LZZtFJw835j96D0o7JdqePgzqASauXMzI2dMw6Qz01DUxZKQ/C598AGGTbKwtBiPzHrkbJzdX9Co1/W2djFk0Gw+/oXJ86zLEg0X/Witb+vU2tDJn7R0MGemPXj2AqrUD/2kTGbtgllwvTq6uLP47T3cvXdX1zH7gdoZNGY9xQEt/Wyd+k8cz/Y7lCJsNVVsnDs5OLHr6IZzc3dD29tNeWsms+9ag6ezGrDegbu/Cd8JYFj5+r+Q+0d6FvZMTi/71IJ7+Q9GrNLQUljHj7tWYDUbJwrazB5+xo1j67MPY2duj7uzFzsmRBU/ex9DxozCotTTmFuPkfmPc9++k/60Deq1Wy3fffUdYWBgnTvx7sxFeg6sfNqsV44CO90MOc/HTX2jIKmT2A7ez9LlHiP7zMBG/7mPM3Bnc8tLj2DnYE75lL46uLgybMkGaKUvNoa20Gid3V9x8hlARk0JtSg6e/r44ujij61UNWoo1DnoXdlOXnkdhcAwz71sj2TZl5JN3JQKv4X6SvVlqDoVB0VTEpbH250/oay6h4GokeVciWP7KEwx095IfGEHu5XBUzW3YrFZKIxIHt0fHMeOulXRW15N2/BL5gRGMnDUV88dGMs8GkXcpjLqMfB788SNaiitJPnSOopBY7vnyLSatXEz8nlOozZPxaZa8D/MCI2SLjYVP3I/NaiVm+xGKQuOYfucKlj7/CIn7z5B7SbJnemj9p9SkZJOw9zRlUUl4jx7BsKkTiNx6gKKQGNx8hnD3l2+TceoKGaevUpOSzeq3n6e/rZOobYcojUjklpceZ9Z9a4j58zB5V8Lpb+vikU1fUhwWR9KBs1TGpzN+2XycPNyI2LKX4usJjFkwk1VvPE3C3lNknQuipbCce795l4acIqL/PExFbBoP/PABYxbMInzLXgqDY1DaKXnwx49JO36JtGMXqU3PY9FTD6Lr6+f65j2UR6cw/7F7WfjE/UT8tp+8K+GoWjp4+JfPKYtKJmHvKWqSsxk2ZTwew3wJ3bCD0ohEhk2ZwB0fv0rM4NaglqIK7vzsDaks2w5SlZTFHR+/yqQViwhd/xdFoXHYLBYe++0bkg+cJe3EZZpyi5l9/20Y1Bqub9pDZUIGM+9ZzdLnHyVs407yr0ai6ejm4U1fUBqeSPLBs9RnFTJklD9eI4YRumEn5TEpeI8Zyf3ff0D45j3kXg6nq7qeNR+8RE1qDnE7j1OXkc+qN56mffUSQn7aTmlkEgADPX3SNqtzQXRU1DLt9uVoe1VE/X6A2rQ8Jq9eQnd9E8E/bqfkejw6lZqHNnSScugc6SevyFuOymNSuL55DzUp2Xj4DUXV2kHIT9spDI5B09nN6refoyImhZTD52kpkiBE1SnZhG3YQVViJkp7e3rqmonfc5L8wAjU7V1MWrWY5EPnSNx3mqb8UsYsmEVDdiFBP/5JZXw6FoORrtomYrYfIffSdVQt7bh6e5F24hKxO47RnF+Ku68PzXmlhG3aRUVMKkatjmUvPEpRaJy81W/GPavJPh9M5O8Hacotxt7JkcbcYpIPnqM0UrJPG790PsE/bSfjdCC9DS0MHT+agmuRhG/ZS0N2EcJmo7WogvDNEjTOoBnA2cOdsI07ST9xWfapL7wWTfyekzRkFWKzWmmvqCMv8BuKQmIxqDWMWzyHiF/3knz4PN21jdg5OFAankDmmWvUpedhs1oZM38Wp9/6jsKgKPT9Gjz8fYn+4xCpRy7I4JyalGxCft4h2+M5ubpw7r115AdGoOvrx9HNlYQ9p8i5EEpnVR2AvKXzbw9j3wljCfjgJ3IvhUm2bwoF6ScuU3I9QQbadVbWceip96hKysJmseDq7cWlT3+hKDhGhuAUBscQtO4PGdBj7+ws5Rm0pLF3diL4p+2UR6fIeaqTc8g8c02G4Ln7enP46Q+pSsiQIThR2w5Ql56PtkcCy9Vn5rPnoddl+KHLEE+OPvcRden5MgQn+s/DtBZXyrCdmuRsdj/w6o08Xp6ceOkzmvJK5Tyxfx2jp775Rp6UHPY+8iYdg2Vz9nTn5Ktf0V5W/Y88R9H2qOQ8tWm57H/sLbl9nD3cOPXmN3TXNsl58gMj/y2t+z8p/SdjBH8fT8rr2tDqjQzxcCX+2Le8+O0B3FycePzOxdy6aBrr913lXFg6syaOZObdozhwMY70gmqWzZnI3KljqG3pIiqtmPbuftzdnBk1zJuwxAJS8qp4/K7FuDg70tbVT3xmGT5D3LFabTS295CcW0l0egk/v/so9S06UvOquBKdw9P3LaVbpSEpt5LAmGwaWnswmcwk51USGJ1DWFIBty+dQU1zN9fi8gmMK2DCqKGYLFZiSzqILm6noLGPN2+fjMpgJr2hj+I2NasmDsXk70GTSk+7xojZamPmMHd0JitaoxmD2YqLgx3CJujpl1bJvZyVCGFDaHoQWhWYdCiGjECoe7C2VmHrbUPh4ITNxQNTcSqWpgpQ2uE491Z0hRlo81Ix1FXgtmglBrWG7pDLaApy8Fq6Eo9Ft9B6/gLdCQkYWtsY//ZbdKdm0XDiPN3JGXhMm4K9ry952w/SEJmA18SxzHrzOXKOnqfg3DVac4tY8dHrtJXXELXtEOXRydz5yWtMXrWYiF/3UXAtCpPewEMbPiM7IIjkw+epSc5m9gO3Y7Naub5pD2WRiUy7cyVLnn2Y6D8Pk3spjK7qBtb+9AnlGSnE7TxOZUIGnsP98Js0jrCNOykKjcNrxDDu/ept4veeIvP0VRpzi1n91rN0VtUT+dt+KuPTWfHaU8y4axVhv+yiMCgag0bLY799Q9bZIFIOB1CfWcDEFYtQKpWEbtxFRUwKE5YvZOUbTxO+ZS/5VyLormvigXUfUnI9nrhdJ6hLz2Ptz5/gP20iIeulWMR1iCcPbfiMqG0HyQ4Ipq20iuUvP0F7eQ3R2w5Sk5rD4mceYs6DdxDy818Uh8Vh0hl47LdvyTwdSPrJy7QUljNmwSwUCgXXN+2RwH/zZ6Lu6CLk578oCIpG3dbJAz98QM7FMFIOnaO5oIy7vniLusx8QtfvoCohAyd3Vwa6ewnfvIe8KxH0NbWy+JmHaM4vJWHvaRpzi5mz9g6aC0ql935Mqmz/mXb8onz8aeScaWSfDyb6z8M0ZBfhP20i7eXVXPvhD8qikgftZJtJP36JzLPX6K5tZMXrT5N/LZLI3/ZTP7gC21ZaReTWA5SGJ6BTqZn/6D2Eb95D2onLdFXXS8dow+O5vmkPtel5KBQK2kqrSTtxmeLQWLS9KvynTyLy9wOkHrlAR2UtXiP9KY9JIeyXXdSm5mI1m+morCXpwFkKrkWh7eljweP3EbvzGEn7z9BeXoOzhzsVsWnE7zlJTXI2FpOJ2fffxoWP15N/JQJNVw8j50wj6cAZ4nadoK20CoVSsmHNDgihKjEDi9GE36RxXPh0I7kXQtF09eDu60PK4fMkHThLa7EEgGvMLSZu5zEq4tKwGE1MuXUZl7/YRNa5YDSd3Ti4OJNxOpCss0GytWpbeTXHXviU8pgUzAYjQ0YNJ/DrX8k8e00GwBVci6I4LI6WQimP95gRHH3hE8qikjHrDbgM8STkxz/JD7wBmquMTyfmz8M0DdrLDTeZOfrCJ5RGJGLWG7BzcCB620FKIxLlPE15Jex75E3JBhFwH+rNyVe/pDQySYbGpR27SG1angwl7KiokfLkFiOEwNHNlbPvfE91UpYM8c0+H0Lo+h2oWtoBEEKw9+E3aMwpkvK4OBPw/jrqMwvkPDnng4ndfkTOYzGa2P/YW7QUlCGEwMHZifMf/URbcaUMJcwOCCLt6AUZSmzW6Tn41Hu0l1YhhMDeyZGLn6yX7DD/zjN4jOLv7zFqBjjy7Ed0VdXLeXIvhv1bWienf/sU/v+N9OGHH4ozZyTYHCDMg+Cuf6YdO3aISZMmyf98fX3/u/dqr6gRX41YIoQQIv10oPjAear4ZMgc8cOkW0X6mUCRsO+UCNu0W5x+61sRs+OoULV1iKqkTJFy9Lw4/8l6YTGbhV4zIGrTc0XY5j2iftCebaCnTxSGxsqWKDabTXRW14uoPw7KUDyTXi+Kr8ffBGnprm+6yZZMsloLF90NLTfKXFkrW90JIUFNss8H3wSiqc8pEs2FN4Ax2j6VDEoTQoKllEYlCa3qBgSnt7lV1KRLYLcBg1mM+zpEfLjzBmROCCGaCstkKzAhJKDaPyFzVqtVlEYny8A4ISSgWtM/ymI2GkV57A2QjhCSZaBqEKYmhBADvX1yWf5Z3r9hQUJIAMH2ihvgH4NWJ9vu/V0PlQnpQq+5Yb2jausQ9Vk3IESSLdqNehFCiIacItFV33SjLH2qm+5rtVpFQUiMDIwTQmqThtwboB/DIFznn2UpjUoS6o4bcKCexpab7ms2GkXW+ZCbnrE6NUcG/wkhwfX+Cf6zWiwi89w1GYonhBCN+SWiPP4fACRV/02APpvNJvICw0VnbYP8t7byapF75YY1j35AK+L2nJCf0WazieLweNm2TggJNPNPyx+jXi/idp+QrXmEEKI8LvUmy5++lnYR8fsB+RnNJpNIPHj2prqrScu5CSap7uwWQT/9KdvWWSwWkXbikigMiZGv+Rt+9nca6O0TQT/9KQMcrVaryDofJBL/Ud7mwjIJbPkP+8GwTbtF2d+Wf1aryAsMFyEbdsh52itqxJl3vhPqrp7BehoQEVv3yxaFNptNFIbGiLPv/yA/Y0d1nTj73vdyvzPqdCJ6+2ERsnGnfN/SqGRx+LkPhWHw3dBd3ywCPvpJZA3a1pkMBhG3+4Q48+73N9Xt/ifekduxt6lVXPhsw022lwn7T4t9j70lw6QqkzLF/ifeEcXh0vtD1dYhLn25WZx9f53cHsmHA8T2O58TAz2SxWJteq44+PT7InbXcSGEBEgK/PY3sffRNyXolcUiUo9fFL/f+pRsT1mXVSAOP/eROP/pBqkNu3rEtR+2id9WPC5MBoOwWCwi43Sg2Hbb0yJjEErZkFskjr74idj3+NtCCCE0Pb0i6Kc/xcZ594nu+mZhGezrf97+jLj6wzYhhBCNBaXi2Mufi19veVRYrVah7VOJkA07xM+z7hYlkYnCYrGI7AshYvudz4ljL0lAwZaicnHitS/FzzPuFEadTuhU/SJs0y6xfs49IvPsNWG1WkXuFclC58CT7wohhGgtqRQn3/ha/DT9DqHXaISuXy2ub9kjNsy9V6QOgovyrkaIHfe+KPY99paUp7RKnHrzG/Hj9DuErl8tdP1qEfHbfrFx3n0i6dA56T0SFCV23vey2PPQ60II6Xd4+u1vB6E4fUKvGRCR2w6IX+bfL+L2nPgvKN7/xfSfjBHOhqWJRz76S1itVvHj7svCaeFrYuTtH4mF/1onrsXmir0B0WLj/mvixW8PiMjUIlHf0iVi0kvE7rNR4tfD0u+3u08j4rPKxPc7LgqVWiuBxzp6xdnQNBGakCeEEMJisYq8snqx++w/AKxqrTgbkiqqGtqFENL7Jb+iQVyLvaGNKrVWnLyWJEPxrFarSC+oEtkltfI1XX0aEZJcLH+2WG0ipbJT9A4Y5L/16oyipvuGjlitNtGhvvH/hRDCaLYI0+C7JK2mW4z7OkRczKyT/7/NZhNWXb8ciwghhNUwIKz9PTeusZiFuaX6pvsaWhuF+R/XmAcGxEBF6Y08VqvozcyU32NCCKFtbBbqyhv6b9YbREviDaivzWYTDWm5Qturkv+m7uwWdRk3AL1Wi+WmWEoIyQr2b0s3ISTQ3D/11GaziZKIBBmKJ4QQ3XVNsvWaEJIWFoXG3pSnKilT9LW0y39TtXXcFPtZzGaReznsprpryC2+KXbS9qlE/rUb/UPSqAih7bvxjG3l1bI1nxCSlv8T/Pe3lv8zduqub7pJp00Gg0g6HCBD8YQQojIxQ1Ql3YAxqlo7RMrR8zeVP+XYBRngLIQQtRl5IvfKDQDyQE+viN5+WNZGi8UiMs5claG4QgjRVFAqkg6dlT/rVP3i+pYb1nw2m03kXrl+E6iwrbxaXN+858YzazQiYut+0VpaJecpDI25Ka7orG0Ql7/eIj+jSa8XMX8dFcX/6A8lUYk36X9PY6u48OlG+RlNRqOI33vyJuvjysR0EfDhT/IzqlrbxaUvNonqQWii2WQSSYfPidB/6H9NWo449vJnQq+WYtX+ji4R+O1vMrDZbDaL1JOXxdn3buh/fVaBOPz8R7Ktsaa7V1xbt02Ebd4thJD6RsbZq2L/k+/I8XhTQak4+tKnMoxR26cSIev/Emfe+0HOk30hROy47yUZ4NxSXCFOvPalbFGs7VeLsE27xN5H3pDhxnlXrou/7nlBfkZJ+74WAR/9JLdH+G/7xO+rnxT6Aen9VxAkWc79XXftlbXizDvfyfqpHxgQkdsOik2L1oq2ihphs9lEUVis2PXgKzJQsKO6Tpx9/wfx6y2PCavFIgxarYjefkRsWrRW5F2NkPp6RILY89Dr4uC/3hdCSLDDgA9/FD/NuFOoO7uFUacTsTuPic2LH5Kt+cpiUsTeR98Qf9z+jBBCisfOf7JerJtym+isbZBi3T0nxOalD4ugn/4UNptNlMelin2PvSV+X/3UYF9pERc+2yDWTVkj2itqhMlgEAn7T4tfb3lUXP1+q7DZbKIiIV3sf/xt8duKx4UQUgx38YtfxLopa0RrSaUwG40i8cAZ8dvyx8TlryS758rEDHHgqXfFr7c8Kmw2m+htbhuE7d32H7O2/d+2Qp+amkpNTQ07d+78n1730Ucf8dFHH8mfJ0+e/N+9znO4H5pO6SzQsucfZfi0iex/7G16GlrwnzIBTWcPsTuO0V5ew11fvEVbaTXhW/ZSHp2MxzBf7vnybWll7tQVLEYTo+ZOJ+PMVa5+u5W+plYWPvUgM+9ZLVukOLm5sviZh0g/eYVr3/2OtlfF0zt/xmu4LwEf/kx5dDJjFsxi0dNrifnzMNc37cGk0/NtdjD9LW2yVdztH73ChGXSqmDivjM4ubsy5+G7KA1P4PKXW+iqrufNC3twGeLJ5S82kXc5nBl3r2L6nStJ3HeasF92o1ep+bk8hu6aRi5+tpGqhAwe/uULRs6cwtmN+0E5g/qIWMQHd1MYHM3Vb7fSVlrFZ/EBKO3suPLVFvKvRLD4mbVMXL6Q+D0nifr9IAaNlk11STTXNHDlqy1UJWTw3IHN+IwZQcjPf5F2/BLDZ0zmq9Qr5FwIIWT9DjrKa/ihMByjRkvg179SFBLL7R+9wpj5M4nadoj43ScQVhu/tmZQlZhJ0A/bqE3L5Z3AA7h4eXDt+21kBwQz7Y4VMkgs6o/DqJrbWF8RS2dlPVe/20p5dAqPbP6SYVPGE7pxF2nHL+E+1Jufy2PIuRBC+Ja9NBeU8UXyJawmM9e+30ZhUBRLn3+UibcsIPL3gyQdOItxQMum+mTqMvIJ3bCT2tQcXjyyFY9hvgSv+4Oci2GMnjeDWfetIX7PSeJ3n6SnrokfCq7TVdNA0I/bqYhN5Z4v32LUnOmErt9B5pmrKO3tmf/4vWQOWri1FJXzXtBhhM1G0Lo/KLmewOwHb2fa7csJ37KXtOOXMKgH+KksmpLr8URtO0h9ZgGP//4dQ0b6E/zjnxRci2Lo+NEsfPIBov84RPLhAHobWvgy5TLtZTVE/LqP6qRMVr7xDOMWzSbk57/IvXQdpZ2SRU89SPrJKyQfPEdHZS0vHfsdi9FE+Oa9lMekMGnlYuasvYPQDTvJOR+CcUDHpFWLyb10ncR9p2ktruDeb97Fa8Qwwn7ZLa0WDFrzhG/eQ+aZa2g6u3n32iGa80uJ332Sxtxi5j92L+OXziNs4y6KQmOxs7dn0VMPknE6kIxTgaha2nli2/cY1Bpidx6nLj2PkbOmMv+x+wjbuJOCa1FYjCYmrVpC5umrpB2/RE99M6vefAZ3nyHE7jhKdVIWzp7u3PLyE8T8eViGp7xw6FfCt+wh5ehFaYZ+zTLGLppDzJ+HqYhLw97RgfmP3UvOxTDyLoWhU6m55+t3ifrjEClHztNeVo3XiGHMf/Reov84RFlUMsJmY/zSBaQcvUDOhVB5hj5u13GSDwdIx0fc3SgOjSPj5BVKwiVgnPtQb85//DPZASFoOrsZOXsaiftPk3wogMbcYuwcHJh+10rKIpNkYNwtLz/BpS82kXUuSDoy4OlO0sFzpB2/SH2mZM0zau50Uo+epzA4BrPewORViwn85lcyzwbJjIPE/WcoCo2TLfOcPdw58txHFAZFY9Tq8BzuR9C6P8g8c5We+mYUSiWZZ69x8dMNVCdlIYRg+t2rOfbSZxRclerW0dWFq9/+TmFQlLwaPXTsSFKOXqAyPh1hszFs6gROvvalDKaxc3Ag7JddVCdlyqv4SgcHdtzzogymcXB14dQbX1EQGClbzCUdOMuFj9fLq+sjZ09j1/0vUxaVjM1qxc7BgeMvf0FFbKq8ip98OIDrm/fIKxluQ73Z/eCrMpjGztGBQ//6gIasQnl1PWbHMWK2H5GteRxdXdhx74tUxqVjNZuxc3Rg94Ov0VlZJ1vmhP0i2Tr+vcLg6OrCtlufoj6jAIvJhJ2jA3/e/iyajm559SNsw05w/78kk/9Hp/90jDB8qBcd3dLxqfXvP86cqWN448cjNLX1cuuiqVyIyGTf+Ri6+jTcu2I23aoBth4NpaS6hftWzqGwsokf91zhelIhjg52vPTIKvZfiGPb8TD6B/Rs+uhJ/Id68dGvp8kqrmPq+OG88uhqthwOYfvJcMwWK/HHvqW5o5ePfz1DWW0rrz12KysXTOHH3Vc4EpiAh6szj9yxkIjUYr7ZfoGm9l6ObHgdX28vvtsbQkhyKSvnTuDeW2ZwKauJQwk1DBgsnH9/JVqzjeCSdup6ddwxxZex3i7UdGtpUhmwVyoY5uGEzmRBpTNisQn83J2xV9joHrRl9HKUjv+h7kKo2sBmRTFmDjZtH5aaPISqA7vJi1A4u2LMj8dUlYvSfQhuD7+LvjSX/pirWDpb8X93HSaDifazR1HnpON9x324TJhMy/kLtJ6/gM1kYum1q/TmFFD+6w76svJYsPs3HHy8ydq0g+pLwQxbNI/hK5dQcCaQ5N/301ffzAf54fS1tHP1m98oiUjkgR8+YMSsKVzfvIeUw+dxcHZic0MKhcHRhKzfQWNOEZ9En0FpZ8fV734nPzCC+Y/dy6TlC4ndcUwCZ/ao2FiTQH1FAUHr/qA6MZOnd2/Ae8xIgn/aTtbZa/hNHs/M+9aQcuQ8MduP0FFew7c5wag7ugj64Q9KI5NY894LjF04i7BfdpN+4jI2q5VZD9xO4bUoIrceoDG3mDcv7MHByZGgdX9QGBTN1NtuYcbdq4jadpDkQwFoOrv5qSSK2rRcrm+SdsE9vPFzfCeOJfjHP8m9dB0PPx8WP/UAcbtOkLDvNF3V9XwaexZ1e5e08h+bytLnHmHi8oWErN9BdkAwNouVuWvvIP9qJPG7T9JaXMFz+37BwdlJXvkfPX8m8x69l+ubdpN5OpCB7j6+zrhKRWwqsTuO0ZhTxB2fvMawKRMIXb9Dttm95aXHif7zCOknLtPX3MYbF/bQ09BCzPYj1KbmMOv+25iy5hZC1++Q4K82G3Mfuou4qydIPXKe7romHv7lC5R2dkRtO0hVQgZDJ4xh8bMPEbZxlwSM0wwwau50ikJjSTkcQEdFLbe89Dh+k8YRuXU/5TGpOLq5suyFx0jYe4qc8yFoe1U8u/cX4nYdJ+ngOVqLK5iwbD7Tbl9OxK/7KIlIRKlUMvvB24jcul/W5Ts/eY2kg2dJOnCWxtxi3HyGsOS5R4jcul/W5ZGzp5J/NZLMs9fob+1g9oN3kHr8Ion7TlOfWYCjq8tgvHVZ1uUHfvyIq99tJfPMNXobW/CbPJ7Ms9ekXaEp2Sjt7Jh2+wrCftktQ1mXPv8IwT9vJ+NUIN21jTh5uJN55irpJy7LwLhhk8eTeylMjnnGL51H2C+7SD95hc6qOuwcHcg8e42S6wlUxKYibDZWvv40p974WoK/qdS4ensR8es+0k9dob2sWuJbLZpD6MadlEenYLNamX7nSs68/S25lySwroOLM+Gb91AUHCOv/HuN8CM/MIKSiER559+599dJAL+uHpT29sTuOEZdao68im+zWNn36JuUXE/AYjLh6OrCuffXUXA1EvWg1Vt2QDBhG3fJ9ncjZk5h/+Nvy+1h5+DAhU82UBmfLq/iuwzxJPdimBwnOXu4c/Cp92SwrsLOjosfb6Apr0ReXbcaTZRFJklsIsDBxZk9D79ORUwqJp0ehVLJ6be+pae+Wbau621spTI+Q7Y9dHBxZvudz1GfkY9Rq0OhVHLk+Y/QqzSyRW5LUQU1Kdmyfa+DizNblz9Oa0klxgEtSjs7Ln+x+f+yTv7PkkKIwQPa/4vTr7/+ys6dO3F0lM5tNTQ0MG7cOJKTkxk9evT/MN/kyZOprq7+//u7EIKPXKfzS30yBYERtBRV4OjqQn9bB3d/8Raj581E29NL/N7TjF86j9n33QZAXUYe1cnZ3PHxq9jZ2zPQ3UvSwbMsf+Uphoz0x2qxUBKegM1iZf6j9wDQUVlLUWgst33wMvYODhgGtOQHRjB63gxGz52BEIK6jDy6ahpZ9vyjAPS3d5J3OZxlLz6Gi6cHFpOJsugUHF2dmXbbcgDay6upSspi5etPo1Qq0ferKQ6LY9zS+QybNA6bzUZ9Rh4D3X3MfeguAPqa2yi+Hs8tLz2Og5MTJr2BithUPIYNZfySeRQ1q3hodwqvjbTy40cPAzDQ3UtJeALT71yJ14hhWM1malJzsJjMzLx7NQCd1fXSVrJXn0JpZ4deraE8JoVhUyYwavCMVGNuMT0NLSx68gG5LKWRSSx4/F5ch3hh0umpSszA0dVFgskJQUtROQ3ZRax49SnpzFRnN+XRKUxYNh+/SeMwG43UpuViUA8w7+G7EULQUVlLZVwat7z8JI4uzmj7+qmMS2PI6OFMWDofq8VCQ1YBHZV1LH/5SQC665ooj0lhzoN34DViGAbNgLTl207JrPtuw2a10pRfSl16Hre+8zxKOzv6mtuoiE1l1LwZjJk3E5NOT3VyFprOHpa98Bg2m43W4goqYlO55eUncfP2or+9k8q4NNyH+TLjzpWYDQZq03JpKarg9g9fAaCtrJqK2FRm3nsr/lMmMNDdS0VcGjarjSXPPITFZKIuI5+alBzu+PhVHJyd6KyqoyIujZGzpzF55WK0ff1UJaTT19zG7R+8gtVspiG7kPLYNJa/8iRDRvrTXddERWwqrj5DWPj4fej71VQlZtKYW8z9338ASFu0KuPSmH7XKsYtmkNPQzMVcWmYdAZue+9FqZ6SsqhOzOSer97GxcuDpvxSKuLSGD59EnPX3klvUyuVcWl01TSw9udPMWp11KRkUxGbxvKXn8B/+iSaC0qpjEvHyd2V1W89R19LO5Xx6dRn5PPor1+jAGpSc6iIS2PKmmXMuGuVVLdxaeh6VTy0/jOpbuPTqYhL575v38XT34/atFwq49IYOmE0K179F60llVTGp9NaVMEzezZI567j06mITWXJsw8zYdl8atPzqIxLA4WCtT99Qnt5DRVxaVQnZfKvHT+hUCioTMigIjaVCcsWsPiZtdRn5FMRl0ZvYysvHPqVzspaKuLSKItO4f7v32fouNFUDeZxHzaU+755l/rMAipiU6nPKuC1c7tQt3ZQEZdGeXQKC596gBl3raIyIZ2K2DRMOh3P7dtEfVYhlXFplMek8NyBzVJZBj+Pnj+LW995nqrBPO3l1bwXdJimvBIq4tIpjUjgnq/fZfi0iZTHplIRk4KThxtP/P4dVYmZVMSmUp2czXvXDtHb1EpFbBqlkUnMfeQu5j9yD5WDzzPQ1cNbl/ZKeeLSKItM5PmDv2Fnr6QiNpXSqGRGzJjM3V+8JT1PTArN+aV8EnOWhuxCKmJTKQlP4K7P32DUnOlUxknfY+/kyLN7NlIRl0ZFbCpVCRm8H3JU/p2VRCQyZ+0dLHzifipiUymLSkbd0cW7QUeoSkinPCaVsshEnt33Cw7OzlJZIhLwnz6J+75+l/LBPK3FFXwYcZKm3GK5LPd+8x7Dp0+S87j7+vDEtu+lz5FJtBSW8U7gQTqr6iiPSaEkPIHbPnyZ8YvnUh6TSmlEIi5DPHhy2w9UJqRTHp1MU14pb1zcQ19DC+WxqZSGJ7Di9aeZsnqJlCcyESd3qf5rU3Moi0qmMbeY187+hbqtS86z8vWn+eLCwf+ujv1XupH+0zFCaU0La9//k9Jrv7L1WCj9Gh1WmwAh+Ozl+xnt701jWw/bT0Xw4XN3M3msPzabjZCEfNRaAy+sXQFAdWMHlyKz+PiFe3BxdkSrN3IpMpNZk0azePYEhBBkFtVSXtfKy49IetrR08+FiEyef3A5Pl7umM0WYjJKsbe3465bJH5IRX0b8VnlvPnEGpRKJeoBPSGJ+SyaOZ5p40dgs9nIKmuivVvNI2vmANCpNpBU0cUD80bg4miPxWqjuluLi6Md47xdEUKgNVnpN5gZ5eUCgNUmMJgtONnbYW+n5GxGA98FFnP5raUsmiiBIYXZCHo1eAxFoVAiLGZsqg4Uzm4o3b0Rwoatpx2bugeHiVJZrJp+DFVFOE+bh52bBzaTCV1FCSiVuM+ahxACfUMD6qJi/B98AIVSiamvn+7kdDxnTsV90gRsZjOd2YXoe3qZsPZuAHrrGqmNTWXuMw/j6OaKXq2hMj4dDz8fJi5fJMcirSWVrHjlKUCKRcqik5l+50p8xoyUYpGkTGwWK3MevEPW8urkbFa/+Qx2Dg6oO7qoiE3Ff/okxi6YLcciquZ2lr3wmBSLVNRQFp3C4mcewsPXh4GePiri0nDxdGfmPbdiMZmozyygMbeY2z54GYVCQVdNA+UxKUy5dRkjZkxGp+qnMiEDk87A0mcfxmqx0JhTRFViJre++wLO7m501zdREZuG3+RxTL11mazL3TUN3P7hK3L8UhGbyqKn1zJ07CjpvRqXJp39fepBWZfrMvK59+t3UNrb01pUTnlsKpNWLmbC0vn0t3VKmqtSc9t7L2LS6alNy6UiLo07Pn4Vd18fSWPj0vAeO5L5j9yDuqOLyvh02strePDHj7EYjdSm51ERm8aiJ+9n5JzptJVVUxmXhtJOya3vvICmq4fKhAxqU3N4aP2n2Dk6yBo7ful8Zt23Ro7z+ts6eWj9Z5KWJ0j6f8dHr+AzdqSsl57D/Vj5+tN01TRQEZdGU24x/9rxE0atFHNWxKYx75G7mbJ6CQ3ZhVTGp2M2mlj70yd01zVRGZdGZXw6j/32NY6uLlQnZVERm8aoudNY9uLjNOYUURmfTmdVPS8c+pWehmZZL+/46BWGz5g8mCcVZ0937v/+g0FdTqMuLZeXT/yBXqWW9XLWfbcx96E7qUrKojIujYGePl489KscW5XHpPDEtu9x8XSX9D82VT7qWZOcRUVcGs35Zbxz9QDtZVL8UhaVxJr3XmTswtmyxiqUSp7e+bMUj8WlUZmQwevndqLv66ciVsoz/c6VLH72YSrj0ymPSaGvsZV3rh6U2j1W0r4n//geN58hlMemUh4tHfV88MeP5O9pyCrgo6jTtBZVyFq+6s2nmbRisaTl0SlYzWZeOf4HlfFplMekUh6bypsX9mDo11ARl0ZJRAJTVi9lxatPSd8Tk0J3TSMfhp+Qyh+TSklEAo//9i0e/r5y2bxGDuORTV9SEZtKeXQy9VmFfBx1mraSSln/l7/6FFNuXTao94lYTWZeO7NDjjOqkzN5I2A3ur5+Oc+sB+5g8b8eGIyTEjEMaHn97E6qEzMpj0mhMiGDl45uxWoyy8887fYV3PLSY3Jspe9X8+rp7dSl51MenUxlQgbP7t2I0s6OipgUSiISmbx6CSteeYrKhAxKIxPR9qp49eR2KZ6PSaEyLo0Xj27lX199+G/HCMp/K/f/jfTNN9/Q2tpKfX099fX1AFRXV/9Phfp/lhSDtOeBzh5WvvEMjq4uRG07SOaZa6haOzj24qd84beIkJ+2UxmXRmFwNJsXP8T2O54jZvsRdCo1Fz7dwM57XyJs4y7aSqsoDI7m+EufcemzX8i7fF06Y7T+L85/+BNR2w5h0GgpCIriypebifxtP3XpefQ0NBP1xyGuD87UWi0W8q9GEPbLbhL2nqKvqY2Oylridp2Qzr7EpmEatFeI+esoKYcDEDYbLUXlJO4/Q9LBc3SU16BT9ZN7MZTEA2cpCIqWBvdZBSQfDiDt2EV0ff2oO7vJPh9M6rGLNGQXSpMRGYUAdGVKq3Pd9U1knQsibXBG1aQ3UBKRSMbpq/KsX2tJJTkXJIsQs8GITtVPYXAMWWeDaC+vwWazUZeRT/b5EIpDJVpzX0s7BdeiyDp7DW1vP2ajkYq4NHIuhEpnj4WgrbSKgquR5F4MRQiBTtVPaUQi2eeD6W1swWa1Up9ZQH5ghGwf2NfUKtnQXAjFpNNj0huojE8j91IYbSWVUnmLKygMjqEoRCrLQHcvZdHJZJ+XZl2tFgu16XnkX42UZ9+6ahspCU8g52IoVrNZHvDnXr5OT50E2GvKL6UoNJbymBQA+ls7KI9JkWeNzQYDdel5gzBF6ZxNW1k1pRGJFFyLkstSnZhB7qWwQYCXmYacIorDbqyY/j0Qz7t8HYvRiEGtoTYtl4KrkXRW1mKz2WgpLKM0IpGyyGS5vqsSM8m7FCbZcuj0NGQVUBQSQ3NeCUII2strKI9JoTAoGpvViqazh9rUHPIDI1C1tGM2GmnKK6E0PIGalGyEEHTVNFCdmEF+YAQWowldX7903+BoOqvqsJrNtBZXUBadQmlEIgqFgr6mNmpSpPsaNAMY1Bqa8kopvh5Pc0EZNquVjvIaKuPSKA6T+AL9bZ3UZeRTeC0KTUc3Jq2OlsJyyiKTpDPkNhtd1Q1UJ2VRFByNzWJloKuHhuxCikJi6G1owaw30FZaRXlMihSsWa301DVRO8issJjMaHv7ac4vpSQ8gc7KOixGI+3l1YOD/jSEEPQ1tVGfkU9RSCxGrQ69Sk1LUQVlUcm0FFVgs1jorG6gOjmb8qhk7Ozs6G/toCG7kOKwOHS9KgwaLa0llZTHptJcUI7NZKK7tpHatFxKI5NQ2tmh6eymOb+UssgkNB09mHR6OipqqUrMpCG7CKWdkr7GVuqzCimLSkahkPpPS1GFJLzN7Rh1+sGyZFGTmouTmwt9zW005RZTHpOKsNrQ9aklcYtLo6+xFZPRSHdtE3XpedSm5uDi4UZ/WyeNeSVUxKZiNhjR92voqKilOjGTzqoG7B3t6WlooS6zgNqUHBzdXVF3dNFSWEZlXBomvQFtn4rOqjpqUrJpL6vGxdOTvqY2GrKLqE3Nwd7RAW1PH22lVVQlZEh9QztAV00DtWm5tJVU4urliaqlnaa8ksHfpgJtVw/tZdVUJ2ai6epFoVDQU9dEfUY+rcWVOHu409/WSXNBGXXpeSgG26Ojopaa5GwGBvP0NjTTkF1IW0kVwiZQd3TTUlRBfUa+BDRsbqOzqp7atDwGunox6yToXlNeCW2lVZj1RlSt7bSXVVOfWYDZaKK7qp7u2kbq0/PRdPag7e5F1dJBc0EZbSVVWI1Su7eX19CQXYjZYKSlsJKe+mYasgrRdPbQPThT/1/pf57+0zHCcF8vOnrUODna89Hz91DT3MXegBiOX0umvVvFXW9sZerar9l3Ppbcsnr2BsQw94kfeParfVyOyqaqoYNXfzjE45/s5NcjIfT0D3DoUjwvfXeQn/deJSW/itKaFr796yJf/XmeAxfjMZrMHAtM5Ks/z7PjVCR1zV3klTew+XAIvx8LIyK5CI1Wz8mgFH47EsqBi3EYTRYyi2rYfiqCAxfiKKpqpqdfS0B0AYeCsghOrcAmBHkNfVzKaiK4oBWVzozaYCavpZ+cFhXNKj02IejVm2lRG+jQGAGwWG3oTGZ0RgtWm0AIgWpAOqvq5Sh9FkYdDPQgBnrAZkOYjdi6m7C11SAG+hA2G9bOJsx1RZibpB0wFnUfupIctAUZ2LQabGYz2pJ8+tMT0VdL1+jr6+mJT6AnNhZhs2HuV9MVn0R7SDj6xhaEzUZXThH1IZG0JUj6r25uoyosjtJLoRjVkuZWJ2RQcOW6fLZVitViKLgqsSm0vSpKI5PIOR9Cf1snNquVuow8Cq5GyitpvQ0tlIQnkHsxFLPRhFGrozIhg9zL4XRW1kmLD4XlFIXEUhKeIJWlo4uy6BRyL4aiV6mxmEzUpuVSeC2KxtxiADqr6imNTJLKIgQ6lTSpnn8lnL5BPlJjbgnFoXFUJ2ZIZWlspSI2lZyLYZj1BoxancRlCoqSz+K2llRSFplI8fV4QILHVg3GFdruPswGg6yNf9PDOyprKY9JoeBaFDaLFW1PHzWpORRcjaSnvhmr2UxTfgmlEQnShDfQ09BC1aD+G7U69P1qGrIKKAyOob20CpvVOqi5qRSFxkn9p7WT2tRc8gMjGOjpw6jV0ZRXQsn1eBqyi7DZbHRU1lEZn05hUDRWixSL1GUWUBgUTV9z2+B7spzSyCSqEjPlWKQmOZuCq5FYjCa0vSoac4ooCo2lo7IOi8lEW2kVFbGpVMSmYbVY6WtsoS4tl4Jrko2ovl9Dc0EZJeEJkquKxUJHRc3gYCoJIaC/rYv6rEKKQmMZ6FFhHNDSWlJFWXQK9ZkF2KxWumsaqUnJoeR6PEIINJ09NOYWU3w9nv5BCHL74CRGXWYBVouFnvpm6tLzKA6LR9hsDHT3SXFcZCK99c2Y9AZJ/xMyqE7MxM7eTtbP0vAErCYp/moprqQ8RrJBNRuMkn6m5lAZn469sxOq1g4pjotMksDc6gF5QqWjrBpsgu66Juoy8iSXHmcnNB3dNBeUURGTiq6vH+OAVtL/pCzJScbFmd7GVhqyi6hKyMDOUVrs/HtBS6fSoFdLIMSa1Bya80ok/W9upzG3hOrETBRKJdpeFW2l1VQmZDAwuIO6u66J2rRcmnJLcPb0pL+tk5aCMqoH232gp5f28hqqkjLpa2rD3tlJ0vKsAprySnD2cEczqOXVydlye3RU1lGdnE1vYyvO7m6omttozC2mKa8UOydH1J3dtJZUUpOag1GrR6/W0FXTSG1aHr2NrSiVClQtHTTll9KUV4rNaqOvqY328hpqU6VFRk13Lz31zRIsvaEFk06Pur2L5sIymvNLpb5eUUdHRS116XnoVWoJvtnQQkN2Eb0NLWi6elG3d9FaXCHlsdpoLiilq7qe+ox89P0auqob/h9p3H+b/j/rQw83SPcoFNz67guMmDmZ7AuhTFm9lDkP3MFt77/Ipc83MXHFIuY+dBej5k4natshiYjp68PDGz8n49QV4nefZMio4fhPm4ijqwtWi5Uho/zx9PeTVmqtNgZ6VDg6OzHtjhXo+zV0VjfgMsQT7zEjmbh8IT11TWh7+rCzt2fsojl01TTSmF0o2WSM9Md3whhcvb1wdHGSLUXcfIbg6OqCQqHAY9hQXL29cHB2kq3gXIZ44ujiLFnJDBLwHZwcUdpL5Fk7e3vsHBxQ2ilRKJUgBGqztOHCxSYBmYTVhhAChUIBgNVsxmI0IWw26Z8QGDQDWIxG+bNxQIdJq8NqsSCsVnmgZzGasFklsvxAVw8GtQarxYLNasWgHkDb04fZaMJqNkvU07ZODBqJ/o+QAuyBrl4sRhNWswXjgBZVSzvGAR0Ozk4IIeipb0bbo8JiMmOzWFB3dKFqkV6gFqNp8AXXiK6vX4ZbdNU2om7rlP6/0cTAIEHWoNZgGToEq9lMe1k1ms5uLAYjNquN7romehuaMWn10iRGXz8dFTVoe1RS+Qdn9FXN7Zh0esyDVPTO6gb0KjVmvVESguJK1B3dsid1a3EFPfXNmHQGTHoDfc3SAEHbI9mdmfQGmnKLpcGaVofFZKaruoGu6gb06gFMOoP0wissR93RjV6tGVydL5Lvax4Uk7ayarS9/RgGtGi6emjIKUbV0iHXeX1mPp3VDRg0WkxaHR0VtbQUVaDu6MbJ3Q2dSk19ZgE9DS0YBrQYdXo6ymtoK6tG16fGOKCjs7qBprxS+ls70KsH0Ks11KRk01XTgHFAi2FAR31mAa3FFWi7ezGMGEZ3XRMN2YX0NbVi0GgxqAeoGtx2LU9G5BTRXFCGetDSpbexhZrUHLrrmuSXb1txJW2lVWh7+zFq9TTmFtOYUyQ9o3oAVUsH1cnZdFU3YBzQoe/XUJWQTktRBQNdvXj6+9GUX0p9Rv5gW+vob+mgMiFdLotBPUBlfDpNeSX0t3Vi7+hAS1EFtWm59NQ1YdIbULW001FZR2tJJdrBwXxlfDqNg/Vt0upoK6n6hyOGHk1nN6Ut7TQXlqPp6sFjuO/gjoU8euqbMRuMtJVW05BVSEd5DQaNFm2PitKIRJrzS1G3d+Hk4UZlfDq1qTmDUE4LHZV1qJrbaC2pQt+vQadSU3w9Xm57i9FEXWouNak58oRMb2Mrfc3ttBaVo+vrx6DRUhwWJ4lUYytWs5m6jHzay6rpqKjFYjKhbuukLDKJpvxStD0qXIcOoTQ8gdq0PLprmwBoyi9B36+htaQSs8GItq+f4uvxNOYUoensAaWCitg0WosqZMHqqKqjv62T1uJKacJOp5PLom7vAiGoSclB1dwmb9NXNbdLky0FZRgHJAvGytg0GnKKUA1uuWvKK8ZqttBeViMFCd29lIYn0JRbjEEzgIOzM5XxaXRU1NHX1ApAy+BvtbW4EmGzoVOpKY1IpCG7SLbOrE7Jpq+pjZ4GaVDeUVGHQaOlpbBczlMenUJjbjG6vn7sHByoz8hF29tPd20jIMF2/iv970/enpKLS1evmpYuFX999Rxzp4ymq0/D0jmTiDnyNVeic1i/L5DFsyYwcfQwbpk7ia3Hwpg42o8p4/zZ8sm/OHQ5nuD4PLzcXXjp4ZV4urug0erxH+rJjIkjeeqeJWj1Rtq6VTg5OvDArfPQ6AxU1rfj7ubMhFF+tHT0UdXQjqeHC+6uziyYMY7qpg5qmzuxs1MyaYw/Y4e34OHmjLOjA17uzozy88LLzRmT2YJSoWCouyMezg442ClRKhU42ilxdrDDXqlEqVCgAOwUCpQKiW7/d1LI/5GS6m/Kvesg5Z7/ZpOmzSb9Q9rNgLCBxSwR7oWk/0KvQ5hN0nVCYDMasOp1CItF8ra3WjGrVFgNeoTVCkJg7ldjUUuDf5vVgkWnR9/VjUWnRwxONvQ3t6HvU2E1mRFWK9oeFf1tnZh0BiwmMxaTiZ76ZkmDDdKkRW9jC5qOLimuMJnR9qqkawbt0GxWKx2VtWg6ezAbjFJc0d5FX1MbJq0Oi9GEQa2ho7IObU8fJp1eniDvb+0YJFZL7hndtY3o1RrMBiMmvYHW4grU7V0YtTqEzUZHeTU99c0YtXrMegP97V20l9eg7enD0c0Vq9lMc34pfc3tmPUGLEYTfU3SRKOkjQZpUrewHHV7Fwb1gLQ6n1ss6YbeiGlwkretVNJ/d18f9P1qmvJKUbV0YNRosZjNNOYW01XdgEE9gEmnp7uuSY4rAIxaHfWZ+VJ5B3SY9QYaa5toK6uRdG5AR29TK425JfS3dmDo12DWG6hNzaGruh7jgBaTzkBzfimtxRUSXd/Nhf7WDuoz8+lrbJWuGdw58LfmGge0tBSVS/o/SIDXdHZTm5ZLV22jFFdopEFqW2kVul5pANpWUkVDViF9TW3o1Rq03X1UJWVJLiQDOoyaAaqTsyTN7ezB3smJ9vIa6gb13zgYJ9Wm5tJeVi0PbKuTsgbjinYsBiPtFbVyjGPS6Rno7pOfUdujwqjVU5uaQ0N2kRTHDXrKVyZk0FFRi3FAi7anj7LoZJoLyiTbOidHatNyqcvIo7ehBcvgRHBjrjSZ/LeWl0Um0ZRbjKqlHYVSSV16PjWpOXTVNEhk/vpmmnr6aC2ulLRcraUkIoGGrEJ6G1sxG0005BRSm5pLZ2Wd1AdbOyiNTKSloFSyfXVxojQikfoMqe1tVivNBWV0VtbRXlaNSadH26Oi5Ho8TXklkgWgqwsV0SlSG1U3DP4+qjHrjbQNbh3X92soCo2lIbsQdVsnZqOJqoRM2koqpEkzm43ehiZMWi3NheUY1AO4DPGkJCye+swCVM0SNK4uIw9NRzdtZTXYrFbUHV2URCTSlFeCXqXGycNN2kGXXypvhW8pqkChVNBaXInNYkHX109peAKNOZIuA1QlZNBT10x3nRS/dFZLsVpzQRlWsxnTgFaql8wCBnqkicya5Gx0PSo6B+OXnoZmyqKSac4vw2IyYdToqIhNpaWoAk2XdJSvPjMfi8FER6UEJVa3dVEamUhjTrE0RtFJk4ld1Q3yb/FvIOC/nf7tU/j/i9N/Cwpor6wVmkGw1d5H3xRpJy+LpvwS8f3E1eJtxon3HCeLnEuh4tq6P8TRFz4RO+59UUT+cVDUZxeKhP2nxaUvNolTb34j9JoBUZeZL5IPB4hzH/4oGvNLhWFAK6qSMkX09sMyNORvmFnwT38Ko04nrFaraC4sE/F7T4qatBwhhATlKgyNFclHJEiEzWYTLSWVInbX8RsQLrVGFARFidJBcJfNZhPNhWUyZEkIIQZ6VSL7Qohor5SgOFarVdRm5N0EaVO1dYi0E5eESa8XQghhMZlEeWyKDLU6mVonxn0dIi6cCJXzGAa0Ii8wXIZl2Gw20ZBbdBOARdPVIzLPXZPLYjGbRXlsimgrq5Kv6aptFEVhsTfdN/fydRkIYrPZRH12oajNyJOv6e/oEjmXwuTPFpNJFIfHi56G5httWlEjA83+rs+sgCBhGQSCWK1WUZWcJZoKbsB2eptab4LMmfR6kRcYLvcNm80mGvOKbwL/abp6RMaZqzfALiaTKIlIuAky015Rc1N96wbBdIYBrVyWysQMue2FkMA06acD5fsadXqRfTFU9DS23KiXrIKb6k7V1iGSDp2ToSdmo1EUBEeLxn9A5pqLykXGmUD580BPn0g6dE6ouyXomcVsFqVRSaIkMulG+StrRfyeE8IyCCHS9atF2snLoqWk8kb5E9JF5tlrN5U/cttBoVdL8BqjVieyAoJk8J/NZhO1GXkiduexfwBjOkTU9sOis0YCu5kMBpEXGC6yAoJuqv/QDTvkvqru7Baxu0+IqkEAi8VkEoWhsSJm5zG5LC3FFeLq91uFqlWCEA30qkTiwbMi+0KI/MwlkYni6ve/y1C89spaEfTjn6Iuu1B+5tTjF0XMX0fkZy6PSxXnPvhRDPT2CSGkvhy6cafIuSz1Tb1mQGScuSoDTGw2m6hOyRan3/5OtA7WXU9jiwj/bZ+I/uvoTe18/NUvhEErAWPqMvPF2ffXyWAlVWuHiPrzkLj4+S831dOBJ98R3fVN8m/x/Mfrb8DrOrpE7M5j4uDTHwiL2Sz3jb2PvinK49Pkd8fFz3+R76vp7hXxe0+K7Xe/IDRd3dLv7HqcOPDUuzIAsbW0Slz55lex/8l3hM1mEwO9KpF08KzYuvIJ0ZBbLKwWiyiNShKHn/1QXPnmV6luK2rEtR+2ia2rnpBBdClHz4utKx8XWQFBwmqxiPK4VHH0hU/EwaffE0II0VldL4J++lOsn32P6KxtEHq1RqSduCS2rX5KhGzYIf+Gjr/yufhtxePCYrGIrrpGEbpxh1g3eY0oiUoShgGtyDh7Vfxx+zPi2Eufye+AE699KX6YvEYM9PSKnsYWcX3LXvHj1NtFzI6jUr89Hyy23/Wc2Hbrv6R+m54rTr75tfhq+BLRUlwhepvbRPive8WP028XFz/bKLfhX3e/IDbOu1+YTSZRl5kvTr/znfhi2CJRk54rVK0dInLbQfHzzLvEuffXCZNeL3KvXBc773tJbJhzrzBotaIhp0icee8H8YX/YlEelypUbVK7/zzrbnHyja/+C4r3vzD9t3WbWVQjLBZJxybe97koqW4WQXG5Yuiq94TD/FfF8Ns+FAlZZeLz38+K57/eJ+558zcRlpgvotOKxa4zkeKTX0+LXw5cEyq1ViRml4s956LF+7+cECq1VnT3aURkapHYcjhYRKcVC5vNJmqaOsSZ0FTx1ykJTmY0mUVafpXYdjxMNLV1CyGEaOtSifPhGSI0QYKImc0WkVFYLXafjZKheO3dKnEmNFUUV0lgV7PFKtJLmkRQ8g24Wnu/XgTlt4gBw6BuWK2iuntANPXp5Gu0RrNoU+vlz1abTeiMZmEZ1PYvL+aLCd+ECLPxBhzOZjEJm6Zbfr/brFZh7W0TVk3vjfuoe4Wp4UZZrEaD0JbkCKtOAvLZbDahq6sW2sob15j6+kRXbKx8X6vJJLqS0oS24Qa8tr+mXrTE3tB/g1ojSi+HCbPeIN+3Lj1XNObegAP2tbTfBG0zGQyiIDhajnGEkLTknzHOQK9KZJ69Ksc4VotFlMemyAA2IYTorGmQwWNCSLqQee7aTWC3mrQcWcP+LkvGmRv3NRkMIu9qhKyNNptNNOWXiMLQGzBYTXevSDl6Xgb0WcxmURKRIOr+Af5tr6i5Sf//1vK/IcR/a/k/4YDd9U0ift8pWf//fif+Dej7W8szzt3Qf1Vrh4jZeUwGLf+tUWUxN2LVxrxiEbvrhv6rO7tF/N6TcqxqMZlEUVisyPzHfVtLq8T1LXtkmLS2TyWSj5yXYzKrxSLKYlJEzI6jN+q/ul6EbNgheptapfpXa0T6qSsyZPZv7bi27g85duppaBbXt+yV486/45eYQZ3+Wwcufr5RaAZjp76WdhH1xyGRe1nqQ3+/069886us/w25ReL8JxtkSHV/R5eI3XVcRA/GFX/r8qk3v5bhxs2FZeLSl5tkAKKmu3dw3PGL3M7F4fHiyPMfy/2jraxKBH73mxwHaftUIulwgDj8/MfCbDJJ9RSdLI688IkojZJivY6qOnHtxz/Ehc83yn0j9fhFseuBV4SqrVNYrVZREZ8mjr/yuUjYf1oIcSPmOfjUe8Jmswm9ZkCknw4U2+98VtSk58oae/KNr8WlLzffqNvNe8Tvtz4ldP1qYdTqRGZAkPjr7udF2snLct2efuc7ceApCUTb29wmIn8/IH5Z8IBoLa0SRp1e5FwKEzvuf1lcW7dNjofPvr9O/Lb8MWE2mYSqrUNEbz8s1s++RxQERwuTwSByA8PFrgdfFYef/1jug+c//ln8OO12oWrrFP0dXSJm5zGxYd59ImLrfmE2GkV+UJTY8/AbYuvKJ+Sx2oVPN4hvxtwiqlNzhKarR8TvPSk2LXxQnHrzm8EYNEbse+xN8cOUNcKo14uW4gpx6fNfxFcjlois88GDsdUpsXnxQ2Lf42/LbXjgiXfEt+NWCm2fSrSVVYnLX28RX49aJlKPX5Rjqy1LHxa7174mzCaTKIlMFAf+9Z74Zuxyoe7oEm3l1SLwm1/FN2NuEQn7T/9/C4r3n0q6XhXB6/7gjYDdsnXd6Bcf59vsYI6/9BmNOUWMnDWVyauWELJ+B1nngphy6zKGTR5HeXQyGaeu4Ojqgr2jA101DaQcOU9tWi7zHr4bi8FA8qFz5FwIZf7j9zH/sXtJOnCWtGMXGehRcet7L9IQm0bMX0epiEnhmT0bGDp+NGEbd5EdEIzvxLEsf+UpMk5dIWb7EVoKy5m8ajG6vn4Z0nbruy8wZfUSYv46SvyuE5gNRm556XHqc4sJ/OY3qhMzeePCHjz8fAhZv4O0YxeZuGIRcx68g/zACILW/UFnlQT8EkJw5atfKbgaydqfP2HUnGlkR6cDHqRu28dTLz1AXWY+lz/fRHVyFp/FB+AwaCWVeuQCC564jym3LiPnYijXvvsdTWcPM+9dg66vn0ufbaQwOIbn9m9i6IQxxGw/QuTWA/hPm8js+2+nKjGDi59upDG3mB+LI/EYNpSr324l41Qgt334MuMWzyXt+CWC1v2B1WRm3iN3015WzYVPNlARm8o7gQdw9RnC9V92EbvzONPvXMm0O1ZQGBzNpc830dfYKnuKX/rsF/KvRvLo5i8ZPn0SsTuOcX3TbjyG+TL/kXuoSszgwicS8OKLpIsMm2rj6je/kX4qkFtefIxJKxeTcuQ8QT/8gdlgZM6Dt9Nd18T5D3+mOjmLF49sxXO4HyE//0XCnlOMWzKXOQ/eQc7FUK58uYW+plbGLpqDnYM9Fz7+/7H339FVXOu2L/qbUTnnjIRA5Awm2YADxjnnuGwvey0vp+WcEzbGOBsDNhmTQYBQBAlJKOecc845T8003h8lCnP2va/d287e593z7h6t8ccU9dUcY1TN6r2+8Y3ev6As5jIb330J34VzuPjtLmK3/YGlrQ3LH7ub8otJnHrjS7qq6nk5fC+AvIVjwd03M/vmtST8epCoL3/FpNczd9O6qb58RmtRBfdv+wAHH0/C3v+WjENn8JgZyLJH7iJ17wnOf/Q9Y30DeM2ZQb+FlpOvfkZ9Rj5rXniUacvnE/7JjyTvOoKFrTXLn7iXkoh4zryzheHOHp4+8B0IwclXP6MqMYPg61cw/66biN78K/E/7UeYzczZtI7uqjRO/3sz/c1t3Pr+P3Hy9eLU619QGp2InZsLq59/hLjv/uDi1l0YdJO4B0+jq6qOk699QU9tIwvv3UjQqiWymKTGypLlT9xLfmg00V/+yuTYOA98/xEmvZ4Tr3xGR3kNnrODWfrg7Zx5ZwvZR8MAmLNxHXmnown/5Ed0wyOseeFRHH08Of7yx7QWVWBpZ8ua5x8h5uvfSN9/CiEETgHetOSVEPbBNsb6Bwleu5zpa5ZxfMquRKXRsPyxu8k+Gkby70cRZjMb3/sHuuFRzr27VVpJd3dlxeN3c/xfn8rlmiE3riJ17wkSfz2I2WRi4b0bsXd3JvStrxnq6EZjZcl1T91PzOZf5a0jjt4eVCdlcunHfZiNRjxnB0vz8saXDLR2oFAqWfzA7Rx96UPKLyYDsOpvDxH+yQ/EbvsDo16Pha0Nhecucvbdb2SBleA1y7j0/R5KIuMBmL52GVGbf+XClh0YdJOotVryzlzg0ne7ZfE6O3dXfr//JQrPXZz67MLFrTuJ/uo3SfxFoaAkMp59j70qr4rPvW09ex75F3mnogBQW1pw4ZtdxP+4V7Zj8Vkwm6gvf6WjvAYAj5lB7HvidXKOnQdAoVKR8PN+Mg6EohsZBcDK0Y6vF90uC+torCw59OzbZB85Jz/jMw+FsufBfzIxNAKA78LZbFlyhyxep1SrOfz3Dyg8e0GOKY1OJPLzn+VsvLWzA98sv1sW1gE4/eZmKuNSJSEwQGtlxQe+K2VLPZVGzbfX3SsL3gGE/nszDZkFcszE8Ai5JyNlYT2VWs3WFffSUVYtx5x89TM6ymsRZmk1c6C5Hdz/j9Dsv9t/RcsrbyQ5r4q3nrkNDxep7P6u9YvJOPIpD7/9G0LAivnTcXO258NfQkkpqOH1p25l5jQvYlKLORCWwqa1C1AoFBRXt7DjRDxdfUO8/extlNS0svdMEhfSSvj23w8T5OfOb8cucTwmEw8XB1557Bb+DE9lz5kkCiqauH7JTAZHJ/h6dzhRyUU8decabrxuDj8dvsC+M8mMjOt45p61FBTV8uXv50nOq2L/5hfw8XRl27EUTiaUMn+6B3euDiGhspsDaY00942zyM8Rgxku1fRQ1T3K6mnOeDtY0jo0QfOAVLnmaWeJ3mhiaEKP3mjGxdYCpQL6Ryawt1SDcRKh0cLYIGKgFYwGFFb2CP0kxtpczL0tqIKXobC2R1+Wgb4kFYWNPRr/WUw21TAYcxJ9awMeL3+KymSmO/QwgynxOK67BavgEHrj4mjauwfz+DhOq1cz0dJOxebv6E1OZ+HP36B1c6Xklz2U7TyI27KFeG9YQ11cCpfe30JfdQP/LI5FodVy/t1vKDgdxa0fv4r3/BCSdx0h8otf0Fpbsfi+TTRkF3Lq9S9oyCzg9bgjqC0sCP/kB9L2nJA5Tvax84S9/y3jA0PMvuV6Rnr6Of3GF5THpvDojs24BPgQs2UHl37ci9fsYBbcdTPFkfGEvvkV3TUNfFQQhY2zI6ff/IrCsxdY/+ozBK5YSPwvB4jevB2VWsXiBzZRl1XIydc+p7WoghdO/oaFrTXn3ttK5p9nmX3LWubeuo7UvScI//gHJoZGmLl+FeMDQ5x45VPqM/K568s3cQ8OIOLTn0jadQQnX0+WP3YPOcfDOfPOFobau/h3wjHG+4c4+ZokxrziiXuZvmYZMV//xqUf96LSaFjywG3UZ+Rz+o0v6W1o4fFdX2Fpa8OpN76gOPwSAcsWsPi+W4n7fo+EHRM6Zly/nMaefk699jmdlXXc+MZzeIRM58xbX5F7MhIbZ0fWPPcwyX8cI/LzX9ANj/D30zsZ6erlxCuf0lpUwdzb1hNy42qJvxwMRaXVsPiB26iKTyPsw+8YHxji7s1vobWylHHZNdCP6566n/CPv5dxefrqJVTGp3H23a2MdPdy3ZP34TlrOide+YzalGwsbG1Y/dxDXP7tTxJ+OYDZaOSxnZvpa2jh9JtfMdTeRcDyhcy59XpZtFqpUrHo/k2URiVy6fs9GPV6Nrz2LAqlglNvfEl/UxtWDnas/ttDhL75FSVT20sDli+g8NxFLnyzE4Nukrm3rcdjZiAnX/2cnrom1BZaVj79IPE/STbNABY2NnRW1BD15a/oxydwDfJn7qb1nHjlUzor61AoFCy462bOf7iN3JORACx/4l4uGfYS8dlPTI6OYWFjTfljdxP2/rey2KvPgllk/nmWrMNn5b4lbj9I+Cc/yEK0ZRcuk/jLAVmITm2h5c/n3yV9/ykArBzsSP79KOc/+k7Gy1m3ZHLylc9oypW27M66eS1H//EhqbuPy9ZqSbuOEPfdblmI1mNmEEk7D9OQWQCAyzQ/Trz6GUk7DyPMZhRKpWQpfTBUFpVVqVX8cMPD1KbmABL+n3rjC1L/OI7ZZAKgMOwiR/7+viwq6zM/hB83PEpNkrRlRalWc/bdb8g5Ho7ZaASg2seT+J/3yyJ5Whtrfp0S373SYr/dRWn0ZdkeVwjBx9PXyRV7Ko2GXzc+TW1KthyTtPMIB596U7agHWjt4JPgdXJlgEKl4tdbn5bF+ADif9rH0Zc+lCvz1BZaPpu5QeZwCpWKn25+gvaSKjkm++j5/y+I9n+j/U+nBP6L2/+YtajPKhAvESByT0eJiM9/Eqff3CyvXh3829ti9yP/EtUp2aK7tlHUZ+aLyzsPX83uGY2ivaJGXPppn7y6ZzIaRV5otOiouGrHMtDacY21xhUbrMmJq1nv7rom2epOCClbV3Hp6kqpEEI0F5SJob9Yuo0NDl2TgTWbzaImNecau5P+ts5rrFcMk5Py6vuV1lpSKa+KCyFl5zoqpf5/Hl4qAt6LFOWZRdfE9Ld2iIG2q7Ykep1OtJVetVUzm82ipaj8Gtu60f5BOYsohJRdbC4qu+a83fXNsk2WENKq/V8z3iaTSTTll1xj6TbY0SV6/7JCr9fpRHPh1fOazWZpjH+xdBvtHxQdlVfPazQYrrFMEUKIrtrGa8Y4MTwimguuntdkMona9LxrbOv6W9rluRNCyu7Wpl3Nvl/J1F6ptBBCsv9qzL1qdaPX6a6x5jObzaK9rFrOXgshZWr/ulpgmJwUZbHJ8hjNZrPorK4XjTlXxzQ2MCiK/2KhYzQYRHVSluhtuLq60VPffE11w8TwiMg5GXHN/V2XkXdNf/tb2uXMtBDSKkTu6SjZts5kMomGnCJRFpssHzPQ1inS9p+8WoUwNi4Kz8fKVRMmk0k0F5Zdk6Ef6uwWiTsOydUN+ilLoCtZZrPZLNpKq0Tib4euxnT1iKTfj4juKds6/cSEKItNkm1grlS/RG3+VR7jSE+fSN17QlQlZcrXoyI+VVz6ae/V61FRI8I+/l6+jqN9AyL94Gm5v4bJSVF1OUOc+3CbnKHvrK4XEV/8JM/daP+gyDxyVraBMer1oiYlWxx7+WOhGx+XLS6jv94urx6NDQyK7OPnReg7X8sxtWm54vDf3xfd9U1STF2TiNm6U16pGB8cErmnIsWBZ6SVaaPBIOoz88XRf3woyqeuSU99s7j43R/yeccHh0ReaLTYdf+LYrSvX4rJKhDH/vWJbPnT29giLv20T+x74jVpNW1oWBScuyB23P28aMwtlmNOvPaZOPfBt3JM/M/7xM8bnxR6nU5MDI+IwvOxYtd9L4qsY+eFyWgUDTlF4tSbX4p9T74uhJCy+gnbD4ptax4QvY2tcnXS7w+8JCK++EWYjEbRmFssTr/1lfhhw6PCZDKJvuY2cXnHn+LbVfeJsotJYmJkVBRFXhK7H3pZHHz2LWEyGkVTXokIfWeL2LzoNjE6MCjF7Dostq25X1z6eZ+YGBkVJVEJYvcj/xI/3viYMBoMoim/RJx57xvxacgG0VxYJvpb2kXS70fEtrUPiGP/+kToRsdESVSC2PPoK2Lzwk1CPzkpmvJLxLkPvhWfhmwQJdGJor+lXST/cVR8t/ZBceCZt6SY6ESx97FXxRfzNopJnU6K+XCb+DRkgyg4Hyv6WztE8u5j4vt1D4t9T77+3yv0/4Xtf5zb308mCNsVfxfldW3intd+Fkci08X2o7Hi4bd+E89/ulf87eM9orKhXVQ2tIu0gmrx9e7zIresQQgxtbpeVCMOnruK5eMTOrHvzGUxNDIm/62oqlmk5FVdc8y5+KvWoEIIkVVcK6/QCyHEwNCoSCuolj+bTCaRkFUmr9ALIURLZ5+orL9qdTupN4rcyqtYKYQQdd0jYmj8Kk7rDCbRNfKX1XazWQxN6K+JMRhNwjBVtfDgrjSx/rtEYfoLDprNZmHSjV3DRcyGSWEaG7762WQSht72a86r7+8RxpGrx5gmdWKi7ao9rtlsFiPV1dfY1ul6+8R489UxmvR60fcXi1chhOitqhMTf7HmHR8cuoajmYzG/4D/fc1toq/lav8mx8b/A69ozC26xrZusLNbdPylQk+v04m69LxrYlpLKq+15u0buIaTGfV6UXU5Q14VN5vN/8Gad3xwSFQnXbXmMxoMojo5+xrbut7GFtHwF/yfGBkVpTGJV8dsMomG7IJr+OFAW6eo+IuV8OTYuCgIuyhbuplMJtFcUCYac6/ywaHO7v9Q3VgcGS9bupnNZtFaWnUN/g9394qMP0Nl/NfrdKLsYpJoKiiVYzoqa2WufWWeUveflKsbDJOTojIxXT7vlXm6soIshISXGX+ekTmZUa8XNanZImvKvs9sNoue+mZxYdsumauODw6J7OPnZUtlo8Eg6tLzrln5721sETFbd8r2g+NDwyL3dKRcqXjlfjr/yQ/yGPua20Ts97tlG+aJkVGRfzZGxP2wR45pzC0WJ9/4QuZx/S3t4tJPe0XuaalCVjc6JgrD48SZd7fI16Mpv1ScfOML2bauv7VDJP52SOYVk2Pjojjykjj03DvSCr3JJJoLSsXpt76SLX8H2jrF5Z2HRejbX8sxpTGJYs+jr4rBzm55dfrMe9+IxB0Svxps7xLJfxwV+56UVrwnxydE2cUksefRV0RNarZ8r5/7cJtsLzfU2S1S9p4Qv972jJgYHROT4xOiPDZZ7HviNZF24LTM4cI+/l7sffw1KaarR6QdOCV+vPEx0VFVJ/QTE6LiUqrY/9S/5fltK6sW4Z/9KOP0UFePSD8UKn688TFReD5WiolPEweeeVPsf+oNicOV14jIL38WXy+9Uwx3907dk2fEz7c8IS5u2yX0Op2oTEwXh557W+YV7eU1InLzr+LL+beKuow8MdzdKzIPnxU/b3xSHP77e1djnn9XfDHvFjExOiY6KmpE1NfbxZcLbhWp+05MVfaeE7/c+pTYfsffhF6nE1WXM8Thv78vPpm5Xgx2dImOihoRveU3sXnhJhH34x4p5liY+GXT0+KXjU9djXnxffHJjHXSe0dFjYjZulNsXnSbuPDtrv93rtArlZKO34mXP+GWd1+iq7qBBXfehNlo5NCzbzMxNMLGt1+k4lIqkZ/9xHBXL7e+9w9cA/049s+Pac4rwcHLnetfepyYr38j7rvdTI6N8+qFQ0wMjxD65lfUZ+Sz9KHbmXXTGmK27CDz0BnG+gb4pjWThox8Ir/4hYbMAh784WNcA/2I+lKy6LBxduSD3AgKzl7g8m+HqM/I5/2sMIx6A9Gbt1MWc5nFD2zCf/FcUveeIPtIGF3VDWxtzaC1tIq47/dQfjGZR3/7AgdPdxJ+2U/B2YvYe7jyr8j9lMelkPLHMaoS0vm4KIbJsXEu/biPkohLrHjyPjZ98DK1pXUozXDyubf4vCyOttIqknb8SVH4JZ4/9gvWjg4k7TpCwZkYPEKCeObA95THpZBx4DTVSVl8XnGJke4+knYepvDcRW769/O4BPiQdeQcuScj0Y9P8NblkzTnl5K69wRFYbG8PmUVk7L7OPmh0cxYt5L7v32fkqgEso+cozG7iC9rLtPb2ErqnuPkh8bwwA8fYe/hSuahM+SdisLKwY6XzvxObWoOGQdDKY1O5MO8SCZHx0jbd4q8U5Fc9+R9uL8ZSN7pKHJPRNDf1MZHBdG0FpWTfuA0eaejeSl0JxY21qQfDCXvZCQ+80N4/PctlEYnkn00jJrkbD6vjKevs1WKORXF7R+/grO/NMa8k5EIIfh3/DFqkrPIPHyOorBY3kk/g3FST8bBUHJPRLDwnlvwXTCLvNPR5J6IoK2kkq/qU2jKLSbzz7PknY7imQPfYe1oT9bhc+SciMA10JfgtcspjrhEzvFwKuPT+aw8jv6mNjL/PEPuiUhufusF3GcEkn3sPLknItCNjDHvtvWUxyaTc+w8hWFxvJl4HJPRSOafZ8k9EcGcW28gcOVi8k5FknM8grbiCubfcSN1ablkHz1PwZkYHtu5GTt3F6kvx8Nx8HJn3u3rKTh7kZzj4VQnZvBJyUUasgrIOhJG3qko1v/rKXzmh5B99Dw5x8MZ6xvguifvoyhc6n9pVAKvRB+gpbBMijkZKSvY5xwPJ+d4OB3lNSy+fxNVCenkHA+n6HwcD/74MQ7eHmQdlvpv5+7CiifuIe9UFNnHzlOXlscHOecpu5hEzvFwCs9eZO3fH2XaioVkHzlHzvEIdCOjrH3xMUqjEsg5HkFlfBp/P72DyqnvKTgTw/Q1y1h4z0ayj4aRczycvsZWlj96F+UXpPOWx6Zw9+Y3qU3NIfvYefJPR2Pj7MgN/3iCnOPh5B4Pp6WwnOlrlpF7MoKc4+GUxSSx4sl7acgqIPvYefJORWE2mrjhn09SEZtCzvFwmnKLeeKPLRScvUD2sfOURiUQsGwBzfmlZB8Nk1Z4e/pZ/vjdlEYmkHM8nPqMfG5550UKz8eSeyKC4vBL2Dg70pxfQkFoDDlT9/v0tctJ2nWYnOMR1KZks+jejZREJZB7IoLCsFiUKiWNU8I2uSci6K1v5u7Nb5Gy5zi5x8OpvpyJ5+xg6X46Hk7huVj0Y+Mse/QuisPjyD0RSVd1PauefZC0/afIOR4uKfu7OlESlUBZ9GXZ/iZo1RJituwg53g4nRW1BF+/nIxD0u+jIi4VtYWWikupNGUXkn/mAmN9Azh4unPx29/JOR5Oe2kVTr5eZB0+S/7paNn+pqWwgqLzcbL9zdzbNxD3/W5yT0TQUliOtbMjmX+epSo+jfILyRj1egKWLSDsg23kn45iuKsXz9nBxP+0j9wTETTnl6K20FIUFktLYTll0Zcx6vXYu7ty/qPvyDsVxVBHN3buLsRt+4Oi8Es05UgZ97ILSaTtO0lpVIK0l9ZgIPyTH8g7FcVgWyc2Lk5ETNlfNWQVApB/KorsI2GSZc6EDu95If+/gsv/VzalUsGk3sgLn+1j7nRfevqHef3JjUwajHy8/QxWFhq+ef0hdp6M5+cjsUzo9MwI8KS5o4+3vjtGa9cAt9+wkNtvWMAHv5zmWHQmCuDWNfO5lFnOZzvPUdXQwTdvPMR0P3c++jWUyKRCPF0duGfDEg5HpLP9WBwlNS0kHfiQSYOJL3aFcSmjlHtvWsryuYHsOpXAsagM6lt7aLz4A8XVLXy7P4rLOZX88M5j+Hi6svN8LtFZtTjbWnF280NkNfQRVthOQfMAe59ehkKpILOpn9reMWZ72OFmo6V7dJLuUT0TBhMr/J0wmMyMTRqYNJhwsNaiUioYHJvEwUKJeXIMpdoBMT6EGOmBiREUfvMQkzpMrZWYe1pQ+cxEWIZgqC/GWF+C0E+gvvNF9J0tjOUmM1FZiOvjr4BKxUDiBUZy0rEKmoHHky8ymJVJz8VYhstKWXLkKBOdXbQcP0PnhXhmvP4PLDzdqDt5nqbzF1CqVNx44g/acwop/jOUmqgEnr58GqPBSObeExSdjWH+3bfg/uErFJ67KD9zPiuLo6OilrR9J8k/Hc3TU5ibcTCUvFNRuAb68szBH6i4lEr2kXNUXErj09JYhjt7SJ+yIr3x9b/hOs1Xep6fjEQ3MsY7qaHUZ+aT+edZCs5c4I34oygUChn/QzaswnfhbArOXST3eDhNuSV8WZNIW3kNGYfOkHcykod//UzC3ClstHZyIPj6FZTGXCbn2HnKLiTxcVEMo70D8nnX/v1RvGbPIPdEBDknIhhq72LupvVUJ2WSdSSMgjMxvByxD5VGI+P/tBULmb56CfmhMeQeD5/iW4m0FJaTdfgceaeiuO/b96Rn7REJC7XWVsy/40ZJ2Ph4OOUXkvggN5zW4gqJv5yM5Lqn7iNg6Xyyj0n439/UxrJH76b8ooQdxefjeOHUDjotLcg8fI7cExH4LZ7L3E3ryD0ZKc/LnI030JhdRM6x8xScvcCdn7+BW5A/WUckLqLWarnuyfvID42WedE7aaHUJGfJuLz0kTsJvn65jOVD7d2sfPoBqhPSyTkeQdmFJJ45+D31mflkH5Vw2Wd+CEsfukPuf3tJFfPv2EBdeh65x8MpiUrg1vf/SVNeiYzLKrWadS8/KYtEN2QW8ErMQYrCJQHo4oh4Ft67kbaSSqkvJyLQDY2w9oVHqUnOknH5kd++oCQ6kdzj4RSGxeIREkRHRa30PSci6GtsZdG9G6lLy5P51/pXn6E8LoXc4+EUnL2A1tqKjrIais7HknM8nK6qesm29uBpcqfmadYta6lKlOag4EwMRr2BNS88QkNmAbnHw2kvq+aOT1+X57o8NgVnf29qU7LJORFB/uloxvoGWHjPLcRuk3C5taiC5Y/fTc7x8+SciKAsJglLe1tJMT42RcZY7/mziPthD7nHw2nOLyVgxUJyT0WSeyKC0uhEABoyCkjedUTC2PYurv/HEyT8sp+cqfvUwduDvFNRFIbFyng5d9M6apKzyTsZyUBrB7NvuZ7E7QfJPRFBfUY+Vg525J+OpiYlm+LwS+jHJ/CcHUzEpz+SezKS/qY23IICSN51hNwTEdSm5qBUq6m8lEbi9kOSfe/oGAvv2Ujk5z+TdzKS3oYWbFydSfrtEKUxl2XBvrbiSqovZ8n2vb6L5soV2T11TVjY2pA4Zb9cfTlzyvGskNaiCorCYpkYGsHJz4uoL36h4MwFuqrr0dpYc+GbnXRVSU5KwmzGd8Gs/xTs+9/uhR6FAqVajcbKkqGObklxsKgcaycH/nb0Z8piLuM+M5CAZQtY8cS9xH2/mzkbb2Da8oW8ny2R6+b8UrRWltz52Rssf+xuknYexmf+LBy9PXj1wiFyT0SgttBiYWPNPV+9zdxN6yiOiMfKwY6QDavlFy7/JXOxcXLgvq3vMXPddZKns0LB4vs34TEzkLxTUTj6eGLr6sx9W98jcOVibFwcUapUrHn+ETxmBlKbmotSrcZ3wWzu/PwN/BbNwXPWdLTWVqx/9Vk8QqYzMST5xs6+eS02Tg74LpiFtZMDlrY23Pzv5/GYGYhroB9KpRKluzsOE/2see5hALznzmT9q8/iEuiHs78PWmsrVv/tIRx9PCQhPSBkwyq0VpZ4zZmB1soSK3s71jz/CI4+nvjMD0GpUrH4/k1YOdoz2CaVtPgumsOa5x7G0ccTOzdnrBzsWf74Pdi6OmHr6oxCoWDWTWtQazX4LpyNQqnENcifFU/ci62bC25B/mgsLFh470Ys7WzQT0gCNwHLF2AyGnH08cDCzgYLG2uWPHgbVg52eM6ajlKlYs7GG1BrtXTXNgKST+XSh+/ExtkROw83rBzsWXDXzWitrWTRweDrlyPMZlwC/VBrNbgG+rFo6rvdZwSitbJk7qZ1qDRquQzJb8k89OMT2Dg7YOVgh62rM/Pv2IDG0gKXab6oNBpmrl+JEAKvuTOkvsydycJ7bsHCzgYHL3dsXZ2ZvfF6lGoVSpX0L2gSOOF5AAEAAElEQVTVEoyTeuw93NBaWeI23Z95t0vndQuehqW9HSEbVkmKrO1dKBQKApbOZ3J0HAtbG0mM0deTORuvR6VRY+/phtbaiulrlmHUG3AN8kOlUeOzYDbzBobQWFlg7+mGg6cbIRtWApI4otrCgsCVizFM6LBxdkBrbYlHSBBzNl4vzdH0AGxdnQm+frms/K5Uq/FfOg/dyCgWNlZYOdjjGuRPyI2rUSiV2DjZY+3kQNDqpRgm9Tj6emFhY43vwtmMDwyhsbTAzt0FZ39vZq5fCUIwMTSCpZ0tAcsXMDk6jpW9HRa2Nni7uTD75rWo1Gqc/Lxw9PZg+trlmAxGOsprsLS3xX/JPCaGRtBYWWBlL90js25cJYlIWlti7+FK0KolGHSTkuK7kz2+C2cz1j+ISqvBxsUJt+AAZtywAmEyMdjRjY2LE9Om+mJha4OlnS0Onu7MunktSpUKW1dnXAL9mL5mGSa9gZbCcuzcXfBbMpeJoWE0VpZobW3wmDWdkA2r5EeXk58XgSsXo5/QUZuSg42r0zV9sbC1wTMkiBk3rMBsMtPX0IKTrxcByxeiGx2nOjEDSzsbnP29mX1zP0qVEgs7G9yCA5i+ZilGvZ6m3BKc/bwIWDZfEvxLzEBjY4XX7GBmTvVFr5vENdBPug91k1QnZWHr6oxmkQXjA8OoNGo01lZ4zprOzHXXSWrUdU24zwhkbIWkalyVkI6Voz3ubs6M9krzorW2wmNmINPXLseol0SZXKf5IMxmdCNjVCWko7W1xnveTGbdtBqFQoHRYMA9eJp0v+gmqU3Lxd7DBRtnB9lixsLGCs/ZwcxYdx1ms5mB1k48ZgaiHx1HPzZBXVou1k4OOPl6MdY/KMXY2uA5azrBN6zAZDTSUVEr/fYttOjHJHtKCzsbfObPYqSnn6qEdJQaNR6zpzO9bwDjpKTCbO/pioOnKxNDI9Sl5mDtaI/3vBBGuvuojE9DmM14zZmB2WhCP6GjrbgSJz8vrBzsmBgcpjY1B0cfD6it+69Exf9uf2kKBajVKkwmM2azmY7eQdILa1i1MJg/Pvsbze29ONpb88W/7ufFhzawZXcEN66Yg4ujLbdfv4AjkemoVUrcnO3Z8/lzPH/fOk7HZuPubM/9Ny9j9aIZHDqfynXzp+Pl5sjvnz5LTGoxNU3Ss/rpu9ewdO40jkVlMM3HFQ8XB3794EnC4vOwtbFEo1Hzr0dvZlFIAAnZ5VhaaFgyZxrb3nyEs5dymTvdB1srLa/ct5y509zoHZJK6FdMc8bJWssMd1scrbXYWqhZPc0ZN1sL7CwkoVw3Wwu0KiWjeql8VaNSYmuhQa1UolYqJZeSCSO+TnYoNBbShFnZS1xAYwUKFQoLDSqfmSgsbVHYOKBQKtFMm4PCwgoxIpXbajx8sVl6PSp7J1S2DqisrHFcswG1gyNKCwlzHZYsRanVYh0UiEKlwtLbC+/77kTr4oJN0DSUGg3+d9yM1s4W/RTH8Vg0l3lGE7ZeHljY22HpaM+ih+/E2tkR5wAflEols29Zi0qj/stWn0CWPXInti6OOPl6YmlrI2GwrTXKqTFPX70UYTbj5OeN1soCKwc7Ft+/CUt7O7zmzECt1TJ30zrUWi1DHd0A+C2ag35ch7WTg8Qt3FyYf+dNaK0ssfNwlbzEpzDMfWYgSpUK95mBLLz7ZixsrXH288bKwV7CabUKo96AQqEgaNUSTHo9tm7OWNhYYe/uIvGKKxzM2oqZG1YhhJAFvPwWzUE3MoalnQ22Lo44eLnL57VytEdjYUHw2mWYDAac/LxQW2jxmh3MvNvXo7GyxNnPG1tXZ5mv6IZHUanVBF63CP34BFYOEuY6OTnIvMIjJAgrR3tmTOF/R3ktSqUS/yXz0A2PYmFjja2LI87+Psy6UXqeaywtsLC1IWjlYoy6Sew8XNFaW+EzP4SxW29AbaHF0ccTRx8Paduo2cxwZw9aaysCli9kcnQcSztbLO1ssQ30kzHXJdAPO3cXpq9einFSL2+781s8l/HBYdSWFlg72eM+I1DGXCEENi6O8hhtnB2xtLeTuMgU5tq5u+Ia6DeFuSb6GlqxcrQnYNkCdCNS2buFrY3EnW5ag0KpxMHTDSc/L5njNOUUY+PiiN/iuUwMDqOxtMByCn+uzLd+fAJHb3e5LzVJWVg52OMzP4TR3rXSdXSwwz142lWOU1mLvZf7tX2xscbZ31vui7WzIy6BfgStXiLZCWbk4+DpJvdFbWkh4edf+jLWP4jzNF+CVi5GPz5BdWIG1k4Sxx3tG0Sl0WBhY437zCCCr1+B2Sg5HbgG+U/xIgnLLe1scJsewGjPGhQqFRa21rjPmCbzorqMfJz8PFEoFeiGJBtsrbWE5Vf47djAIO4zAgia4qE1SZnYujrh4OXOeP8glQnpWNhYX8V/k4nOqnrcgiXL68nRcWqSMrG0t8VzVjCjvQMSz7Czxn1mINPXLsOo19OcX4qTvxcWttZMjoxRnZSJpZ01PvNnMdrTDwnp6Cd0eM6ZwcTwKEbdJA3ZRdi4OOEyzZeJwWGqkzKxsLXCa84MaS7NZoa6enCfGQiAfnyChuwibF2ccJ8ZyHj/ENVJmdg4O+A1O5iR65djMhgY7OjGc9Z0rBztmRwdozGnGFs35/8U7PtfZlv3n9XsPd34d8IxJoaGWXzfRoY7e3AO8CHhlwPsvPN5knYcpi4tj+ivtvPj+kfJOBBK0flY2suqOf3vL0nadYTK+HT0ExNkHztP8u9HaS+tpre+ma6aBrKPhtGQVShZRkxZsdUkZ0uK1+MTDLR1UpuaQ39TG6N9g5iMRtqKK+muaZQVC0d7JRuG0d5+9OMTknVDfTMj3b3ohqW9pBODw5KK+eAwwmyeshnrlRVUASZHxpgYGmZyTAL0K3Zr+vEp5VjAoJuU1FKn9ngMjhuwVYFJf1VZWZjNmAxGeY8KCgVmo0lSn4drFPDF1F5RtVYzpYQvfVZp1ChVKnlfqEKhQG1pIfcDQGttJR3zl3NorCwxT51DoVBg5WCH4i8yvJZ2tqgtLWRVXrVWi5WDnXy8QqHAxtkRtVYj99PS3hYLOxs5IaHSaLB1dUKhUqFUSX+zdXWa6o/02cLWBmtnRwnglUqUKhUOXu6otVqpPzCVmLBDpZbyXBY21jJwK1UqlEoljj6eWNhYoVSr5BhbF0dUGql/WitLHH09UWs1shuB8xTBvxJj6+aCvaeb9JKvVqOxtMQ5QEq2qDRTMf4+2LpI4wawcXHCydcTlUaNSqNGrdXiNj0AS3tbeW6cA3yw93BFqZaulbWjPS7TfNFYWqDWalBpNLjPCMTayf5qjJ8Xjj4eqDTS/1s7OuAWPA0LW2spRq3GY2Ygdu4uaK0sp2K8cfb3QaXVorbQyi/SVg52qC0sUKpUeIQE4eDlLt03ajWOvl64BvmjsbKUAc9rzgxsXJzQWFmiVKnwDJmO49QY1RZaHL09cJ8ZiIWdjUQUbKzxmReCnYcragstao0Gj1nT5TFqrCxx8HLHc3Yw1k720ou1tRU+C2bh4O0huUdYSeDmNj0ACxtryYXC0x2f+bOwdXORQNPaCt+Fc3Dy85JetG2s8QgJwmNmIJb2tlKiwN0V34Wz5b5Y2tngv3guLoF+aK0ssLS1xjMkCK85wdg4O2Jha42dmwv+S+fj6CPdH1YO9vgtniv3xdLWBveZQXjPC5HuXxsrbFycCFg2H2c/L1QaNTbODvgvmYf7VF8s7GzxmBmE78LZ2Hu4obbQYufhyrTlC3EN9ENjZYm1oz3+S+dL8+LsiJW9HW7B0/BfMk+aF60GB293glYuwXW6PxZ2NljZ2+K/dB7e82Zi5+aMpZ0NLgHeBCxfgJOfN2oLKTETtGoJ7jMCJUJoZ4v/0vn4LpiFvaeblPgK9CfwukU4B/igtrTAxtmJ6auX4jlrOtbODlhYW+K7ZC5+i+fg6OMhJ9uCVi3BbXoA2qkE1vQ1y/CaOxNbV2e01pZ4z52B/9J58jVy9PEgaPVS3IMDsLSzxcLWmqA1y/CZPwt7Dzc0Wgu85gQTsGwBzv7e0jy5uxJ8/XKpL04OaK0sCVyxCN+Fs3H09kChUuE+I5Bp1y3GLcgPjbUVFrY2zLhhBZ6zg7FxcUIImLZiIX6L5+Lk64VCpcLR11Pqf7B0XY36/1a5/1/ZVi4M5vdPnsXGyoKlc6fR3TeMp6sjb3x7lBc+3ce2A9HUNHfxytd/cvcrPxGVXEhcRimXMst4c9txTl3MJq2ghqGRcXafvszRqHSKq1voHx4jt6yBkxeyKK1tpbmzj6GRcWLTS8kpbaChtQchBJUNHWQV1dHRM8jgyDgTOj0FFU00tvfSPyjhf0tXP/Wt3fQOjGA0mZnUG2ho66FvaIyxqeR239AEA6MGxiYljNWbzAxOGJgwmjBOqcJPGs0YzQLzFOYKAWaBjMFCCASCK0r2QggGxw04Wmukg680wdRxV5pCUrS/cswUFv9VEV+hUk2p3k/hu0ZzzTEKlQqFRoMQZjleZW2FQol8jNrKCpWFVhbhV6rVaO1sUAgh47uVgx3qKVwEiWdY2NrIn5UqFTYuTiimsB2Qf89XPmutrbB2cpCPUSqV2Lm7Sjj4lxhLe1uZM2gsLbFzd5nCfykx4ODljtbGGqVKJcfYuDhJnEGhQGNhMfV816JUq6QYb48p/Jd4hbWjPfYerqimcFql0eDk7yPzCoVCgaO3OzYujqg0Uoylvd1f8F/CZZdpvlja28p8xdHbQzqvRoNSpcLSzhbXKTy6wt/cpvvLfArAwcsdpym+cgXr3IKnYWlnK51HqcR1egB27q6opubKwcsdl2m+qC20qLQaKZEbEoS1kwNqSwuUSiVuwdOmMFeDSqPGzt0Vt+BpEsfRatBYWuI1O1hKJE/xCvfgAOl5PoX/dm4ueIYEYWlvK+G7hQVec2di7+mGWqtBrVHjFjxNHqPG0gJbF6cpzHWY0srS4j1vpoy5GksL3IL8pziODVorC2ycHfGZPws7Nxc0VhZoLS3xmR+Cs7/31JxY4RrkL7+EaW2ssXZ0wHfhbBym+mJpZ4vP/Fm4BPqhsbJAY22Fa6CfjP8aK0sJ75fMw8lXwixLe1t8F87GfUYgFna2aG2scZnmi++CWRLfsraS8H7pPLkv1o52+CyYJffFwsYKlwBf/BbNkfiWVoutmzPTli+QuIi1FRb2tvgsmCXxLWdHKSng5y33RanRYO/hyrQVi3CfMQ1LOxss7GzwXTgbn/khcl+cfT2ZtmLhFH5aYOPiROB1iyT8dLTH0tYW3wWz8Vs0B3svd9QWWpz8fQhcuVial6nfYNDKxXjODsbWxVHigXNn4rdkrsRDtVqcfKVkifuMadLijp01QSsX4z0vBDt3VyxtrPGY/Vcst8De053pa5biMTMQa0d7LGysCVq1RLpGXu6oLSzwCJlOwPKFMl+0dnYkeO0yPGZNx3rKcSxgyTz8Fs3B0Uf6rblNDyBolcSLtDbWWDnYM+OGFXjNnYGtmzMqtQa/RXPwXzp/ihdp5cSTNJe2oFASvO46vOeHYO/pBmaB17wQ6RpN/Y5MxqvvUf8z7X+7FXonH0/pn68XfU3tDHf1Yu3owEtnfifhl/2kHziN/xKp7Mdr7gzOvfctHiHT8Z47k5VPP8DFrbsY7R1Aa2VFyIZVdFXV0V5aNZXF9MLC1oauqnqUKiVqrRatlQX9TW005hTJ4DbQ0kFNcjYBy+ZjNhrpa2qjPiNfFnEaaOmgMbuI0ujLrH/1WcYHh2nILqLsQhJBKxcjhKAxp4iK2BTq0vO4b+t79Ld0SH7mYbH4LpiN78LZlMdK/uYqjYYNrzxDa1EFhediKYlKYP0rz2A2C/JDoymOiGf+HRuYu2k93X3DaIYGKEi9yKYP/kVvfTPZR85REpVI8NplOPt7k3cqkqLzcTj7eXHdE/dSn1kglbAmZnDzW39HNzxK2r6TlMVcRm2hJXDlYgrDYsk/Hc3E8CgbXnmGzso6Uncfp+xCEovu34SFjTUZB05THHGJwOsWsfDuW6iMTyPj0Bma80rY9P4/GezsIfG3Pym/mIRLgC+es6aTdeQchWcvSCInf3uYxpwiUn4/SmVCOmtffBzjpJ7Lvx2iNCaJJQ9sIuTG1eSHSmXuAy0dbHz7RToqakn4ZT+V8enMuH45dm4uJO86QklkAh6zprP80bspu5BExoHTNGQVsvHdlxgaGCLuhz1UxKViaW9LwNL5pO49KQmHCcGGV5+lNjWH5F1HqErM4Lqn7keYzcR+t5uK2GTm3HoDC+68iczD58g7FUlnZR13fv4GrYXlJPyyn6qEjCmS70ncD3spjU7EJcCH6198nPzTUWQdPkd9Rj4b332J/qZWYr/bTWV8GutfeYbpq5cS//N+SiIuoR/Xccenr1MSGU/q3hPUJGWx7NG7MJtMxH77OxWX0gjZsIplj95F0o7DFJy9QGdlHQ9s+4D6jHwu7/iTmqQsvOfOxDnAl4tbd1Eem4yDlzu3vPMSKbuPk3cqksbsIm59/590VtYR//N+ai5ncv1LjzNz/Uoubt1F2YUkJoZGePCnT8g8GEr20TDq0vNY8uBtGCf1xH73B9WJGcxYdx3jg0Nc/PZ3SqMS6alr4qGfPqHiTAoZB0OpS8vFc9Z02kqruLh1F1UJ6dh7uKIbGSX2u90Uh8fRVlzJpg//RUNWIWl7jlObmsvq5x6mq7qemC07qLyUJlkNDg6TvOsIhecu0lJQxuIHbqMkMp7LO/6kLjWX6WuW0tvQQvRX26mIS2W4s4eR7l5Sd8eSHxpDc34pnrOmUx6bTMIvB6hNycHW1Yn+lnZivtpO2cVk+pvaGGzvksoMT0TQnFfCiifupSoxnUs/7KUmORsUCnrrmrm88zDlF5LobWhh4b0bSdp5mOyjYTTllhCwbD61abnEbvt9yqN9jL66Zi6dvUBJVAK99c14hASRuvsYGYfO0DSVtW3ILODSD3uovpzJxNAIvfUt5J+5QElEPD11Tcy/8ybS958ibf8pGrOLUGs11Gfkk77vFNWJGYwPDtPf1E74Jz9QdD6OntpG3GcGknX4LCm7j0u+u0YjTTnFlEYlUhmfxvjAEO4zphHx6Y8Unoulu6YBGxcnco5HknX4LA1ZhZiNRtpKqsg+ep7KS6mMDwwRtGopkZ//LJeWqbQaCs7EUBwRT0NmASaDgZ66Rk688ikVcamM9Q/i6O1BzObtFJy9IAvylV1IojY1V45xC/Ln5KufUR6bwljfAFYOdsT9sJeKi8l0Vkor33Xp+VO/qQJZ9Obkq59RfjGZsb4BFCoVKX8coy41V45pK6nkyIsf0JBRgFGvx9bFidC3vqYqIV0W/sk7GUl7WTWdFbUAdNc0cPiF9+QYrY015977lvqMfDmmKCyOpB2H5Zihtu7/FdD4322qzQv2xd/ThVe/OczTd6+hu3+Y6X7uJB/8iHd+OEF9azdzgrz58d3H2RN6ma37IgmZ5sWiWf4YDCa2HYhCrVbhYGfN9UtnUlLTQmNbL2qViiBfN9ILayisamb98lnYWEnJ6KrGDnr6h1EoFJjMZmpburicU8EbT93KxKSeupYuUvOrWTTLH7PZTG1zF+mFNaTmV2MySVUEGUW1xKQUMX+GLzq9keyqThIKmzGZzbx892IaesfIbuwnra6P+xf5YKFWUt8/Tm3vKP6O1gS7CIZ0BvrH9Yzpjfg7WWMSAp3BxKTBiEalZFwvJQAcLZQIowEsrGByTPKgnxgCBw+EwYCpsx5zXysqj0CEowfG1hqMjWUI3SjaOasw9nUxlp+KrqYUy+B5KKxsGEpLZLQwGwvfAOyXrWa4uIie2IuMlJXh8+jj6IeGaT0eSm9KOloXZ2xnzaTpXDTNkXEolAqCn36Y7uIKCvcepykxjbmP34tAkLH7GJUxl5m58Xpm3nI9JZHxZB0Jo7u6gVvf+yc9dU0k/HKAirgUCXP9vEjbe4Li8Es4+Xlx3ZP3UX05g9S9J6lLzeWmN55jTD/IpZ/2URGbzJoXHiVo1RKyDp8jPzSaydFxbnrjeZpyi0n87RBV8eksum8jagst8T/toyzmMtPXLGXx/ZvIOx1F9tHztBZVcPsnr9JV18ylH/dSlZCO23R/3GcEkvjrQUoi47FxdmT9y09REpVA+v5T1KbksOHVZxjtGyDuu91UXkpjxZP3MuumNSTtOkJRWCzDXb3c9fm/qb6cQdLOI1RfzmTupnVora24uO13KmJT8F86X9oite8keaeiaC2q4O7Nb9JZWUr8z/upTszAwdsDr7kzid32O2UXktBaW7Hpw3+RdeQcWUfCqE/PY/0rzzDc0U3c93uoTEhn+aN3Mf/OG4mbEmEdbOvioZ8+ofDcRTIOnKY2JYdZN62W+rJ1F5Xx6fgtmsP6l5/i0o97KTofR3tpFfdseYeqhHRS/jhGbUoOdh6u9Da0TGG5tDXLMDlJwi8HKDgTQ3NeKetfeYae2kYu//YnNclZLHnwdgZaO4j5+jcZByaGR+TtDI05xczcsIrqpEzif9pHTVIWPgtmMdzVQ8zXOyi7kERPXROjvf0UnIkh60gYjdlF2Lm7UJ+ZT9x3u6lKzEBjZclwdy8Xt+6iNDqRrqp61v/rKVryy8g4dIaGzAIW3nMLzfmlXPhmJ1WJGRgmdAy0dpC27xQlEZforKwj5MbVZB0+S9q+kzRkFuIxK4jW4gpivv6NqoQMRnv7GWhuJ23vCYrOx9FRXoOduwu5JyNI+eOYVFpub0drUTnxP+6jMj6dke5e+ls6qP56B4VnL9BeVs2sm9dScPYCSTv+pC49DwS0FlWQeegMFXGpjHT3MuP65Vz89nfyT0fTVlKJk783ReFxJP56kPr0PAy6SdpLqon/aR/lF5MZ7urF1t2F2G1/yNtJrR3tKY5MkDmcYUJHT00jpy8kUXYhieHOHvyXzCPu+91kHztPW3ElSpWKiovJFIbFyjF9ja2EvvU1pdGJDHV0Y+/pRsLPB8g/HSWL+NWm5RL3/W5qUnIwTOiwdXPmzNtfUxyZwFB7F1oba5J3HaE85rIc01ZUTmlkPDXJ2ejHJ3AJ8OXsO1soCr8kC+VlHw2jLjWX1sJyhBB0VTdw9KUP5RhrZ0fCPvqOirhUOaYkKoGuyjpaCsoQQtDf1MqRFz+gJikL/fgEaksLYrbspD49j8E2yXavNjWX4vBLcozJYOToix9Qm5IjiRArlcT/sIeWwnI5ZrjjP4kj/E/vwv8vbv+jUMD44JBoyC4U5z74Vhz950fiJQJEfWa++HHDo+L7dQ+Lnzc+Keoz80VpTKJI3XdSRH+9XWT8GSoMk5Oio7JWFEfGi7gf9wiT0ShMJpPorm0UOSfDRVupJHBj1OtFU37JNRZjo/2D14jimUwm0VpSeY2N2vjg0DWiZ1dE5q4IjV05T+tfxF+uCHH8VYhmsKNL9LVcFYwxTE5eEyOEJP6mG70qGKcbHRM9DZIQzYLPL4q/H8oR7X+xmxNCEg67YncmhCQc0l3fdM0x3XVNwvAXoRzd6JgYmLIPuzKmrtrGa2KGunrE+F8E+ox6/TWCd1f6+1dRvPGhYTHUfVUsyGQyia4pEbQrrbep9RrxmsnxCdkG7kpf/io6I4Qk3PJXgT6jXi86a+qvOaajqk4WrxFCum5/Pa/JZJIt3q60noZmMf4XgZ7JsfFrhHQkS42ya8Y40N4pW68I8R+F/4QQoim/VLZ0EUISkfnrdTMaDNfY4wkhRHtFzTXWPONDw9cILV6xaPur8F93fdM1QoWTY+PXCOmYzWZRdTlDtnQTQhJq+et363U6URged43wX31m/jXXYKir55rfjVGvF7mno4Ru7KqYVFNBqahNvyoeNdI3ILKPhV3tv9Eo8s/EXGNr2FpadY2V4NjgkGTNc0X4z2QSxZGXRH12gXxMZ3W9SDtwSv48MTIqEn49IEZ6r9oall1MEoV/sSjqaWgWF7f9cY39YMJvh0RrcbkcU5mYLpJ3H5dj+lraRNhH3wnd1HXU63Qi6Y+joiQ6UY6pSckWUV/9KscMdnSJs+9vFT1T4oZGvV6k7T8lUvYck4+pzyoQJ1//XH42DHf3inMffSeqLkvCSkaDQWQePisivvhZjmnMKxGHnntH/g2M9PaJ8M9+EOkHT8tzm308XBz5xwfyGJsLy8SBZ94UzVPiRmODQyLyy19E5OZf5LnNOx0l/njwH/Lvsa2sShz629siL1QS/hkbGhbRW34TR176QI4pCLsott/+rOhtlK5jR0WN+POF98SFb3fJ1+PCt7vEb3c9J0wmkzCbzaIo4pL4ZdPTsshjZ3W9OPLSB+LoPz+SYkbHROz3u8W2NQ+I0YFBYTabRUl0gvj19mfF5R1/CiGkZ9ixlz8Wv931vDCbzUI3Pi7iftorvl56p2gpKhdms1mUXrwsfrvzb+LUv7+Urnt9szj+yqdiy/K7hWFyUujGx0X8L/vF10vuENnHw4XZbBblcSlix93Pi533/l0IIYksnXztM/FpyI1ioK1TTE5MiIRfD4ivl94por7aLoQQoiIhTey45wXx3Q0P/bco3n9h+x/ntqSmRXT0DIrb//m9+GT7GbHkoU/Eufhcsfapr8TGF7eJ+1//VdQ2d4lz8bliT2ii+PS3MyI1v0qMjutEUVWzOBOXI/afk4S79HqDKKlpEXvPJsmieKPjOpGSVynSC6/iRGtXv4i8XCB/1usNIr2wWjR3XBVT7egZFNklddcck5pf9R9E8epargqw6fRGUdpwFSvNZrNo7h8TI7qrz/dJo0kMjE9ec8zY5NX/F0IIk8ksjEaTaO4bEwHvRYpf46uFyXCtcJ5pcuJaUTyjQZgmrvIMs9ksjEO918QYR4eFceLq891sMIjJ7s5rjhlva7vmvIbRUaHr+cuYTCYx0tB8TcxwW4fQj13FRoNOJ/r/gglXBNX+2kb7Bq4RrzUZjf+BV3TVNl7DcSZGRv8Dr/gfuVNfS7sY/Yt4nX5i4hrB2ytiYn/lFSM9fdcI9BkNBtFactXOTwgh2surr+Fx44ND1wj0SiJ41wr/ddc3iYHWq8K/k2Pj1wjeXrFb1U9evR8G2jqvGZNepxPVSVnXxDRkF14zd8PdvaJ+SgxOiCu2dInXcJyWogrRUXn1fh7tH5BFW4WQ5r8wIu4aceOOytpr8H9ieES2pL0y5tKLSaLnL9y0p77pGvyfHBsXqftOyqJ4V3C57i/97W9pFxmHQq8Zc8reE2Kws0eOqUnLuUb8erCzW1z6ae81tsYZh0JF01/sEhtzikTq3hNX56mnT0Rt/lUeo9FgENnHzl9jUdhcWCait/x2zTxFfvmLzCFNRqPIPR0tkncflY9pK6sWp9/afFX4b2hYxHyzQ5RPCW+bTCZReD5WRHz5yzVze/SfH8n8cGJkVFz87neROmXBbTabRUlUvDj6z4/kMXbVNIij//xItvzTjUl4eYVXXOFJex59Reimfo+9DS3i+KufyoLCkxMTImH7QRn/zWazqIhPFbvue1H+nfQ1tYqTb3whorfskK/H5V1HxM57XhBGg0HmoLvue1Geu4HWDnH6ra/EkX98KISQ3oWSdx8V369/RAxPvT/UpOaI3x/8pyyAPNjRLc68+4347c6/CbPZLAx6vUjdd0J8u/p++X6uS88Vux/+lzjx2mdCCIm3nn1/q9h63T1CNz4ujAaDSD94Wny75gGZO9VnF4q9j70qdtz9gnTdu3tF2EfbxOdzbxHddY3CaDCIjMNnxHfXPyhb/jbmlYh9T7wmtiy/S5hMJjHc0yfOf/y9+DRkg6iITxNGo1FkHT0nvr/hYXHouXf+3ymKZ2lvx77HXuO+b98n9K2vsHKww9HHk6f2b2PvI6/QmF00VerpR/IfxygKi+X2T15jpLuP5N+Pkrr7ODYuTmx47W9k7D/FhW920lvfzGuxh9FYWnD6zc0Uh19i+eP3MPuW60n+/SgRn/6IyWDk64YUemqbOPHKp9QkZfHYzs14zAwk7vs9xHz9G97zQvggJ5y69DxO/OsTWgrL+bgoBrVWQ8RnP5G04zAbXnuWB3/4mKLzsZx640v0YxNsbctkqLuP0//eTH5oNC+G7sLRy4Pk348S/skPBK1awitRkvjYyVc/pyGrkM11SQgBMV9tJ/7n/dz52evc8t7LDE8YqI+OY+fmi2yuucxAWydn3v6avFNRvHn5BDarl5L8+1EiP/+ZeXds4NmDP9CcX8rJ1z6nrbiSLc1pGJRKor74haSdh3lk+xesef4RCs9d5Mw7W7D3cOXd9LP0NrTIc/VZWSyaIH/if97Pxa27WPPCozyw7QNqUrI5/e/NDLR08G17FmMDQ4R9+B2Zh87w99M7mH/nTWQcDCXi0x8JWDaff4btoa2kktP/3kxtag5f1adgaW9LzFfbubzjMHd8+hq3vP0iReFxnHtvKwqFgs8r4ultbOHM21soCovl7ZRT+C+dL9nsfbebRffdylN7tlKdlMmZt7fQXdPAluZ0DBM6zr3/LTnHwnn8j69Z+dT9pO45TtTm7bhND+Dt5FM055cS+tZXkpBexSWEEER+/jNpe0+y4bVnuefrd8g9EU74p5LNyNa2LLqq6jjz9hZKYy7zcsQ+bJwdidmyg6QdfxJy42peOvM7xRGXCPvwO3rqmthcm8RwVy9n391K4bmL3L/tfdyC/Ln0417if9qPnbsLn5ZcpCoxnbPvfUtTThHvZYWBgLAPt5F7IoKVzzyA36I5JO86Quy2P5gcG2dLUxpNZdWce28rNcnZ/O3wT9i5uxDx6Y9kHjpDwPIFzFx3HRkHQ4n5+jcGWjr4pOQCA83tnH33GyriUrnto1fwmh1M1Je/krbvJFoba+a33EjuiXCivvyVzso6Xo05iNlk5tx7WymNTmTR/ZJNUMyWHaT8cQzjpJ7PK+OpiE0h8vOfaS2q4KGfP8Xew41z722l6HwcnrOns2jKQufyjj8Z6erl3YyzdJTXEP7pTzTlFHHDP57Ad+Fswj7YRsGZGDRWlix9+A7S9p7k8vZDDLR28LcjP6MfHef8xz9Qn55HyIZVzL11Hec//p7cExGYTSZmrl9F1pEwEn7eT19jK7d//Co2zo6Ef/w9NUlZ2Hu5s+rZBwj/5AdyjoWjGxnlX5H7qUvL49KP++iuaWDJg7fjt2g25z/6Xt4Xtvyxu0n54xhZh88yPjjMgz98zFB7F3Hf76azsg6f+bOYd/sGwj/+QbKpUyiYuX4Vl7cfJONgKGP9g6x98THUFhbEfbebtpJKLO3tWPH4vUR/vZ2ymCRMBgMufl6UxSSSfkCyggm+YQUeMwOJ3fYHLQVlqC20LLp3IxmHzlASEY9Rr+fmt1/k/Mffk7bvJMOdPdi5uzDrprXEbvuDppwieV/nhW92Uhx+CYNukoV330LkFz+TuucEg22dqC0tyD0eQfIfR2WbGntvdwrOXqQoLBb9+ARes4OJ/vo3Uncfp7+5DaVaLVcDXbEAXP7YXRx4+k0Kz15gcmwcjZUlMVt2kL7vpGzr4j1vJlFf/kJtSg5CCKatWMihv71NfmgMk6NjqDQaYr76jaKwWNmaz9rBjvwzMZIwjdmMrasTR178gPzTUVLllEJBwi8HqEvNpataqgSYvnY5P9/yJFUJ6QizGZVGw5/Pv0dpZDzjg9Ke3pwT4UR98bO8qu8c4Muvtz5FZXw6ZpMJhVLJ8Zc/piY5W9beUFtoyTl2Xt7jq9Zqwe9/DT7+dwONWsU9r/3MY7etJC69jK6+Ye69cSkezg48+cHv6A1GvN0caesaYNv+aHLLGlg8O4Da5i6+OxBNaFwOd9ywiEduXcH3h2LYdTKBCZ2eW1fPo7S2jbe+O05eeSPb3nyEecG+fPVHODtOxBPs78Ed6xYRl1HKG98epaapi7TDH2NloeHj7WfYfy6ZFx9cz7K5gZyOzeHdH04wMWmgLuY7ersHeOu740RcLuDg13/H38uFQ5cq+fFsAfMCXDj54Saqu0f59XItVV0jHHpqGVq1kuyWAQrbh1jq68gqf2cGxvU0DYxjFoIlvk6YzGZGdfopUTwLBsal7R926DDrxlDaOiImxxC9zTA5hiJgIcJowtRYjKm1EnXwUoRPCKbWKnS5sSg0Wmzu/AfGwT6GYk8zUZ6P+0sfo3TzZiAhit7wU9ivvAHPJ19ipLycpl2/MdnWxuITpzFM6Kj7dRdtoWHM/eYLPG67haYzkZRs+Rn74CDWndrDQE09Se9/Q8vlDJ4puAhuLiR99ztp2w9w/b9f4MYPX6XsYhJn3t7C5OgYXzekMtDWydl3vyHvVBSvx/5J8PUrSNp5mJivdzD7lrU8d+RnGrIKOP3mV7QVV/J1YyoKhYLwT34g/cBpHvrxY65/6QmyDp8l/NMfsXN35YPs87SXVRP61ldUxKZIPE6jIebr37i84zCrn3uIh378hOKIS5x7/1tGe/r5pjWDgZZ2mYu8cPI37N1dJCz/cR8ByxfwStQBKhPSOffeVtqKK/miOgHdyBjn3v+W3BMR3PHp69z63j9I/v0oF77ZicbKks01l2nILuTsO1uoSc7mraSTaKwsCf/kBzIPnWHxg7fx9P7vyDp8lqgvf2W0d4CvG1LobqvnzDtbqIhN4fE/tuDk40nU5u2k7j6G5+xg3k0/S35oNBGf/URXVT0fF8UwPjDE2Xe/oSQygZveeA6fBbO5+O0uknYcRqFUsrU1g/LYFMI//p6WwnL+ce4PNJZazr3/LYVnLzLn1huYse464n/aR8IvBxgfHObziks0Zhdx/sNtNGQVct/W93Cd5ifxl5OROPt5s+i+W0naeZhLP+ylv7mNt1NOM9TRQ9gH31KTnM3qvz1E4HWLCP/kB7KPnkepUrLgrpsoOHuBuCmL1qf2fotKrebc+99SFZ9G4MrFzL/rZiI//4nMQ2fQj+sIWDqP8guXubh1F52Vddzyzku4TPMl7INtlF9MxtrJgZXPPMCFb3aRvv8UY30DvHT2d7oqa7nwzS7aSipZcNfNBK1eStiH2yiNSkSlUbPo/lvJORZO6p4TjHT3cu8372Kc1BPz1W8055fiPiOQpQ/dQdiH31EcHofJYGTaioXkHg8n5Y9jDHV0s+rZB3Hw8iB68680ZhdhaWfLyqfv5+K3f1B49gIG3SSP7fyKpuwiknYdZaClncCViwlcsZCoL3+lPj0PtVbLgrtu4tyJreSHxqAfn+DG1/9G7Hd/kLTzMH2NrVg72rP4gduI/gvG+i6aQ8ofx8g7FcXk6BhzN60j/ud9XN5xmJ7aRjSWkt5V6u7jMsZa2tpQfTmT3BMRTAyN4Brkz+Udf5K4/eBUlbOKmetXcuJfn8p6M0sfup3j//qEnOPhkqaSlSWJ2w+RtvfEVU2MkCAu//YnFbEpmE0m/JfM4+Trn5N99DxjfQMo1WoStx+kKCzuqv2thZYddz4nC+ta2tkS+tZXZB8JY6SnD4CMQ2c49o+P5FX96WuWsfOeF2RhXZVGw+k3vqT4fJy8fdrBy43EXw/SnF8KgKOPJ7/f/xKl0YkYJ/UolErCPvyO2uRsWXtDmAXfrLhHFtZVqtX8cf8/KL+YJG+njt32OwefflNeoTfodP8p2KcQ4q8bqf6f14KDg6mtrb3mb18vvh3d6Di64VG01pY88N2HEjm0tKS9vJq1zz+Cs78PQggqLqViYWvN9FVLAWl/e3VSJovuvRWlSoXZZKI05jKBKxdj5yoJE/TUNzPY3sWMtcsBabLLY1OYf+dNKJVKhBC0FpVjYWuDe/A0AMb6B2ktriBkvSTIYTaZqEnJJmDpfGkfBdDf3Mb4wBC+C+cAoJ/QSS8eU4IiQgipvMXJAWc/b/m83TUNBF63GACT0Uh9eh7TVixEY2kJQG9jC0bdJBZ+/izeHMcLq/x5xHmCGdevAKR9cy2FZTj6eGLv7grAcHcvg22d+C+eB4BRr6c+I5/gtcvlffDdtY3SvqsgfwAmhobpKK8haGouzSYTTbnFU/un7aUxtrQzMTiMz3xJtVESiihk5rqV/6djHO7qoa+xVR6jYUrcI2jlYjSWllPlMfUIs8BrdvDV+S4qJ2TDamleDAaacotxDfLH3sNNmpeGFkZ7+5m2fKHU/+ER6tPzmH3L9fK1bykow9LBDo8ZkrDFQGsH3TUN8nn14xPUpuUSuGIhVg72mM1m2kurMBulBw3AUGc3TTnFzL/zJhQKBQadjvqMfFyD/HEJ8EUIQUdFLSNdPfJ5R3r6qE3JkURrLC0xTE7SmF2Elb0tvgvnSPNf00BHRS2L7tkoj7kmOYugVUuw93CTx2zUG5i5bqUsolOfkc+yR+5EpVYzMTRMTUoOrkH+eM+ZgclopDm/lMG2LhbfdysAfU2tVF/OZOE9t2Dt6MDE8Ah1ablY2tkSvHa5NE+F5bQVV7Lq2QdRKBT0t7RTk5RF4KoluE8PQDc6Rn16HvpxHYvu3YjZbKatuEIql3/+YSysrBhs76L6ciauQf6yIEtdeh79TW2sef4RScCqrJrKhHSWPHg7Tj6eDHV2U305E621FQvvvgX9hI6GzHyacku46d/Po1Sp6CivoSoxg6DVSwhYMp/hrh6qk7KYGBrh+r8/hkGnoyGrkOqkLNa/8jQ2To50VNRSfTkTl2m+zL99AyM9fVQnZdFdVc+mD/+FUa+nMauQyvh0lj16F56zptNVVUf15UxUGg1rnn+E0d5+apKzqUvP5a7Nb6FUKmnKKaYyIZ2glYuZfcv1dNc0UJWYwUh3H3d88hqjfQPUJGdRGZ/OxndewsHLjcacYqoS0nH08WT13x6iu7aR6sQMWooqeHT7F0wMDlOTnEVFXCrLH7ubwOsWyTFCCG7/+FV66pqoSsyg+nImj27/HBRK6XsupRJ43WKWPXInTXklVMan09/UyuO/b6GvoYWqxAzKLiRxxyev4hzgQ01yNpWX0rB1d2HTe/+gKa+E6sQM6jMK+PvpHQy1d1OVkE7ZhSSWPXY3s29aTU1KDpWXUtGNjvPE71/TnFdCVWIG5ReTeebA9wghpr7nMgFL53PDP56Yikmjo6KGlyP20VpYTnViBsWR8dzx6eu4z5hGdWIGZReSsXKw44HvP6Q2JYfK+DRqkrP4V/QBBpraqUpIpyQqgaUP38H8O2+ieup7x/oHeTF0F7WpuVTGp1EWncgzh35AoVBMxSTit2g2N7/1d6oSM6iITaG1qII3k07QmF1MZXwaJZHx3PbRK3jPmUFlQjqlUQlY2Nrw2M7NckxNcjavxx2ht6GFqvg0iiPjWXL/JhY/cJsUE53IxNAIB0eq/wOO/Xf7z2n/I0fQG4zYr3yJtYtnkFfeyLjOwKU979Lc2S89i3sGef7+G3B2sMVsNnM4Ip2bV83Bx13C/9rmLhrberh5lfR8n9DpiUou5J4NS9Bo1AghyC9vxMbKgllBEob1DY6SX9HILVMxJpOZpNxKls6ZhoOdNQBN7b30DY6yZM40+bwp+dXcsmqujI0lNa042FoR4C3h9MDoJHXtQyyb6S6d1ywo6xhmprstlhppH/ewzoDBLHCx1srHjOmN2FtK+6SFEBjNZpQKBWm1fTy9P5vtjy7ijnnuKNVXjjGDbhQsbVFIm9wR4yOAQGEtYbswTGIa6ELtLvEBYTZj6GhG7eSG0toGAMNAH6bRYSz9JDw16/WMVpRjN38BiinuNFbXgMrKCisfLwAm+wcZqW/CdZmE0yaDgc7cItwXzEFjI81dX10TxslJPObMlOZueITm/NJr+FZzfilOvl44eElz1d/SzlBHN4ErFknfMzZOXXoeIetXotJoJCwvqURtaYFnyHRpLrt66CivkXH6Cpb7LpyDjbMjQgg6K+vQj40TsGwBAKN9AzRkFjD3tvUolUoJO3KKcfT2wDXQDyEEPXVNDLS0y+cdHxyiJjmbWTetwcLGWsLlvBLUFlr8Fs0FJF7XVlzJwrtvkcdcm5qL78LZOPl4yrisGxmV56G/pZ26tFyWPHAbKo1GGnNaLg7eHvjMC5HH3NvQwqJ7Jfwf6uim+nIGszfegK2LE/rxCeozC1CqVcy84TqEELSXVdOcV8LKpx9AoVDIGOu3aA4eM4NkjB0fHGbRPRvleapJymLFk/diaWvDSE8fNcnZOHi5M331UpnzdFc3sOb5R2TOU5WYwbzb1uPs7yPjpVKpYuE9t8jCrw2ZBax/9RlUarWMfX4LZzNtxSLGBoaoTclmpKePtc8/KvGkvBKqL2ey5vlHsHV1prehherEDOw8XFhw582MDw5Rm5pLe0klt77/snQ/5ZVQlZjJ/DvW4zN/Nr2NUozZZGbtC49K1yMlh9qUHG77+BU0lha0FJRRlZiB74JZzN20XuZWAy0d3P7xq+hGRqlNlXDshn88hWugLy2F5VQlpGPt7Mja5x+hv7mN6suZNOYU8+CPH2Oc1FOXKuHlvDtvZMb1K2gtqqAqMYPJsXHu/PR1Blo7qErMoCohg3u3vouFjTV1aRL2ec+byXVP3EdrcQXViZl0Vdfz+K6vJT6WmEHZxSRufP1veM2eMRWTjoWdNbd9+AptxdL31Kbk8OzhnyRxuMuZVMQmM/e2DSy8+2Zq03KpSkhntKefJ3Z/Q3tplcQRLibzyC+fYWlnK+FlXAoeM4O48fW/UZeeR2VCOq0FZbwUtpvuqnqqpvDypjeex2/xXKovS8kjpVrFI79+QX16HpXxaVQmpPPPsN2yAF5pdCJzbr2B5Y/dLfUtLoWBlg7+EbaHhswCKuPTKI1K4NEdX2LlYC/HuAb5c+dnr1OVmEHlpTQac4p4Pf4Y7cWVMv6vf/VZpq9aIsXEXEaYBc8e+n7qe1KpjE/jnxH7GOvpo+KS9D2zbl7L6r89JPOkvqY2Xo87TG1yNhVxqZTGJPLI9i+wcXKgKkHiPO7BAWwriPuf5gj/24niAbgFT6OnthEQoFBgYWfD+OAwB576N9Ff/spgRzfpB07xrscyft34FIVnLzLY3sWBp99ky9K7OPnq56BQkHP8PL/d/ixH/v4+TTlFDLR1curfX7L/iddJ23Mcs9lM9rHz/Pncu5x7byvjA0P01DUR/skPnHr9C6oSMzAZjWQdOcfpf39Jws/7AWgrrSJq869EfPoTfU1t6McnyDgUKmXnIuIBaMgqIObr37iwdRdmk4nR3n7S958ievN22kurJHGdhHRituwg+9h5QHpYJ/9+lNhtfzA+OIxhcpLiyHgubpWI65Xse19BEcm7jgASCOSejCDuu930N7VN2SoUEP/TPkoiEwDphTTjYCgJvxyQrJn0eiriUoj/cS+tRVI2q6u6nuTfj5J1VOqLbmSU/NBoLv24l9G+Qem82YVc/u0Q1UlZV897KJTkXUem9pIYKL+YROKvB+WVtc6qOlL3SPuIrvQ3/3Q0l7cfYnJ0HLPZTF1aLkk7D8sZr/6WdjIOhZL551lAAt2SqAQStx9iuLNHTrik7jlORVwqICVyck9EkPz7UUwGAyajkcqEdJJ/Pyrvde2qaZDsbk5Hy2MsOHeRy9sPMT44jNlspiGzgLS9J+UVx4HWDnKOhZO27yQgJWlKoy+TtOuoPN8thWVTVnyXAellPu90NEm7jqCfmMRkMFCVkE7qnhNy9rCzsk6ymJm69uODQxSGxXJ5x2FGuvswm0zUpuaQtv80VYkZgJTAyD0RQeruY5hNJnSjY5REJZLyxzG6q+sl7YbsIrIOn6PofKzc//zQGJJ3HUE3MoZ+QkdFXCpp+6Q92dJcVpBzPJyMQ6EymBedjyNp52GG2rsw6vVUX84k49AZKi5J891RXkPeqShSdx/HrDcw2jcg6QDsOU5nRQ0mo5Ha1Byyjpwj/0wMIO1Pzj8TQ8rvR5kcGWViaJiymMuk75e0D8wmEw1ZBeQcjyDr8DmE2UxvQwtF5+NI+f0oQ+3d6EbHqLiURtaUrZnZbKYpr5S8U1Gk7zuFSW9goLWD0qgE0vYcp6uqDv34BFWJGWQfDaMwTJqX1qIKCs5dJHXPcSZHxxju7JEszPafpimvBINOR01KNjnHw8k/HYNJb6CjvIai83Gk7TnBaO8AIz19lMemkPnnWWpTcqSkWXoe+aejyTkahtlkoquqnpLIeNL3n2KgpV1Wac8+dp7KuFSMOh0NWQUUnrtI1uFzGCf1dNc2SZoQh87QVVXP+OAwNUlZ5J2MpPxCEnrdJE25xRSHXyL7SBiTo2P0NrRQEZtC9pFztBZVMDkySk1KNvmh0ZRExMvJrZLIBLKPhjHeP0h/czuV8elkHz1PS2E5Y32D1KXlUnD2gjRPwkxrceWUJeR5Rrp6ZWKReyKCppxidKNjNGTmU3Q+lqKwOISAttJqyi8mk3sinIGWDobauqT+n4qiLjUXhVJJY3YRxRHxFJ2PxWySVHYr4lLIPRHBYFsXw+3d1KbmUHD2ArUpOSg1GprzSimNvkzR+Tgmx3V0VtZRFZ8m29LoRseoz8in6HwctSnZqCy0NOeXUhZzmcKwWPQTOjpKq6m+nElBaAzd1Q0IFNRnFlAcfoma5GyUahWtRRVUxKZI9jfjE3RW1VGbnEXB2Qt0VzegstDSkFVISWQCNUlZmP+TBG/+u/1fa1qNmgAvF5LzqrHQarC3sSTAx5Xskjqe+2QvX+0Ox2Qy88WuMBxX/5O/f76f1PwaiqqauetfP7LhuW/49WgceoOR7w/GcPvLP/DaN0foHhihsKqZl744wItfHCAmtRjdpIHtx+L4++f7+WZPJABZxXW8++MJPvjlNFWNHQyPTvDbsTje/uEEoXE5ACTlVvLpb2fZsicc3aSBzt4hdp6I57Md58grb8RsFiQUt/Hz+RJOpTUA0Dms43xJOyfyWxnSGTCazdT1jZHbNkjbkLTCM6430TWio2tEWgkyC8Gk0cTEpBGzWTAwJnEEB7URs14S2xVGPQz3IAY7wGxGmE2Y+9owtpRhHpFWt8zDveircjDWFUqfJ3VMVOQzmnkJ09gwQggm6qsZSIhmrFzCaX1/Pz2xF+g6HyYJ/xqM9Kdn0XL4OOMNjQCM1DXScPg07VES/utHRqk7f5HiXX+iHxnFbDbTklVA9u6jtE7ZQg62d5F56Azp+04B0gJAaXQiidsP0d/SLi0alFaRuucE5ReSABgbGCLvVCRJOw9j0E1KCy5JmSTtOkJbsbTK19vQItvHgZQAKAq/ROL2Q4z2DcjaR6l7jkvaKUgcJ+fYeVL3HAchMOr1lMemkLzriOzC015WTcbBUIrCL0l96R8kPzSGpJ2HmRwbn+pLFql7T9KUWwJAd20j2UfPyxxHNzpGcUQ8yTsPM9zRLdtjZRwMpfJSGiDxotyTkVJlnN6AfkJH2YUkUnYfp6O8RuIiBWVkHj5HfqiEucNdPeSfieHyjsNMDA5j1OupTEgnbd9J6tPzAAnLc46Hk77/lKySXhR+iZTfj9LX1DbFRXLJPHSGsim7su7aRvJPR5Hyx1GMukl0I6MSfu49QVtxBWazmcasQtkuDqSFhYKzF0jaeZix/kEmx8apiEsh40AotanSSnJzfim5JyLIOBiK2WhisL2L4vBLpPxxjL7mdgw6HdWJGWT+eZbSqESJvxRXkh8aQ8ofxzBM6Bjp7pXwf99J2kuqMOr11KbkkHPsPLlTtsUd5TUUhsWS/PsRxgeGGe3tp/xCEhkHQ6nPyMdkMFCfnkfeqUiyj53HZDDSXdNIcUT8VFVbF2MDQ1ReSiPr8DnKp1abG7OLyA+NIeNAKCaDgd6GFkqjE0nff4qemgYmhkckLjJld2syGGjOK6EwLJb0g6Hoxybob26n/GISmYfO0FZUgW50TLJ5OxVFUdhFjHoDrUUVFEfEk3noLGN9gwy2dUp9OXKOurQ8qVomLZf8MzHkn47GbJIWqkqjE8k6fJah9m6GOrqpSswg57hkF6cbGqEhs4CisFjJrncKl8svJJF1+Bx9ja2MdPdKq/YnI6lOzMBoMNCQXUhxeBx5p6IwTE7SWVVHRVwKOUfP013bxGi3tLhVcOaCxNcVCprySiiJSpSq8sYm6K5poDI+TbKLq2lkpKdf5iIVsSmoNGpaCsooi7lM/ukYxgeG6ZtK2uSdiqK9tBqDTi/jf0VcKkq1mpbCcsovJpMfGs3E0Ag9tU3UJGdRcCaGtuJK1GoVDVmFFEfES5WVCNpKqqiIS6Xg7AXG+ocYaG6nNiWHorBYWosqUFtqacwpoiQqgfKLyZhNJloLy6mMT6cwLJbhjh50I6PUpeVReO4irYXlaK2t/u9A3P9p+9+u5N5sNuPk54WtqzN+S+Yx3NHN3FvXMffWdQSvXU7c97vxmRdC0HWLmXvbeqK++IXpa5bi6O3Bk3u+IfPPszRkFqBUKln26N04+fuQ+OsBXAP9cPLxZOM7L5G+/5Ss1rn4gU2oprLyFjZW2Dg7suTB2yQbCh9PVGo1czetY3J0jJ56yWLEc9Z0pq9eykBLB5Z2NmitrQhatYSB1k7sPaTMu+fsYHrqmhnp7pPtJzxnB9NZWYelvZ2k+jlDUvDUDUtie7YuTrgE+Miq5GqtFidfTxx9PLFysGNgXBKDcnW0ltQUQbIJc3PBzsMVjaVkU2PlaI+dm4usoKq2sMBqSnn1igqsha3NlKK0dKOpNBqsHOywGR2Xr4XGyhJbV2eUKinzrlQqsXKQlDcBzCYzGitLbFycACQlxymle5VGI60cTOqnVM6l3JJBN4lSJc2HpMZvxGQ0YmFrg3qq//rxCVQajVz5oJ+YxGwyTynoKyWbrNFx1BZatNZSFYNuZEweuxBgmNBhmNChtbFCqZau7/jAkGQFZiutNkwMjWDS62XVfeOknvHBYVRaDWoLaTVkpKcPs9mMha3NlB3MCJNj49IcKBSYDAZGe/pRKhWotFL/R7r7pPPa2yLMZiaGRyWLEQstSrUas8nEUHsXwizNH8BwVy/6sXEs7aa+Z2SUkZ5+VGoVaq0Ws9nMYGsHRr0eSztbhFkw0t0n26gplEomx8blsiCNpYUk8tHcjn58Quq/2cxoTx9jfQOS+q9KiUE3SX9zGyaDQY7pa2qTqmNsrKeSUQMMd/ZIKsZqFYbJSfoaWjDoJrGwtcZkNNHfJFWnqC20kl1J34BUbiQEKo1aEkyrbUI/NoHWxhrjpJ7+5nZGewdkd4DxgSH6m6S+XInprq6XxmhtJccMd/bILgoTg8P01jdjmNBJ4ju6SbprGqUxWmgxGYz0t7Qz2NYpuTpMXcPumkYmR8bQWluhH5+QKiy6+1CpVZiNJgZaO+W+gORI0VlRJ1vo6Mcn6KyolfqCtOo02NZFb0ML+gkdyqnqia6qesb7B1FrtdILZXkNg62dmI0mzEYjg+3d9NQ2oRsZQ6VRMzE0wmhvPyPdvSiV0vXprKilv7kNo96A2WRiuLOH7uoGJoZGUKhU6EbHaCksZ2iKCBp0k3RW1tHX2IphQgcK6f7qbWiVysYVCvQTOimmvQuz2YxxUk9XVT3dtY1Mjo6hVCoZ7elnpLtPsn1B+k215Jcx0NKBUW/AZDDSU9dMd02j1BeFgvGBQdpLKhnp7kWYpSRfc34p/c3tcjlab10Tw509Ul+ElFhrLapgqKMbs9GEQS/ZFvXWt6CfcgAZbO1krKef0d5+hFlg1E3SOiU6Y5rqS3txFb31zbLTyEh3Hx1lNYz29CNMZkwGAy1FFQw0t0nzAnRX1jI5Os7EVAm+bmiEtpIqhjt7MBmNCKCjrGYqcSvF9DVK8zjePyg9KP+fXQT3/3dteHSCYH9PBkcmWDY3EB93J/w9Xfjl/SdZv3w2ybmVuDnb89k/7+XBjcv5ZPsZls0NZLqfO4e2vMiukwmoVEq0GjVvPLmRYH93jkZl4GRnjY+7E68/dSv7ziQR5OeOpYWGp+5ag4VGTUV9OwDL5gYyNjHJwPA4Lo522NtacfsNCxkZ1+E4tVq/bG4gXX3DDI6Oo1Yp8XCxZ/m8QJo7+nB2sEGpVDDX35nW3jH6hqX7ytlGi6+jFc0DE2hVSlQKBY5WGgYmNFiop9TcVQq0aiUG05TSPKBUKFBOOcsMTkjPKycbC3klHqUSVBrpn0IBCiVoLFBoLEE1RRFVGhQWVqC3lmOUWkuU1raySrxCo0VlbYPKSjpGoQCVpRVqBwcpRphRqFSoHexRaLWSAr/ZjMraCrVJctwxG4ySQruTIygUUiLAaEJrY416CgsNuklJJXwKl016yZ3H2tFeri40TOgkdXethNP6MYm3WDtK1QbGSf0UPtmg0kpcZGJoeMp+S8L/ydExTHoD1o72ktihwYBueFRyjZniImP9Q5jNZglzhZCS4lP4f6UKcKxvAKVKKXOp0b4BjHoDlvZ2CLOZydExCTe0kiK8ecrKTZjNMpca7e2Xzmsrza1+fIKR7l4USsUUpgqG2rsw6Q1T+G9mfGBItlFTKJUYJycl/BdC5hWDbV3oxyewtJeqVcb6Bxnt7ZfV9E0GwxT+G9FaWyHMZgbbOmX8BwmXr/AKpUYzZf8m4ZyFnS1mk4SXo739qLTSPTYxNMJAaydmk1kec29ds2wVa9QbGGzrZKS7T1L+VyrQjYzS19iKUa9HbWmByWikp7aR8cFhtFaWmA0GBtu7GZwSNFMoFOjHJ+ipa5I4jo01et2kxCv6BlBpNZiMJoY6uulv6cBklLZQ6Sd0dFU3yNZ8+gkd3bWNUl9UKsxGI8NdvRJ+TvFV/dg4nRW1sjWvQTdJT20jg+1d8n0+0t1Hd20j+rFxVFoNupFRhtq75HmRYpqkeTGaMJvMjHT3S30ZGUOt1aAbHaOtpFIqCVdI93FPbaPcFyEEY739cl+UKiWG8QnaSqrka28yGOiubZR40fgESpWKsSkON9o7AAoFhgkdrUUVU1zEiElvoK+xlZ7aRnQjoyiUSsYHBmkrqWSkp3+qMlXC3P6mNoyTeoRZ0N/UJi86KBQKdMNXsFy6v416Pa1F5fQ1tkqCcQoFA60dTAwOM9Y/CEJgGJ+gpaCMwfYuTAajJOJXWkVPbROTU+8jQx09GCYmGenplyqHdJM055XQ39KOcVIv2d1V1tLf1C5twROC8f5B2kurpxbIzBh1eloLyqb6MoX/tU0Y9Qa5L5Oj4zIXMRmMmAwG2qYqXq68Ywy2dmI2GBnrG5TGODlJW0kVg22d0rwIIfOOiSkucsVx7H+2/W/3Qq9UKumqrufRHZs589bXjA0M0pBVQMSnP9JRXovG2lK+4etSc9GPTzDaN8hY/yDVlzMZ7x/Ezt0Fs8k09cLQj/e8EOnl0WRiYmgE5wAf+eVXmAUOXu4ErVoiW6/YubsSuHIxDl7SS7OVgx1+i+fKL64qtVryl+4bkMHBNcifWTeukrmdlb0dM9ZdJ1mBTJ03YNl8jJOTOHp7AODs583c29bT3yTtLdVaWxFy42qpKsFG8nr1XThHtlCpnFqhn7dyITPmSn1Ta7XMXL8StaUFdh6uKBQKPEMkn/srD2EbJwcW3n3zlO2YFqVSSdCqJXIyAsA10I+lD99Je2kVINnNzb/jRuklf8oOLmDZAmzdnGXy6+TjybKH75SsMZRKtFaWzNl4A3buLti5S33xXSDZSvRMZbPt3V1Z8uDt2Lg6Y2UvWaeErF+Fo7eHbJnnGTIdBy93mvNK5P4vuu9WyWvd2wOlSkXwGknR/8oLlWugH9c9dT+Ovl4SwCksWXDXzTj5emE1BdiBKxbhGuhHe1m11H9fSSHX3tMNOzfJtm3+7RtwC/JDP0X4/RfPwzXQj9rUXJRKJfYebqx44l6c/b1xDfJHrdUyZ+MNuM8IpL+5DQDvuTNxmeaLk5+3bJO37NG7cQn0w9LOFqVKxayb1uA5O5iWgjJ5zFKMF06+Xlg7OrD0oTvwmBnI5NgESqWSGTdch9ecGVTEpcj2LGtfeBSXab64zwjE0taGJQ/chtecGfTWN8v+vF5zgnH298bewxWNpSVrnn8E9xnT0NpYo7WyZNG9t+KzYDb1GfnyPHnNmYFzgA8eM4Nw9PZg9XMP4zk7GN3wCBoLCxbcdTO+i+ZQHBGPtaM9ti5OeM4OxjXIH4+Zgdh7uLHq2YfwnhdCV3UDKo2G+XfcKFuROQf4YO3ogPvMQNxnBqK1tsLW1ZmVT0t6AdVJWWisrJi7aT0ByyT7D+/5IXjODMJjxjS85gQzPjCEjbMjK5+6H/+l83EN8sfO3QXXaX4ELFuA+4xAXKcH4BkyHffgafjMn0VbcQWW9nZc98S9TFu+ACc/L1wC/XDx9yFg2Xw8QoIk+7/gaWx47W/4LZ5L2YUkbN2cWfH4PZJdWZAfXnNmMH31UvyXzsdrzgyGOrpxDfRj/SvP4L90Ps4BPjh4ueO/eB7T1yzDLXgaTv7ezLh+BQFL5+M9P4SGzAJcpmKmrVg4NS/eBCxdQPD1K/AICcJsNEnfs2QuvgvnUBQeh1uQP/6L5xG4cjHOAT64TPNl6YN3MHOddH901TQwbcUifBfNwX/JPLKOhuEc4MvcTesJXrMU1+n+2Lo6s+SB25hxwwq8582kMj6dwJWLCF67jGkrFpF15ByOvp4suPNmZtxwHdnHzjMxOMLi+zcxY911+J6JIe90NL6LZjP/9vVMu24RWUfCcPDy4IZ/PMnM9SvJDjlPS0E5C+/dSMiNq/FbPJfMQ2fwCAli9XMPE7R6KZmHz2JlZ8sNLz1ByIZV5ByPoDQmkfl33siiezdSGBZLxqEzOPt5s+b5h5m+dhlZR84x0tXH2r8/xqyb1pBzIoKc4+HMXL+S1c89RHH4QjIOhmLv7sqmD//FjBtWkHnkHM25Jdzw0uMsvPsWck6Ek3kwFL/Fc5h72waKwy+RcSgUCxtrNn3wMjPXXUfW0TDKY5JY8cS9KBSQezKSjIOhuE0P4OY3X6AkMp6MQ2cY6e6D/5wtcv/d/i80KZcnePPpW7mYXsqF1GKyimt5ZcsRBobGcHG0oa27nwupJVTUt2NrbUlbVz8qlZKMolqEADtrS0wmM9VNnUzqjcyd7oPJbEZvMDI5aWB2kDeujrbyd07zcUM7lSBXKhX4ejpzw9IQrC2lF0pPFwdWzAtCecUizVLLktkB6A1G2St9XrAvgyMTeLtLPMLdwZK1c7xo7ZOIolalZJ6XPSYBlhrJ3szZSoNwspb7oVYpcbTUoJ1KkCsUCjQqJQpApUCu4nO2t0GhlvqmUKoR1o7SC75C6gt2LiiVKqY85lDaOKDxn4NpQNrzqdRosZg+B4XWQnqpVyiw9JuGytoG06iE/xonZ5yvvwGNk6NkYadW43TdMjRODqjtpEUL+xlBWLg4M1onVSFYOjsSdNctWDo7YeFgj0qtJmDNMuy83DBOJfzcgvyxe+JeGqdW7C3tbFlw183Ye7ji5OuJUqlk2vKFOPp4MtDaAUhYvvzxe3Dw9pDtdeduWo+Tr9eUba4Cv0Vzcfb3kasS7T3cWP7Y3Th4uWPn7oJaq2X2zWtxDfSTHY2858zA2d8b9+BpKFUqbF2cWPLQHTj5eUt9UamYuW4lbtMD5BV7jxmBsl2sZCGnZfH9m3AN8pPtcYPXLscjJIiGqTG6TvNj9d8ekvDf3xsLG2sW3XsrHiHTJRcPhYLA6xbjERKE25TFlqWdLauefRCXQD8cfTzQWFqy4M6b8JozQ65KvGKB6uznhaO3BxY21qx65kE8ZgZJCRmNhnm3bcBn/iyqk7JQqdX4zJ+FW/A0XKb54hkShK2rM9c9eR9ec2Yw3NWLUqVizsYb8F04G9dAP2ycHbH3cJNU/4On4ejjiY2TAysevwef+SG0FleiVCqZddMafBdJdrFu0wOwdXGS+EJIEAqlEit7O5Y/ejd+i+dSEZuChY01M9etxG/RHFwDffFZOAe3IH/W/fNJvOfOYLC9Gwsba5Y9fKfMEZx8PPGcGYTvojm4zwjEwdsdlwBfSaNnwSwac4qwsLZi6YO3E3jdoinuNA23oAB8F8zGY9Z0zCYTTr5eXP/SE/gtnktxZAK2bs4svn8TgSsX4xrkh8/CWUxbvhCf+SF4z5tJb30LDl7uXP/i40xbvhAnf2+cfL0IXLFItn61dXXGf4lkFeu7YBY1ydk4+Xpy/d8fI2jlYmleAv2YtmKRbP2qGxnDb9FcvOfOxG/xHArOXsDZ3wf/xfMIWr0U10A/3GYEMf+OGwlavRTvuTNpLa7AZ75kY+e/dD72Xu44+Xkx/44bCb5+uWy3Ov/2DQSvWYr3/BDKLyThsyCEwOsWMW2F9Nty9vNm4T0bmbFuJdkzAxnu7GHupvVMX7MMv8VzyTkRjsfMIOZuWk/QqiVkHw3DydeT1c8+xMz1K8k9EUx9Rj5zbl1HyIbV+C+ZS8afZ3GZ5svsm9cyfc0yso+eBwWseuZBQm5cTc7cmZSExzFz/SoW3bORgOULyPzzLI4+Hqz751PMuGEFWUfP01vfzHVP3U/ITWvIPRlB9tHzTFu+gDXPPULQysVk/HkWWzdnbn7zhSksP09tchbXPXUvi+7dSO6pSDIPncFzVhBLHrqDsjVLyfzzDGajiZvffIGQDavIPhZG4bk4Ft93K1YOduSdjibzYCjOft7c9vErBK9NIePPM/TWN3PjG88x99YbyDoaRs6xcEI2rCZg2XzyQ6NJPxgq24z+z7b/7V7oAcmS4N0tWDvbs+Sh23GfEcjLEfsI/+QHso6EYevqTMDS+Qy2dZH551m854XIHpklkQkMdfZw75Z3mRwbpyw6kczD5wiesjsrjU4kdfdxpq1YyJIHb/+L3UY2K564l9HeAeJ/3Ev20TDu+Ox1fBfOIfvYeVL+OIbJaGLpQ3fQVV1P9ObtFIbF8k5aKJZ2NiRuP0TqnuPM3bSO6auXUp+ZT9SXv9JSUMbCu2/GMKEj+qvfyDp8lke2f4HLNF8Kz13k4re7sHFxImTDavqb2zj/8Q+URFzi4+ILOHi5k7TzMInbD7HqmQeYuO0+ANK27SC/rJAvqhKYGB4hevN2Mg+d4YWT27Fzc6Hw3EWiN/+K9/xZBP65iN7GFsI+2EZFXCpf1UmWJvG/HODy9kNs+uCfuE0PoD4jj3MfbMOkN/Bu+lnG+genhMPO81bKabznziT7aBjRX21n3u0beOjHOXRW1nLmnW9oyi1ma2smRr2Bi1t3kvz7MR7buRmnB26j7MJlzn/0PQ5e7vwrcj8DbZ2ce2+rJLZXcQl7D1eSdh4m7rvdrHv5STZ9EEx9Zj5n393KSHcvX1QmyH3JOnyOf0XuI/j6FWQdPkv0V78RtHoJzx78gfayas68/TX1Gfl805KBQqkk5uvfSP79KPdv+wDXQD+KIy5x/qPvsbSzkYT/psT2SiLj+aggGrfp/rLAzcpnHsB/8TxJrO7drfQ1tvJddx7DXT2ce/9b8k5G8vyJ7Th4upH8xzEubNmB/9J5zFy3ksacIkLf/IrG7CK+bkxFbWlB+Mffk3noDHd89jpec2aQdfgsEZ/9hNpCy/w7bqSttIrQN7+iMj6Nt1NO4zM/hKjN20n5/ShLH76D6auXUnD2Auc//I7B9i7m33Uzw509hL71FaVRiTy5dyuOPp5c/HYXib8cwHteCPPvuJHSmETOvruVjrJqAlcuRmtlSejbWyg8d5Fb3v47fovmEP/zfmK3/YFSpWLF4/dQnZRJ6Jtf0VJQxssR+1AoFZx9dyu5JyKYf+eNkpjkriNEf/UbE0PDLL7vVvqaWjn9xpc0ZBXy4A8f4+jjKQkk/nkGt+kBLH/sbtL3nyLi0x8Z6uhm2oqFqLVaTr3xJbUp2Vz/4mNMW76AiE9/InXPcVRaLaufe5iisFjCPvyOgZZ2nj30Aya9QdoOk5DOjHXXseCum4n68lcu7/gTk97Akodup624krPvfkNfYyu3ffQKDl5unH7jS8ovJmPn4coN/3iSmC07iP9pH/rxCaatWEhLQRln3t5CT20jSx66g8CVizn9xpeURMajsbLk+pceJ+vPs8R+t5vJ0TEe+vlTJoaGCX3zK0kUb8Eslj50O6ff/Eq2Rlz28B1kHAzlwje70A2PsO7lp7B1ceL0G1/SXlaNtaM9615+mvCPvyPvdDTCbCZg6QJqkrKJ3vwr44PDzLppDdNWLJRFLdUWWtb+/TFSfj9K9rHzCLMZ7SevMtzRQ8RnPzE+MISTnzfLHrmLU699Lou9LHngNi59v5vMP89iNplY+vCdJP9+hPMf/yAnJqsvZxH5+U80ZksltX4L51ASEU/avlOYTSZJWGfPccI/+p6Rnj6UajU1lzNlGx4ArZUlx17+WNqKYTJh5WBH+r6TRHz6oyxE05BZwPmPvpe3tYRsWMXJ1z4nadcRzEYjaksL0ved4tJP++SEndes6fx042NyKayjnxen39zM5d/+xGw0gkJB7olwMg+fky1p1BZafrn5CXnLitbGmtNvfkXa3pNy5UXZhWRO//srWbzGa3Ywv258isp4qcxVpdEQ8dmP5J2IlP3m6zPy+Xz2zQy0SCu2Vg524PpfAoX/3f4Pmp2NFYMj40SnFFFW28b7L9zJktnTuPjH2/zjy0PUtnTh5mTPg7cs5/tDMYQn5vPsPWvxdnNkctLA8ZgMFoUE8PKjN9HdP8zp2GyScip58cH19A6OEhqXw5/habz73O2smBdEWHwe+88lMzoxybP3Xk9xdQu/Ho3j7KVc4va8i6OdNb8dv8Sh8FTWL5vNhhWzScmr5odDMeSWNXDfTUuZ1Bv4dl8Ux2My+eaNh5nh70FMfhv7L9VgoVVxw1xPukZ0HM1tIatxgJ/un4+FvSVlXSOUdY0Q5GyNq42Wcb2RjmEdOqOJuZ4OmIVgYtLApNGIraUFg1NVfLbmMcyTBpQaZ4RhEtHXAuODkiieQoWprRJTSyUqv1kobRww9bYymX8JodehvvMfmHXjDF+OYLw4C9cnX0Njac1IThq9kaewnjkHz4Dp6NrbaNn7ByPlZSz68zhmIWg+dIS2k2cIfvM1rLy96EnNpGzLL6htbVh7ai/j3b1kffkT9eEXeSj5HLZ+3uQfOEXq93+w4PF7ufHTmbQUlHLu3W/orWviy/pUJoZHiPryV9L3n+KFE9uZfYsr+aHRRH7+Mz7zQ3jhxG901zZy5p0tVCVk8FV9MhY2VsR9v4fE7Ye4/eNX8JgRSMWlVM69/y0IwYd5kQx1dHP2va3kh0bzTlooPvNnkfz7US5u3cWi+27Ff8k8GrIKOPP2FjrKa/i2I5vJ0XHOf/w9WYfP8eSeb3D09ZLE6r74BfcZ0whZv4q20irOvPUV/x/2/jK8qqvr+4b/2XH3EDS4W5FSo5Q6pdSpGzVooVCBUgOKu7sTJCSQAHFPSIi7Enf37GyXtcbzYe5MsuG83/t5L7mP43ruc31ihzXWnrbXGFPG719+Nx3/lMXCzs0FYVuP4N5pH7z4yzcYOm0i8m5H4s6fe6BTazD99RfQUVUH/1+3oTA0HqsjL8P6KTtE7T2DuEMXMGXRcxj7zFzcj0rErd92or2iFpNefhZahRK3ftuJ3IAILD20Ae6jRyD+mDcid52Cy4ghmLb4eVQmZcL/122oyyzAX3lhcPB0x50/9iDTJxDzl3+MkY/PRNI5X4RuPgydWoM5H7yOxrz7HFz87c0TsLS3Y4DBCzcw/rknMHXRc0i/ehtBf+9Hb3Mbpry6AKo+OW7+tAVlcSlYsvVXeIwbidAtR5B48irsB7nh8Y/fRI5/GG7/vptLuDoNGYQbBr/8+CdvYezTcxCx8wRiD10AiDDvs7dReS8TAet2oK2sGp+c3gELaysOax45dzpmvbcI0fvOMliwTI6pi56DtKUd/r9sQ3NxOV785RsMGjcK/r9uQ25ABKwd7bHgh88Qf9QbETuOQ9kjhftYL/Q0tODmT1vQkHcf015/ARMWPolbv+1C5vUgSEwleGrZeygMiUPoliNQdPXg7V3rIZGY4saazajLKsCg8aPxxOfv4Pbvu5mP1esxbfHzKAiOQfDGg5C1d+KpZUvhPmYE/Fb/g5q0XFg52GPBys8Qtec090keY0eiqagcgX/tRV9rB8Y8PQcTX3waN1ZvRmVSJiRmZnhq2fsI9QvGvVM+0Gu1eGnddxC0WtxavwvS5jbYu7vi6a8/wI01m1F+Nw0AMHXRQqRdvoW7R72h12ox/c2X4DJiCALW7URPQzMsbKxRm1GAiJ0nUGpIq3QbMwLVaSx9V6/RYtDEMcgJCIf/r9vQXdfEUuc+KYDfj5tQbEh9eXLZUgT+vQ8x+89Cp9bAysEOuQHhCPxzLzpr2AnnCc8/yaUeAWD0U3MQ/M9BRO05zU9a5gaEI+7wRb4R6DJiCE69/R1P3bX3cGUpzTtPQKtkp/iKwxJw8dNf0F7BFg+nvLoAp99dweIxsA3T8G3HcPfYZWgMJ3oq7mUibNsxLqk7aPwonH1/JXL8WVquiakpYg6e56mNAGA/yA07Zr3OIX+Wdra48PEa5BpSSwEgzdsf5z5YBbWM7dBbGE7M/Kev/zQn/7/5+lco/6wbIbQcXrTGYSptGLeAelvbKXTbUYrYfZICN+ynlpIK0ihV1FFTTyVxKVQ8QEpD1SejgpAYEgZIjLRV1HB5JSIivV5P9QOkKoiI2itrjGTUdFqtkQ0RUfcA+RMiJrM0UO5EFEXqbW03ukfW2WUk6SLo9UY2RGQkJ0bEZCK0Bgm9/ucqeqV0NrGKvNaHUFlrn5GUHBGTuVDJFUZ/e/gejVJlJHcmiqKR5Mi/stHrdFyy6391j7JPZiR3IgjCI89VSPseqaPm4To+dI9igJRcf1lUD323vKvnke8ZWEdBEB5p3752Y2ketVxhVKd/1Y89TS1GddSoVEbPEUXRSB6HiMllDJR002u1RlI3oihS+0MygfLuHiMpRL1OR63lNUb3tJRWGtVRKe2jjuoHskCCXm8kuUjE5HwGSv6pZHJjiUVBoOq0HKM6dtU1GkkfahRKqkrJNrKpTM4yqmNPU6uRDIxWpaLi6HtGda7JyKOuugdt1dvaTqXxD2T2tGo15dyO4HUURZHqcoqoLvfBc/vaOynnVjj/rNNoKOdWOPUZ5JKY1FCJkcyOrLObki/48TrqNBrKD46mxsIybtNcXM7lWoiY7F7c0Uv8N6DXaqkoPJ5Lr4miSK2llRR/9BK3UfT0Utwxb94neq2WiiMTKe3qLW7TVlFDwZsP8XeDsldKCaevUcW9DGaj01FJXDJF7z/Ln9tWUUMB63fy8azsldK9s9cpwyeQ25TGpVDAbzt4Hdur6+n2H7upLqeQ2Uj7KOmCH0XtPc1tyhLS6PI36/n7r6Omnu78vZdyb0cQEXunpl4OoBu/MBk4Qa+ninsZdOGzn6jTIM3XWdtAQZsOUMyh89wm7eptOvfxahIEgQS9niqTM+niF7/QfUPbddY1UsiWQ3Tzl63cJt3nDh1dvIwUvVIS9HqqTsuhS8vWUsKpq9wmdNsROvPBSv7+yvANokMvfUIN+feZTXoueX+1jgJ+20FERF31TRS2/Rjtf+4D0mk0pJLJKetGCB1+5TPKuB7I5EXTc+nyN7/R2Q9XERGTRQrfdYJ2zFlC3Q3NBptQOvzq57zfajLy6Op3f9De+f+WrfvvvP5V2/5+6AaZz1xGQ59fQx+vP0mFFQ209VQg7bsURltO3qGO7j6SypRUUddKd+KyqaCc/RZFUaTWjl6KSn3wLhFFkdILq0iueOCP5AoVlVQZv88f/tzbp6CO7gc+SxRFamgx9i2tnb1Gcmd6vUDtXcZ+rUumNvqs1upJpX1gI4oiqQZI3xER6fSC0WdRFEkQBFpzPYfG/RVm+GxsIwh6Y9k6USRBpzG+R6My+iwKAgla4/LplcZxhk6hMIq3RFEk3UOxiFZm7Ld1Gg3pHvL/6v+N/xf0+kfjiofuUcsVRpJuoig+4v8fjhk0KpVRXCGK4iMxgrStw7gftVqSDZAJFkWReppajGzk3T2kHtAOgl7/yD2dtQ1Gn1UyudF3C4JAHVXGMUJHdZ1RrKpWKI1iVVEUjWRsiZhEWN8AKUGtSkXN98uNbOqyC438v7S1ndoHfLdOo6HarHwjm/qcIlIO6Le+ji4j+V69VvuI3HNjYalRvCLv7qWyhDQjm8KweC7pRsRinoFxhaJXaiR1p9fpqDgqkXqaH0j+tlXU0P0BsUe/T+qvo6DXU2lcCjUUPJAb7KiuM5LZU8nklHTel487Qa+n8sR0o+d21jZw/0TExmCKtz+X/BUEgSpTsijt2m1+T1dDM4XvPM7rqJYrKP3abR4HCYJA1ak5XK6NiMVWIVsOc9k6jUJJmb7BlG54br9Puv3Hbl7HnqZWCt12lKrTmaSbRqmirBvBFGnw/6IoUm12Afn88DeXretpbqOIXSco62YIt8kJCKObv27jNvW5xXR1+Z9ctk7a1kFR+87weEWrUlHenSi68NnPXLauIf8++fzwNxWExnGb6ANneVyhVakoLyiaTr79LfW1d7KxUlBCvj9upPhj3twm5tB5Ovsh8/9alYoKQmLpxJvf8Pi1saCEfFf/Q/5rtxMRixXjjl6igy9+TGqlkrRqNRWGxdHJt7+jFG9/ZlNURn4/baYz76/kNvHHvGn3k29Te1UtadVqKgq/S6feWU53/t5HoigapAe30d75S0nQ66mvvZPunrhCu558m/KDY5hNxF069e4KOv/J6v87ZesAQGPItejPFxZ1ekx+eT7Of7yG7aC9twh1WQW49dtO1KTl4uXflmP0E48heNNBxB+5BDs3Z+xuyUTZ3VTcWL0ZTYWlWBV2ETbODgjeeAApF25i8ivP4rubJ3A/KhGBf+1Dc1EZdjamQSNTIGjDfuT4h2PR36vw/OplyPEPQ+TuUyBRxF85oXwnvSjMsJo6czIST11D8jlfjH56Dj46tgWNBSUI3XwYtRn52FadCK1ag6i9pw3SJasx96M3cT/6HmL2n4WpuTlWBp9HX1sHwrcfR35gNH5N9IPz8CFIu8zgMJNeno/exxm1NPK3begrKMRfuWHQqtSIO3QemdeD8d6BvzHpxWdwP/oe7h71hr2HKz47txvS1nZE7j6FotB4/JEZCEs7W6R6ByD1kj8e/+RNPLv8EzTm30fMgXOQtnRgTdQVqGVyxB2+iCzfYHzlcxhDp01EQXAMks5cx+Ap4/DO7j/QWduAmP3nUBaXgg0FERAEAUlnfZF+9TZeWvsdZr27CJVJmbh7/DJIFPGt33HIO7sRc/A8cv3D8VOcD8wGezAg2yV/THrpGbzy2wo0FZYi7sglNBeWYn3aHajlCtw95o3M60H48OhmjJ3/OAOwnfOF42APfHJqBzqq6xF/5CKKwu7iz+xgiBbmSD7nh4xrd/D0Nx/i6a/eR3kC202Ud/ZgTdQVSFvbEX/kErL8QrAq9AIsx41C2pVbSL98C6OeeAxv7fgNdVkFSDh5FVVJWfinNBaKHikvyzu7f8e0119Ajn8YUi/5w8LWBt/dOI7m+xVIOHEFBYHR+CMrCCQS7p32QaZPIOZ+/CZe/OUbFIXfRcqFG+iqbcSfWcHoqK5HwokryPINxvKAk7B2sEPyhZvIuHYHw6ZPxMcnt6MsPgVJ5/xQkZCOzWVx6GvtQOKpa8i8HoQlm3+G8zBPpF25jYyrt2EikeCnmGuoTsthUMI7UViffgeCXuBlmbV0MQZPGovsGyFIu3wLLSWV2FGbjPqcIiSdvY7sm2H42ucwbBwdkHTOF5k+gfCcOAYj5800QNxuoSIhHf+UxaGrphFJZ68jyy8Ei/5aBfcxI5By4QYyfIIg6vWYlB2CwtA4pF2+hcKQWKxL9odOrUbSWV9k+QZj5tuvYOTcGUj1DkCmTyDay2swuTYJZXEpSPUOQEFgND67sIeXJet6EDzGj8LURc8h7cptZPoEoiYtF5vux6CluAKpl/yReysSL/+2HIMmjkHyeT9kGsry+CdvIcMnEJk+QSiNTcZPsddQlZKN1Ev+yPEPw/QlL2D8gieQfOEGMn0C0dvUisfeeQV5ARHI8AlESXQSPjq+BVYOdki5eBM5N9npjlnvL0bqxZvIvB6E5qJyjHlqFrL88pDhE4ji8AQsXP0lBk8eh9SL/si+EQKYmODpr99Hlm8IMq8HoT67EN/5n0ROQDgyfQJRGBqHyS8/i0kvPYOUizeR5RcCtVSGOR8sQdrlW8i6HoSa9Dy8tXM98gKjkHEtEIUhsXAZMQRPfPEeB0D1NrZg7PzHEW8Yt9Up2Xhy2VIUhjJAXkFQDMysLPH01x8gPzAKWb7B6KptxIcntiLhJBuTlfcyMfrpOSiOTEDGtUDk34mCoNNh9vuvs7b1DUZHZS1e+Plr3Dt7HVnXg1B+Nw32nu64H5mALL8Q5N2OgrpPhjHPzEXwpgPI8g1BW3k1pi15AckXbiDLNxilscmwtLNBYUgcyuNTkRsQDmVvH5yGDELolsPI9A1Ga0klBk8ai1RvVr/SmGSYSCQoT0jH3WOXkRsQDkV3L+Z+9AbCth1Flm8wmovLYefmguTzN1AYEssgRno9vOZMR0VCOnL8wyHv7MaoJx5DxM7jyPQNRlNBKSxsbZB2+RaqU3NwPzIRgk4Hh0Fu8PtxE3JuhkHW0QXHIYOA/xrmzb+v/xeXSq2FvYGdYmNtgdqmDkwaNQRlo1vx/dZL0AsC1n75KgLjc7Hp+C3UNHXi2u4VcLK3xS97fRAYl4NFz0zHi/Mm41poKv4+4o/WLimqw/ehS6rAuv2+CLuXjw3L38T4kZ64eOce9l0Kh0RiguI7O1Fe14o/D99EbNp9hBz/GQ521jjqE40LtxPx9MxxOPPPV8gursHmk3eQVVyDyrC9EEmHXedD4R+Vgd+/fh1fvjUfCcVtuBDHdnm8f3wGPUotbuY1IbO+B/8smoQhDlYo71SgrEOOwfaWmDvcGWqdgHa5BiqdgAke9iyvW6uHVq+HtaUFepQ6OFubQ9/XBROJCST2riC9FtTTDCh7YDJsKohMILZWQWipgsR9BCTDJ0HoaYO2OBkk74XNq19B1GqgyIiD6n42nBZ/CouhIyEvzEFvQgQs3AfB44Ovoe3sQKu/H/pyszH56GmIRGi5E4TWkHAMff9deL72KnpyC1F97ioEhQqPXzoCjbQPhccvoTowAq/6nYa91zCU3ApHvrc/hj05C/P/WIX2siokHLmIuow8rM0MgValRuLJq8jwCcRbO9Zh8svP4n70Pdw77QMre1t8cXEfehpbEHvoAvIDo/F7+h1IHCRIuXgT6VduY84Hr+O5lZ+jJj2XSXvVNeHXu36Qd/Ug/uglZPkG4+vrRzBsxmRk32BpNYMnj8PSAxvQVFSGhOOXURqbgo1FkVCr1MxPXw/CK3/8gNlLF6MwNI4B5UQR3985i46qOtw9fhk5/uFYl+wPiakESYZYZNrrL+C1v1YxX37WF81F5dhQEIGeplYkHL+MLN9gfHZhD8Y+Mxdpl28h4+ptuHgNxRcX96EmPRf3TvvgftQ9bCyKhEamQMLJq8j0CcQLv3yDp7/+ANl+wUi7fAsauRJr791EY/59JJ72Qa5/OH6Ovw5TMzPcO3MdmT6BmPTSfLyz5w/kB7K0pvqsQmyruYeOyloknvZBlm8wPj61HfYebgb/GQgHT3d8f+cs7kcygNz9yERsLI6GvLMHSWd8kHk9GM+t+hyeE0Yj9ZI/MnyCoOjqwabiaJTFpyDloj/ybkdiTdRlSMxMkXSWxRXjFz6J0U88hoxrdzikdVt1IuoyC5B83g+5AeF4//AmOA52Z3GdTyDs3V0w5dUFyPINRsa1OyiLT8Xf+eGoa2pF8nk/ZN8Mw/zlH2PYjEmGWCQQ8o5uzH5/MfJuRyLj2h0Uhyfgh6CzgCgi+fwNZPmFYNyCeZj4wtNIveSPzOtBaC2twqSXn0VJ9D3uY9/Z8wccB3sg5cINZPoGw97dBXM/XMLjl9oMJj9cGBqH9Cu3kB8Ug6e+eh9es6ch5cINZPmGQKtU4Ykv3kPe7UhkXQ9CZVImvvI5jOLIBAPYOBqjnngM05e8iBRDXCFtbsP0JS+gICgGmdeDUJGQjtc2rkZpbDLSrtxC3u0o2Dg54JlvP0LqpZvIvB6M9ooaDJ85mfXh9SCUxadizodLUJGYjrTLt/jO8pNfLkVxeDyv89JDm5DqzdqgNCYZwx+bgsrkLKRfDkCOfzjUMgVmvPEigwBfD0JzURme+/ELpF+7g6zrQSiOTISdmzMq72Uixz+M+8thMycjcvdJZF4PQmN+CSa/8iwyrwci0zcYxeEJMLO0QHlCGioSMpBzMxR9bZ14+ffvEbXvDLJ8g1GfXQjXUcORfTMUWb7BKAqLh6DTY8qrC5B5PQjZN0IhbWnH7KWvIebgOWT5BqM2Ix82Lk7IvBaI+5GJKAyJhU6tweAp4xCwdjuy/EKYKtisqYg9fAHZfiGoTs2BmZUlcvzDUZ9diILgWOhUasyzs8Gt9buQ7ReC7vom2Hm4Iu7wBeTeiuSnDivvZSLj2h0UBsdCo1Bi2usv/Jf4vv+RE/q2kkqMnDcDElMzzHjzJdi5OcPC1gbrUwOQdSMMQ6aMh8TUFL+l3ELenUi4GXKTlx7YgOdWfo6KexkwMTHBhOeexPq028jwCcTIuTNg7WCPpQc3Ys6HS3iO1OSXn2W5wEExsHF2hEQiwQdHN2P6Gy/CZcRQmJiYYPbSxRj+2BSuiegyYig+OrEVhQY5AompKRb88Bm85k7nxONh0yfhw+NbUJGQDokZA5C8+scPPJ8GACa/NB8uI4agu54d3XQY5I43tv6Csc8+DodBbpBIJHji83fhOXEMzK0skVLDjnx+sGU1mvNY7rWFtRWe/+lrDJ0xGUOmMsmXSS8+A0dPd6617Ojpgdf+WoUxT82GpZ0tJKameOKzt+Ex1gv2Hq6svDMm47UNq/lxFSt7Oyz88QsMmToerl6sHaYtfh6Ogz14rrvbyOF4+bflGPfs4zCRSGBmasqPFQ0yyMSMfmo2rOxt+XFbOzcXPL/6SwydNgF2riw3f9Z7i+A0dBCH0w2ZOgEv/foNmotZsGNlZ4tnvv0IHuNGwWPcKJiYmGDKqwtg4+IEwXAM1m3UcCxcvQwjZk2FubUVTM3MMO/Tt+DiNRRuo5hI9Jin58DCxho9DS28XZ5d8QkGTRgNB093SExNMeu91+Do6c6BMMNnTcVzqz7H2GfmAGD5/E9//QHcRo+A56SxvF1sXZygNhzJ8Zw4Bs+u+ASDJ4+DlYM9LKytMO/Tt1i+tqEtJz7/JCxsrNBpAC26jRqOZ775AO5jRhg4AFaY8/5iOHq6M9CMofym5ubwmj0NZpYWcBrqiSe+eBcuXkMxeMo4mJqbY+bbr8DW1YkDu7xmTwOI4DFuJGxdnWHj5IDHP3kLTkM94TSU8QimLHoOlvZ2nJQ7dPpEPLlsKVxHDYfLiCGwdXHC7PcXw97DFRKJBBKJBJNeegYWNlYYOm0irOxsYefqjHmfvQPn4UMwZOp4WDvY47F3XoWtqzOkLe0wMTHB+AXzYGpuBndDDrfTkEGY+/EbcBziAUdPd1ja2nDWQ2PefZhZmGPM03MAExO4jhwGV6+hcPEaijmGsoh6AeZWVpi2+HlY2dnAc9JYWDnYYeTcGRD1LA9u8KSxcBrqiVnvLoKtixO6ahtham6OKa8ugIW1FdzHjIC9uyvcRo+AXqOBg6c77Nyc4eDpjplvvQxrR3vUZRXAxskRk156BqYW5nAdOQwuI4Zg6LQJrF3cXaBRqGDv7oppS15kx9cT0mHn6gynhZ4wMTWF87DB8Bg7EoMnj8Os9xbB1tUJrWXVsPdww9TXFsLCxoozAPqlGx0Ge8DKzhYe40dh5tuvwMbJAdVpuXAaOghTXl0Ac0sLnqs/9pm5IEGEwyA3yDu64DZ6OGa88SKs7JmWrP0gN7iPGQFTczM4D/OE8/DBGP3kLOi1Wti5uaAx/z48xo/EtNdfgKWtDcriU2Hv5oJhMxnDw3HIIJgYcld1KjVsnBxQmZQJ99EjWJ6olSXK4lJg5+6CCQufBIhgP8gN3fXNGDl3BvRaHawd7VEWnwqnIR4YOmUczCwf2IxfMA+iIMDOzRl1WYUY+fgMWNrZwMLWGmXxqbBzd8aoeY9BYmaGsrgU6HU6jHt2HkS9AFsXJ5QnpGPotAlw9RoKCxsrJhPk6oxJLz0DiakEpXGp6Kyux7jn2Bi0drRHWVwq3MaMwKh5M2FmacFsnB0ZxwSAvYcbGnKKMObp2XAY5AYrBzuUxaXAccggjHlyFkwtzJm0oCAC6q7/f93cv6//4GVtZYGEzBK8uXAW0guqsHXVu1BptHjxiclIvbYB6QXVsLayxIeLnsA7L87BWf+7eOnJqXCyt8HN/auQXlCFLqkcJiYm+PT1p/DKU1PhH50JTzfm/312f4+I5AIMHeQCiUSCr99ZgGdnT0RuKVNuGe/lCe/t3+FOXA4mjR4CC3Mz/PL5q3h29gSo1OzI++wpo3B281eITb8PaysLmJiYYNOKN/Hs7AkYNZTxbxZMGYQR7rao72B+w9nGAp/NHYGpgx3gZstsxrvZwtnaHCaGuluZm2KwgxWUWhZnmJiYwMrCDKamEphJTNCr1MLJ1gJmto4g0XCPmQXgMgywtgckLDdfMmg0TKwdAEOevanzIFjOXAixl6W4SCwsYfv4Qph7DIWZM8snsZ0yE2YOjiA9q6OFmzs83/8IdlOmwcTMDCYSCTyXLIb18OGwGuwJAHCaORXjV38HVTNLabF0dMDUFZ/BZfJ4WLu7sjhtyYuw83SHmUGm1338aCz85Vs0Dohxnv76fbiP9cLgyeMAABOffwrWjvbQGEBVzsMG4/nVX2L4zMmwsreFqZkZ5n70BlyGD2YLbgC85s7ACz9bcJ9r5+qMZ5d/gkHjR8Nl+BBIJBLMePNl2Hu4cYjvkCnj8dyPX2LkvJmQmJnBysICTy1bCrdRwzF0+kSYmJhg0kvPwNrBjoG1wHhKz674BJ4Tx8DG2RHmVlZ4/OM34TzME/YGWeGxz8yFuZUlWkqqWDsNGYSnv/kQ7mO84DZqOEzNzPDYO6+w+MyQfzti9jQ8+/2nGDZzMixsrGFmYYF5n70NlxFDWEwskWDa6y/A2skB0hbWj0OmTsAz33wIj7EjYe/hChsnltvuNGQQbF2dDOWfDwtbGzTml8BEIoHH+NF46sv34DpyGNzHeMHKzhazly6Gg4crdBotTExMMO7ZeTC1sDDEOHZw8HTH45++DSeDzzW3ssKMt16GjcHnAsCoJxinym30cNgPcofzsMGY8+ESOHi6w9rBDmYWFpi6+HlY2tuhPqsA5laWGDF7KkS9Hq5eQ+E+diQcBrlj1nuLYOfmzECyBmi1hY01PMaPgo2TA9xGDecxziADA2Dm26/AxtmR66dPevEZmFmYw23UcDh4usNz0lheFnNrS9g4O2L6Gy/CysEONWm5sHG0x/jnnoTE1JTxk0YNx6DxozBr6Wuwc3OGvLMHVg723H96jBsFWxcneIwbCRJFOA4ZBPcxXnAf44XH3nkVNs6OaCosg52rE6Yueg4W1pZwGz0cDoPc4TVnGkS9wGJSiQQuXkMx482XYOVgh6qkLNgPcsekl+fD1MIcLiOGwGX4EHjNnQ6dRgt7d1d0NzTDefhgTDfEImXxqbD3cMXQaRMgMTOF0zBPOA8fguGPTYFGoYSNixPqcwrhOnoYpi5+HuY21iiLS4G9hwvGPjMXJiYmcBzsAZ1ai2EzJkHz9iuwdnJgDIDhg+Hg6c4m4fGpsHd3xbhnHweJIuzcXdBWXoOh0ydAr9XC0s7G4Mtd4TVnGiRmZnAelgpbVyeMfXYeREGEnaszqtNyMWz6JFg72MOy3/+7OGPSi09DIpHAcbAHlD1SjHl6DodalsWlwn3cSLiNHgFz6wf+f+IAX95aUomxzz4Oc2srWDnYoTQ2GS7DhsBtzAjuy60c7DHhuSdAoghbV2fUpOVg1BOPwWmoJyztbFEamwwHD1dMfnk+JKYSlMWlQNnbh/HPPQkTiYTFInfTGCdhxiRY2tqgNDb5v+zI/f9I2brZH7yOmrQ89Da1InTrEcg6uhG65TDWus+G78oNqLiXgcrkLJx881uEbz+OguBYaFVqxB46j5DNh5EbEMF0JnOLEHPwPEqi76G9ogZalRo5/mFMfsAgH9ZSUom825GozciHVqHkElc1abk8R7Kjuh4ViRloMUwwtSo1ajPy0VxUzhcGuuoa0VRQynMxtSo1mgrL0FpaxSfA3fXNaCuvYXRnMNmU9vIaPsEkA5W8s7oeeg2bqKqkMnTVNEDe2YNepQ62FqaQN7dyG4BRSHsamjkRWtDp0NvcxmBNhkve1YOexhaIgsDL19vcximMoihC0dXDc1YBQKtUo7e5HTpDWfrl9/rLDzC67EAbQaeDrKOb57UAgKpPzp0dwMidfW2dEAXWLiQyAn2/cwYY6VbeMSBIJoK8s5vnscLEBFqFki9amBiI+TIDkbv/HlVvHy8LI8FqjcoPExPIO3t4WSSmptAoVDxfxsTEBCQS5J0MTAMAEjNTqKQy6LUssDE1N4NOo4XaMBYkBiUBRWc3d8ZmlhbQyJW8LKbm5rze/d9jamEBRbcUZOgjMytLaFVqaAx5OKbm5jCRSCA3QHJMTExgYW1loPUbgixrS4h6gY9LiZkZe25XL0AEExMTWNrZQKtU8bL0gxFVBlKpqZkZLG1toOrt4+1i7WAPQaeH2kAd7QcPybsYNVViagore1to5Ao+dq2dHJgigWGMWdjawMzSgi82SExNYePsCL1aw6mj/QBDZY+U1c/GmpVFKoOgFyCRSGDr6szKYmgXG2dHSMzNoezuZZAowwtbLVcwSq1EAjt3FwPhngXy/cwNRTeTZDS3Yk5cp9ZwGqu9hyujvXYzMrytixMs7Wyh7pND0OlhbmUFe3dXCHoBGrmCOT5Pd5iam/F+tXVxgrWDHTQKJXQaDcwtLWHv4crUD3r7DA7KHeZWltzGxtnxQbuoVDC3tGTayyYmUHT1wNTcHE5DBsHC1gZqmQJEImycHWHr6gRBp4NWqYaFlZVBpcMUiq4emFtZwnHIIFjZ27G2FompYXi4QRRFaBQqWNpYw2X4YNZHPVKYWVnC2aCwoVNrQCL7HgdPd8CEjRdrJwe4eA2FhbUVI/UaFppsXZ05yd/KyQHOQz1ham4OVU8fbF2c4DpyOCxsraFRKGFuYQGnoYNg7+7Cybg2Lo5wGT4EZpaWUEvlsHVxYgu3DnbQqTUwszCH09BBTFXEQDu293CDq9dQmBvKYuNoD7fRI2Dt5ABBq4WpuRkcBrkysKaZGTQKJRwGucF11HBY2tlCq1TDyt4O7mO8YOvqDBIEEADHoZ5wHOIBU3MztnDj5gK30SNgZW8HnUoDMwMY7d/X/7nrg1efQGB8Dlyd7bBm1zXIlWp88fdZTHrjD6zcfhktHb3wDU/DW6sP4+Kde4jPKEF7dx82n7yDQ1cjEZNaDCJCdGoRjl6PQWz6fXT2ytHe3YdroamITilGZT0jWKcXVCEkIRfZxWyxu6tXjujUIuSX1qGjRwZRFFFQ3oC0girUNjNf2CtTIr2gGkUVjdDpBRARSmpacL+qCV297N0sVWpR0dKHph72ThWJ0NKnRrtMA42evXc1ehEyjR6afl9JBK0gQmv43G8niiKIwHbobcxBosC05/svQQfoNEA/m0nUgzQKQK/lzyW1AqSWcxPSaCDIekF6A6FZFCDI+yAoH9wjKhTQ9Tzw06TTQ9fTDVFtoEQSQS+TQdvT86Aoai1U7R3cz5FI0PT2QSt78FydUgXFgPhFFETIO3u4UgYAaORKKAb4ckYNZ6o0APOpKqmME/BNTEyg12iZzxpwyTu7IRjqaCJhcUU/0drExAQkCFzpA2B+SyWVcT8nMTWFXqszikVMJBIounq4/zc1N4NGruS5uyamphAFkcdFJiYmMDU3g6JHyjeFzCwZTb0/RpOYmjL/P6AsFtZWUPfJebuYWVpAFESopH3cxtTCnMvyAcx3a1VqaAzxYr+iT7//lEgkMLexhloqY3wSgKnZ6PQ8RjOzsoSpmSmjpoPFPP3+v78s/TT+foiyuZUlLKytDOomLBaxcXKAXqPhsYi1gx0kEgkU3cz/m1lYwNLeFmqZAoJOx2xcnLjPBQArBzuYWphzP21mYQFrJwdolSroVGqYmJhwoLWyR8rK6mAHc0NZSCSYWVjA1tXJUBZmY+fmDImphMc41g52Rv7f1Nwc9u6uEAURahnz//buLtx/srLZw9rJgakuqTUwNTODg6c7G5uGeMvew9VQlj6QQVHB1sURglYHjVIFUzMzOA72YLT67l5ITBmc2dLg/wW9Hlb2drBzc4agZ31kambG/L8Fi4skpqawH+TGfLlKDUGrhaWdLRwGuQNEUPXKYGFlBedhnjC3soRKKmNlHeTGYhGtDqJeD0tbG764r+yWwtLeFi4jhsDS1hpqmRwSUwkcPd2Z/xdECDo9rBzs4TxsMEzNWR/ZOjvA1WsYrBzsoFWpYWJqCodBbnxzUadSw8bZES4jhsDMUBZrJ3u4jhwGaycH6DVamEhM4DDIDY6DPWBiagqNQgl7dze4jhwGCxtrqGUKWNnawHXkMNi6OHHOjr27i0FFjP0ebd2c4TbA/1vYWsN11HDYu7OFNEEvwHGwB4+LdEo1bF2c4D7GC9aO9kzFy8oSziMG88U6nUYDpyEevPz9alv/Fdf/yAm9KIjwGDcSXbWN8JozDdaO9nj/4EasjrqCsfMfx9CpEzD26Tl4e/fvcDbQOy2srfDE5+/CY9xICFotJKamGDptIjwnjkFfawckZmawsLbCoAmjoZYp+MTP3sMVglbHqaCmFuYgQUB7RS3kXb0A2CS1u64RLYZ7BK0WvY0tqM8pgkahAhGhp74ZjfklXH9d3tmN5sIyrvWt12rRVFCKmrRc9LUxp99RVYea9DxOXVVJ+1CdmoPKe5n8ufXZhai4l4mOqjr0KLVwsGRHS6uSMnnZyuJTUX43DbJ2tgveVFCK0phkNOaXAGC6qMURCSiPT+OyChWJGSiNSUaXAVTRUVWHwtB4VCUzbVKdWo2C4BiUxiTxCVhNWi6Kwu6iqYhR4qWt7ci9FYmS6CQmPyMIKAyNR3H4Xb4Y0lRQgvzAaNSk5fI65viH435kItR9chboRDPN5/727aiqQ/aNUJQY9Fd1ajWyb4aiOPwuJ/dX3stAbkA413XtbW4zHG2+C51aA0GvR97tSOQHxfA+qc8uZPqZCem8XdKv3EZRWDzkHV0gIhQExyA3IJy3Xcv9CnZ0JjSOTQjlCqRfuY2CoGh01TaCiFAckYBsv2B+3Kajut6gSx8PVZ8MOrUa6VduI+9WBD91UJ6Qjoxrdwzal0BPUyuSz/miKDSOSXHp9QYN9FDUZhYAYDCuNG9/FIfFQ6fWQNbRhaSz15F/JwrtFbUQRRHZN0KR6RPIQWANucVIPu+HorB4yDq6oOyVIunMdeT4h6Ex7z6ICHm3I5F2+RYKgmNBRGguLkfCyasoCIpBV20j1HIFO07vG4zqlGwQEdNWv3gTRaHxUMvkaK+sxd3jl5F7KwKtpVXQqtSG9Is7HLJyPzIBSWd9URDC0gW66hoRf+QSsm+Eoj63GDqNBikXbrA6RiTwsZ148iry70Shu64JPU2tLBXkehBqDHqxqZduIuW8H4ojEqCSyliaxzFv5AZEoL2iBn1tHYg7dAEZV9mxPFEQkH7lNpLOXEdxeAJk7V2ozchD3OGLyL4Rguaicsi7ehB76AJSL/mj/G4aNAolMnwCkXjiCgqCY9Hb1Ir6nCLE7D+LrOtBqM8phrJXithDF5By4QZT3OjtQ5ZfCO4eu4z8O1HsHVFQguh9Z5F+9Q7qs4sg7+5F3OGLuHfmOsrjUyHr6EJOQDjiDl9Ajn8YOqsb0Hy/ApG7TyHNOwCNeSWQtXci7vBFJJ68ipLoJPS1dSL/ThRiD55Hth87xt5WXo3IXSeQfOEml2G5e/QS7h6/jOKIBKbvGxyD6H1nkOkTiK6aBjTfr0TEzhNIOuuLhtxiSFvaEX/MG/FHvRlstLkNRWHxiNpzGulXbqO7vhkt98sRvv0Y7p32QV1mPvraOpFw4griDMdfpS0dKIlMRMTOE0i9eBM9jS1oK6tG2LajSDxx1fA+7ETCiauI2X8OubcioeyWojTqHsJ3HEfKeT901zeho7oBYduO4e4xb1QlZ6GvtROJp64het8Z5NwMg1oqQ/ndNIRuPYqkM9fRVduInoYWhG09ivgjl1CRmAFlbx+Sz91A1O6TyPINhkauQE1aLkI3H0biqWvoqKqDtKUdoVuPIPbgeZTFp0KnUiP9cgAid59C1vVgaGRyNBWVIeSfQ0g4cQXtFTUskPz39X/sEkURo0d4wMzMFMWVTXjqsXHwcHHA7UOrcfyvz/Hc3EnwdHPEh4uewG9fvQYLczOMHOoGDxcHfLbkKbg7s6PqJiYmeHLGWAx1d0ZLRy8szM3g7myP4Z4uaO/pg1zBAnsPVwfIlGpUNzG/bWVpDqVai+KqJqg1bJKhUmtRVd+O2mbmg5UqDepaOpFXWs8m4To9aps6kVtah7ZuNsFp61WjtLkP5c3ss0onoK5biYoOOTR6JrHZo9KhQ6GFTMMmVjqRoNQKUGrZZyKCXhChF0SIROhRauFkbQZRp+E76SToAaUUpJIBxJ4rSjsg9rSyvwEgeS+ElioI7fXss14HTfV9aGrLIKrYhFJdXw1lcR60TewenbQXvRmpkOXlggQ9SBTRnZaO7tR0qFvYxoa8ohqtkfHoycxjNgolakOi0BSfDI1h0tmQlIHK8Hh0lTL/39vQjILbEagwgCkFnQ55tyNRFBbPN0xqM/KQdzsSdZkM4Cnv7Ebm9SAURyRAq1SzRZbgGOQHRqOtnC3ENBWWIvtGKMriUlh9ZHIeM8jaOlksEnUPOQHhXH2mo6oO6VdZjCDq9dCp1cjwCUR+YDQ6q1k7VCRmIMsvBJX3WEzW29yGNO8AFIbGQ9kjhaDXI8svBLm3IriKUG1GnuHI911e/pQLN1AYHIPuhmaIoojcWxHIvhHKY6fG/Ps8rtAqVVBJ+5By4QarY1m1IX6JZf4/ltWxtbSSxxV9rR3QKJRIvnADOTfD0JBTBCLC/chEpBv8vygI6KxpwL1T15AfGI2OqnroNBqkeQcg0zcYlYa4szw+Fcnn/VAYEgtVbx9LGThxBbm3ItFcVAZBp0P6lVvIuPogxqlKzsK90z4oNPjPvvZO3D3mjWy/ENRmFkAUBGT4sPTLwtA46NQa1GbmI+H4FeTdjkRnVT0U3b1IOH6ZHTdPzOAxT/I5XxSFxUPZ3YuGvGLEH7mEHP9wtNyvgErah4Tjl5F2+RZKYpIhCAJyA5hufWFIHHqb29BcXI7Yg+eR5ReChpwiluZ5/ApSLvqjLDYFGrkC+UHRSDhxBXl3otBV14i28mpE7z+LjGt3UJOWC61ShYSTV5F0zhclMUmQd/WgKCwe8UdZLNJRWYuO6npE7zvL5bVVfXIknrpmSKVIhKy9C/ejEhF76AKy/ELQVlqF7vomRO09jdSLN1GTngdFtxT3zvgg8eRVFIXFMz35uBTEHjiHTB+W7tfT2ILIPaeQfM4PNel5hljRF/FHvVEQFIOexlZUJKYjau9ppF+5hfbyGnTW1CNqz2kknbmO6hQGgE4+74e4wxeRdysCXbWNqErJRuSuk0i95I/2ihp01TQgcvcpJJy8iorEDMjau5By8SZiD55Hjn8YehtbUJ2SzXz5hRvoqKpDZ00jInefRMLxyyiLS4GsrRNpl28het9ZZPoGo6+tE9WpOQjbdgxJZ66jrawaPQ3NiNx9CvFHLqIk+h6kLR1Iv3obUXtOIePaHcg7u1GbkYewrUeReOoaWksqIW1hqcZxhy6gOCIByh4pMn2CELnzBNIu34Kiq4f58s2HkXDiCpqLmFxt9N4ziNl/FoWhcdAqVMgNiED4juNI8w6ArINJEwZvOoj4o95ozC+BsluKmP3nEb3vDApDYiFodSiOTET49mNIvXgTfW2dfIPtP339p7Pw/5uvfwUKiD18gTZOfJ4OvPARHXzxE1LJ5BT49z66/PVvdHXFn9RSUkHtVXVUEBpHyRf8qDA8nogY9KoqNZsyfIM4/EXe3UvlCWnUUfMAitNV10g1GXn8+3QaDdVk5BlB2npb2qirbgBIT6t9FDTS1GoEBNFpNI+A0TprG4xhagrlv4CptBrZyLt6jKAngl5Pso4uWnQokRYfYZCvgeA0IgaUeBjsIuvoeuS5DwP6FA8D+h4GxiiUpFEaw2sGlp+IHvms12qN2uVf3aOU9pF+APREEIRHvvvh8muUKiMozr+C1/TDNAaW5eHnSh8C3il6eo3qKOj1j9zzcB+p5QqSdxsDEbsHAO+IiLobW4zgdVqVigNN+m36x+XA8g9sO71W+wg4p7W82qgfFT29Rs8V9HpqKa00smmvrCXNALihqk9G7VUPgHeCIFBD/n1jKF59k9E40yhV1DgAICOKItVk5pNuAISot7mNWiuqH9RZrabq1Bwjm/rcIpJ1PuhbWUcXh7b117kkNskIQtRUXM4BLETsd10al2xU56KIu0ZgxdbyaqpOz+WfldI+yrkd+QCKIwhUEpNkBP7rqKnn7xMi1s+pV27xd4MoilSekE5VaQ/q1FXfRKlXbhu1U4q3Px8zoihSZUoW5QVFG7VT7JGLvB+1KhWlXbvNoUOsbfPo3jlfbiNt66Dwncc55Emn0VDWjRDKH/Dc+twiCttxjNdR1tFF4TuPU3NxOW/bnFvhlHj62oO2LSqjm2u38XeOvLuXIvecoqKIu8xGp6O8oGgK2nSA2zSXVJDPyg38fafslVL0gbOUeOY674/C0Fi6uuJPXsfW8mryWbmBKpIyiYiNwdjDFyhw437eH8URd+nsBys57KqtspZ8V2+iVG9/ZiOTU/xxb7r89W/c5n5MEp18+ztqMkAeO2rqye/nLRS8+RDrD4WS7p68QkcXLyOdRkOiKFJJXDKdfOtbyrnFwH+ddY1089dt5P3VOt6HiWd8aN+zS6m7oZn1e2I6nXp3OUXuPsn6vaGZ/Ndtp8OvfP5vKN5/4/Wv2vabTedp6lt/0PzPt9Hvh25Qc3sPrdl5lVZsuUg/7bpG3VI55ZXWUWBcDp25GUdZxdUMftTWTXczSyg0kfl/URSpqa2bIpIKqE9uAF/qBbpf1UT3B0DwZAoVZRRW8c+iKFJlfRt19jzwuQqlmirqWo3uKa9tJf0AgF2fXEVtXcYgvaZuY4Bcn0pHat0APy2KpNQaA+60/wKKp9XpyWt9CP0ekE+iKJL4EBRP1OuM3u+iKJD4EPBOVBuXRdRqSNQaQ+b0cmPfruuTGj9XpyPdQxA8zUNgOq1MTnq18XOVD/lp+UMxg1at/n8X4wyE1+l0j/j/h2MGVZ+MNIoHvlEQhEfiq96WNuM4Tql6xP8/HCNI2zqMfKNeqzXy00RkFGMSsXevcgDoT9DrH7mno7reyP+rZHJj/y8IRr6SiDjYc2D5B/q9fljdwDr2trQZwYF1Gg01FT8A6RERNeTfN4pVZZ3d1DYA9KvX6YxibSKilpIKkg7oA2WvlOpzH4D0BL2eyhLSjGKn9qo6aquoMapzeWK6UZ3LEtKM+uThOF+jUFJBcAyvoyiKVJWabQQm7m1uM4Jsa1UqyroZwmMnBg8soOq0XH6PtK2DMn2DjNop2z+MOgeAfxsKSowgfrLObko4dZXXkfnYKKpJf1DepuJySr54k3+Wd/dSzOELJDPADQW9ngrD4igvKIrf01peTZF7TvE6KqV9FHf0IockC4JAxZEJlHjmgf9vr6qjO3/t5QBHlUxOd09epYLQWG5TEpdCIVsOc5vO2gby/20HH0MahZISz/pQgiGu6PeX11dt5HXsamimgN92Ukksi9s0ShUlX7hBgRv2c5vK5Cy6+MUvfHz0NLfS7T/3UNIFP94fKd7+5P31b+wdJ4pUlZZD5z76keqyC1gftrZT4MYDFLTpIO+P9Gt36MRb35JaqWQgwKx8uvDpT7zfpG0dFPzPQe7/9VotZVwPooMvfkLtlTVExGKri5//QmE7jhERA0CGbDlMR179ggS9nvRaLWXeCKH9Cz+kosgE1u959+nSl7/SlW/X/5fECP8jJ/TKXin9aDORfnGdSYdf+YyUvVJS9krp4uc/02q7ydR8v4KU0j4K3LCffrSZSCFbDpNeq6XkC360ccJC+mvUM5xCeOLNb2iFyUgqjUsmvVZLkXtP0y+uM+nCpz8REeukfc8updV2k0ne1UMapYqCNu6nVdYTOLmyPDGdtkx/hXbMfYOI2ATK98dN9L3paP4SzLkVTn+MeIpu/MyIjd0NzXR66Q/0i+tM0mu1JOj1FH/8Mv3sNI2y/cOIiKghr5j2PP0uHX3tSyJik4fbf+ymVVbjuXMoCo+nv8cuoLDtx+jJHTH0wfFEOv/JGvp77AIiYj/qhFNX6ReXGVRuIIU25BXT3mfeo4uf/0xE7Aca8NsO+tlpGneI+UHR9NeoZyjxjA8RsUnJ6fe+p91Pvk1EbEBHHzhLaxym8oWMqtRs2j5rMadHyrt7yeeHv2md5xwS9HoSRZHSrt6m3wbP5YTslpIKOvjiJ3R8yddExH74gRv202rbSXzSXBgWRxvGPUcRhkC5u6GZzrz/A22a+Dwri05HMQfP0RqHqVSZnMXKkpJF22ct5oG9rLObri7/g9VRJidBECj54g1a6zGbki/eICKixsJS2rfgfdo7f6lRu6y0HEet5SzgywkIpz+8nqLbf+wmIvayO77ka1rnOYcFTWo1hW49QqttJ1FBCHvh3Y++R5smvUCn3llORGzyf+6jH2mV1XhGx9XpKObQefrZeTpFH2AU0MrkLNo++3XaPOUlVv6OLrr8zXr63nQ01WTkkSAIlHTOl9Z6zKZrK/7kY3XvM+/Rz07TGJm/V0p+a/6hlRbjOL0143og/T78STqw8EPe/odf/pRWSEZRe2UtG2N/7qFV1hMocMN+EkWRcu9E0t9jnqX1Q+cx8n5VHR1/42taDi8qjkwgrUpFIVsO0xr7KXTm/R/YuIy4S/9MfpH3Y3+frZCMorgjF0mv1VLUvjP0s/N02jZzERERld1NpW0zF9FyeFFddiH1trTRxc9/pu/NxpDPyg2k1+ko7uglWus+i35xncmo+qnZtGvem7QcXpRxPZC30w/mY+ngi5+QIAh07+x1+m3wXFppMY7aKmqoLruQ9s5fSsvhRcH/HCRFTy9dX7WRVlmNp9+HP0miKFKqtz/9PvxJWg4vuh99jxoLSujgCx/TcnjRuY9+JFWfjG7+uo1+tJlIa+ynUG9LG2X6BtFfo56h5fCi+GPe1FJSQUde/ZyWw4u2PfYaqeUKuvX7LlpjP4W+Nx1N1em5lBMQThvGPUfL4UXXV22k1vJqOr7ka1phMpJ+cZlBsq4eCtywn35ynMrrmB8cQ/9MfpGWw4sOvfQpdVTX06l3ltP3pqNpldV4qs+/TyFbDtPPztN5HYvC42nL9FdoObzo9+FPUlddI515/wf63mwMLYcX5QfHUPjO4/Sr22O0HF509oOVVBKTRNtnLabl8KLVdpOpLqeQzn28mn4wH0vL4UUxB89R5N7TtNZjNi2HF22d8SqV3U2lnY+/QcvhRd+bjaH8oGi6+MUvtNJyHC2HF11d/gfFHDxHvw2ey5RK7KdQSWwS7X7ybVoOL9Z2xy+T91fraJXVeFoOL9r/3AcUf8yb1g+dR8vhRSstxlGGTyDtefpdbuP30xa6+t3v9KPNRFoOL1o7aDYlnLxCf4x4ipbDi1aYjKSofadp37NLuc2xxcvo2oo/abXtJFoOL/rBfCxF7TtNf3g99eC5a/6hAws/5J83jH+OfFZuoNV2k9nfTEbSrfU76a/R8/k9J978lg6++AmtMBnJ2+HfE/r/vutftW1GYRWZz1xGE5asp8/+YAFsdWM7PbdsB41+9VfSaHVU39JF32w6T5azvqKwxHzq7VPQrnMhNPT5NfT+rywoi0ktovmfbyPHJ5ZTc3sP9fQp6KddV8l+3nd0+GokERGFJubR5Dd/p8eWbiAiorYuKX298RxZzvqKsoqY3/AJS6URL/5EK7cxGnN1Yzu9veYwuc9fSQqlmnQ6PR3xiSWPhb+QTzibiBQ39NLHR5Po69OMAq7S6skvp5G+up5D7QbyfWOvkm4XNVNuE5uoaPUCNXQrqbSVTapFUSS1Vke9MgW19CrJa30I7QotIl13K+mkbFIqCnoSOutIqEwnUW+YQHQ0kDrlFunrDYG+QkqqxJukCD3NbeSZ8dSy/1fStrCgXVVbQXW71lPbdebD9HI5NZw7QQWfv0eCli2UtcfEUurrb1JbJJtkyGvqKeOLlZT20XfMRq2hggOnyGfELJI3sgXwurupdH72IkrecZSIiPpa28l32a+0a/yzrGz9MY7rTK4uUpddSLuffJvOfbyaiFjM6PfTZlpjP4UUPb0kiiJl+gXT78OeoLsnLhMRm+wcWfQF7ZizhIjYhCL4n4O0ynoCX6guirhLGycsJL+fNhMRW5Q/+8FKWus+i3QaDY9FfnKcyuO4/ljkyKIviOiBL19pMY66G1uMfHnYdjbuGvKKae/8pfT3GFZHpbSPbv6ylVZajKPyhDRe/j9GPEUXv/iFiBjp/fArn/E69sdSP9pMpHtn2UJqfnAMbRj3HI/jOmsb6NQ7y2mFyUhqvl9BOo2GInadoDUOU8l/HVMBKYlNps1TX6a1HrNJr9NRb3Mbnft4Na2QjKLcO5Gk1+ko9vAF+sVlBh1/42te5x1zltBKS1ZHHr+YjaHIPadIEARKPOND6wbNpo0TFvI+2/vMe7QcXlSZnMXj6JWW4+iyYYKWejmAfh/2BP3sNI0UPb3UVFTG/XLyxRvcL6+ynkB7n3mPRFGkrBsh9NeoZ+h709Fs4b+sio6+9iUthxfdWr+TNAol3flrL622m0zrBs0mQRAoLzCKNo5fyH1jR3U9nXz7O1phMpJOvPUtj3l+cpxKq20nUVd9ExVF3KXNU1+m5fCiqH1nqKu+iflY09G0adILrG13n6RfXGbQcnhRVUoWlcQm85jn8jfrqaeplS58+hN9bzaGfnaaRrLOLoo+cJbWus/idSxPTKcdc5mP3Tt/KUlb2+nSl7/SSotxtNJiHNXnFVP8MW/uY2/9vouqUrNp91PvMN/oMZv62jvpyre/cx+bezuSEk9f4z72xFvfUm1mPveXq20ncQp9v4+N2HWSki/4cR+7aeLzVJdTSAee/4j5PdPRVBASS76rN3Efe2nZWkq9HMDjpDX2U6gqNZvFoAZ/GXfMm278vIXW2E+h5fCiXU++TRk+d+jvsQu4/8/xD6Mji76gFZJRtBxe5Lt6E/mv20FrHFic9LPzdMr0C6aNExZy/x97+AIde/0rbnPklc/p1u+7eJz0g8VYunvyCm2a9AL35Td+3kIn3vyGvjcdTcvhRX+OfJru/LWX9+Fyk5EUvPkQ73fm/79h8ZghtvrebAzd+n0Xj62Ww4uurviTx2PL4UXbZ7/+f++Evioliy5/s54FWOOeo7rsAqrNzKeG/PuUcT3IaMW1p7mNWkof7JwLej3VZhUYrTR2VNcb7URr1WouKdF/Nd+vMLJRSvuot9l4N3XgCiER2+kdKEui12of2aV9eIdeJZM/skP/sE1fe6fRqqdeqyVpaztN/DucVvmwncHuRmP5E5VMbryyKwhG5SdiK64DV6+1arXRCve/WmVW9PQ+Ir3y8Cpz/w5W/6WWK4z6SBCER+oobeswqqNWrX5k9/rhnWl5d69RP+q12kdXr2vqjeqolPY9snv9sFRcd2OL0eq1Wq4w+m5BEB4ZH9LWdqNVfK1KZbQrLooitZRUGMkPyjq6jJ6r02ioPtdYPqmtosZofMi7e41WxfVaLZvwG+ooiiJ1VNcbtYOyV0q1mQ/kZfQ6HdVm5hvt/HfWNlBTURn/rOqTUdndVCNJl7qcQqNx1t3QTNUDdqbVcgUVRyXyfhQEgRryio3K29PUarTirVEoqSQmibedIAjUWFBClQPk8Hpb2ignIJyv7GqUKiqNS+btK4oiNRWVUWFYPLeRtnVQ1o0QvrOrVamo7G4ql9nrl/JJv3aH17GvvZOy/cP4joJWrabyxHS+ki6KIrWUVlLi6Wt8h17W0UU5AeFUlcqeq9NoqOJeBqUYFo1EUaTWsiq6e+IybztZZzfl3AqnvMDoBzZJmRS17wwJgsBsyqsp4eRV3m/yrh7KvR1B985d5/1emZxFwZsPkbyrm4+VhFPX+M6/vLuXcu9EUui2o2wnTaulqpQsCv7nIDUVl7OAu7KWEs/48MVKRU8v5QVG0Y2ftpBWrWY2qdkUsuUQFUXc5Qs8985e5zv0yl4p5QdF07Xv/6KuuibS63RUnZZDIVsO072zbIGwo7qe7p29Tle++50EQWA2wTF0dfmfVHEvg9mk51LotiN8h76jup6SzvvRmaU/kMKwiJsfHEPXvv+LUi7d5DZh24+S97K1zKamnpIv+NGJN7+hhoISUkr7qCAklnxW/k3Bmw/xHaKwHcfoyGtfkE6jMbLJvRXBba6v3EDeX63lNuE7jtOep9+l7oZmI5uI3SeZPGpoHF1ftZEOvfTJvyf0/43Xw20riiIlZpXSEx9vJvOZy+jFb3ZTeW0LZRfXUG5pHQVEZ5BC+cC3FFU0GMnLKVUaKqow9i25pXVG7/duqZzqWx74RkEQqKTa2Ic1tXXzXX0iIq1WRzVNxju7VQ3GO7syhYraH5K6a+42loWVqrSk+Q/s0Je39pHX+hA6nVDJdq/0OuN7dFoSxQGydYKexIdk6gTFQ1JxaiUJapWRja73oZ3zrodOxanUpO013r1WNRvHFarObtINOBWn12hI9vCpuIdOOyqlfUY7sIJe/8iJyO6GZqOTfxqF8pHd64En04iYLx/oG7UqlZGf7n+nG/VjZ7fRKT69VmsUU/a/awfu/Ct6eo1O5Ol1OqMTb0TMLw+MyVR9MqOTof1+eWAduxuajcqrliuoLvvBibf+03cDY6feljYjP61RqqgiKdNo97qpqMyofaWt7UYn3rQqFZUnpPE69sc8A58r6+jiizBED3xfv7xcf9sO9P/yrh7KD4rmkm46jYaqUrKouaSC27RV1FDRgJN08u5eyg+K5rFTvx+rHOD/26vqKNM3+MHuda+UCkJiqc1wmqHfv+SHPNhJ76ipp+SLN7kktFLaRwWhcTwO6o+tUi8HcJvO2gZKvniT94mqT0aFYXGUb9hJ75+jxBy6wOvYVddIKZdu8p1/VZ+MisLjKem8L7epyy6kiN0neezUVd9Eqd7+/ISeSianooi7FL7zOImiyMdKxO6TXEqwu7GF0q7c4if01HIFFUcmUMD6naSWK0gQBKrPLaKovae5vFx3YwulXb1Nwf8cfGATlUg3ftlK7VW1PO6L2neGP7enqZXSr90hnx/+Jr1ORxqFku5H36Obv2yhktgkbhO9/yzfoe9tbqMMnzt04dOfSNreyWNF/7XbKPniDT6Oow+eI++v15EoitTbwmzOfrSKarMKSKNUGWy2U9CmAzy+jDl0no4v+ZrUSiW3OffRj5TpG8RsYpMp4LcddGnZWn5aJebQeTrwwkfUXllD0tZ2yrgeSOc+Xk2h244OsNlJh176lP2WDTb7FrxPRRF3uc35T9bQ5a9/+y+JEf5H5tBrVRqUxiRhyNQJ0CiU8Bg3Cj1NrTj84qc4/9GP6KiqQ1t5NQ6//Bk2jHkWiad8IIoiEk9fw865b+DMe9+DiNBZ0wDvZWtxYsnXqErJgSgIuHf2Os68+z1iDpwDALSWVcH3x024/NU6KLp7Ieh0SDx9DZeXrcP9KJb7U59bBP9ftyHkn0MAGMzu7vHLuLbiL3QactArEtMRsG4HMn2DAQCyji7EHjoP/1+3QxQYFKcgJBYBa7ejPpvlfXdU1yNy90ncPX4ZAIMpZPoGwf/X7Twvsz63CCGbDyMvPBEqnQBbCSHpnC/Cth4BwHLoSuNSEPjnXrRX1AIAuuubEHfoAtKv3eHPzb0dgcC/9nFgSWNBCcK3H0d1ag4Alk+ecvEm4o9cBMDyFEvjUhD41z4OveusbUDMwfMoCI5l/aRUIScgHKFbjjCoDhHqc4oQtu0ozxXrz/NOveQPABD0ei4V2A9YaauoQfTeMyi/mwbgQW5bzP5zvCxVKdkI+ecguuuaALCc835pGIDl2efdiUTo5sPQa3UgIjQWlCBi5wnUZxcBYGDApHO+SDx1zagswRv2Q97ZzcsSs/8siiMSeFkyfQIRsfMEL0tlUiZCtxxBWykj1HY3NCP+2GVkXAs0jF81cgLCEbzpILRKNYgIddmFiNh5ApVJLM++r70T985cR/xRb1YWnQ5FYfEI3nSQ5wk2369A9L4zKAiMYn3UI0WqdwDCth2FoNdDFASUxaUgbOsRNBggj+2VtYg7cgnJF248KP/1IARtPMAgd4byR+4+hVJDjmJ3fRMSTlxB9N4zMDEAxnICwhG6+TA6q+pARKjJyEP0vjPI8gsBAEhb2pF09jrCth6FVqmGTqNBQVA0wrYfR216LogIDXnFiD14Hoknr/KxkHLJH8GbDkLW3gVBp0NxRAIidp1EcVg8r3P8UW9E7j4JEhk0KP3qbYRuOYLWkkqIgoDS2GTEGHLX+vss8eRVhG4+DI1cCVWfDFl+IYjYcRyVyVkQRREViemIPXge8UcvwcTEBJ01DUg664uQTQfR19oBtVyB3IAIRO0+haLQOD7m4o9cQtTeMxC0OnQ3NCPl4k2EbT3COAFKFfLuRCF63xmkXwsEEaE2Iw8JJ64gfPtxaBVKlk95OQARO06gJj0XOrUahaFxiDt0AfdO+0DU69GQW4x7p30Qvv0YZB1d6GvrQMa1O4jacxolUfeg02hQFH4X8UcvIeHYZei1OjTm30fS2euI2HEcXTUNkHV0Ics3iOWhB4RD1OtxPzqJ56brVGo0F5cj+cINRO46yTkB2TdCDbmDwdAolCiNSzHkpp+DqrcPbWVVSPP2R9Se06hJzYGiR4qcgAjEHbmENO8A6DQalN9NQ9JZX8QeOIe+1k60lVcj/cotxBw4h7LYFKh6+5B7OxJ3j3kj+ZwvdBotKu9lIPmcH2IPnEdXTSM6quqQ4ROI2IPnURqbDHlnNwqCY3Hv1DUknfWFTqVGtUFaMPbgBbTcr0BnTQOyfIMRd/giCkPioJUrUBgSh3tnfJB0xhcqqQw1ablI9Q5A3KGLaCmqQHtFLXJuhjGuQWA0dFotisPvIumcL5LO+kLW0Y26zHykX72NuCMX0VRYhq6aRuQGRCDhxFXkB0ZD0OlRHJGAlPN+SDp73QhQ+u/rv/8yMTFBRlE1FCoN5k0fA41Wh9HD3HEvpxzzP9+GL/8+BwKQmFWGOR9swuMfbUZkShGUKg02HAvAE59swd9HbwEA0vIrsfTXY/h43Qk0tvVAodJgx9lgfLD2OALjGE8mMasMy7dcwvoDfgAY8G7X+RB8+88FlNW2gogQkVSAH3dexeUgxgtpbu/BrvMh+Hm3D9QaHURRxJ27+Vh3JBDpRYzpUtcpx+m4SlxOYjneOkFEam03buQ18Zz5bqUWha19aOpjkDlBZHny7TLmx4kIekGAWqtDt4L9zcnKDKJKBlHN/CuJIkjWCeqsBQzAOFHWDaG2EGJvG7tHo4KuKhe6klTDc0Vo6sohSwiGIOtl5evuQG98OOR5jEEjajToTU1Ci483YADcycvL0eDtDXkZ4+xoe3rR6HcbDb6svUVBQGtiKgp2HILWkEMvrWlAzrFLaIhj/kirUKLwZgju7TvN61iTnouwzYfRWVnLbFrbkXDiCjKvBwEA9FotCkJiEbzxAI9xmu9XIGLXSR7jKHulSPP2R4Ih3hIFAWV3UxFs8AEA0FnTgNhDF1AYEgeAxXrZN0IQtu0Yj+Nq0nMRtvUImgrLHpTl5FWkegc8KEtwDII27Ofg1qaiMkTtOc1jHEV3L1Iu3OBxqKDX4370PYT8c4hT4dsqanguMvAgLgrdcoRBykQRFfcyEL79GGcJddc34e7xy7h3msU4WpUauQHhCN54APJOBsarzcxH5O5TuG+IcaSt7bh3xgeRO09w3lNBcAz3c/2xVMyBc8i4eof1c2c3Ui/5I2TzYWgUSlb+yASE7zjB+U6tpZWIO3IJcYaYUtkrRfrVOwjZdBDSplbW/vGpiNx9isc4HVV1zH/uOA7RAL7NvhGK0C1H0JRfwvxychZiDpxDysWbABiQOumMD4I3HmAQRKUKubcjEbHzBMrjU7lfjjt8ATEHzgJgnIPk8zcQvOkguuqaODMqas9p5AVE8Fj27rHLiNx5Anq1Bn1tHUi7fAvh246iPqcIeoPviN5/Fsnn2buhqbAUiaeuIXTzIaikMsg7u5Fx7Q4idp5E+d10CDodSqLvIe7wRSQcvwwSBDTfr0DSWV+EbT2K3qZWKHqkyL4Riqi9Z5AfGM3b6e4xb8TsPwe9Rou28mqkXLiB8B3HOScgxz8MsQfOIf3KbZAh5kk8eQ1Ru09BI1dytlPkrpOozciHWiZH3u1IxB2+iLRL/tCqNahKysS90z6I3H0KsvZOdNY2IP3KLUTtOYXS2BSo5QoUBEXj7lFvJJ68Cr1Gi5q0XCSd80PUntPoqmtCd0OzIX5neehqmRwFIbFIOHEFd49fgU6tQV1mPlIu+SN63xm0llSip6kVmb5BiDl4AflBMVBLZSgKv4vEU9dw99hlKHv70JBThLTLtxC7/xzqswrR19qB7BuhiD/qjWy/UOhUagOn6ToSTlyBrKMbjXn3kXblNmIPnEddVgF66lu4L8+8HgS9VovSmCQkn/dDwvEr6GloQVNBCTKu3UHcoQuoTslBX3sXcm9FIPHkVWRdD4Kg0TI55Ys3kXDiCjqq69FYUILM60G4e9QbFQnp0CpYbNgvET0Q5vmfuf5HytZNWPgkHIcMQnVKNqYveQHyrh7MfPNljH5yFmL2n8XQaRNgbmWFVaEXkHTOF+5jR0IikeDZ5Z9g2IxJKIlOgkQigduo4Xh79+9IOusLz4ljIDHIqtl7uHLytueEMXhu5WfI8gthcifm5pj70RswszCH+xgvAEzSTatQobGAydZZ2tpgxpsvMcknAz1z5OMzOOUUYPJsE194GqIgwkQigYmJCUY/OQuKrh5GZgbgMmIIRj85iweE5paWGPn4TMjau2Bh0Nn1GDsSI2ZNhcLKDiiVwt3JBsPHTOaEdRMTE3hOHIOuGZNg7eQAgIH+hkwdD42BSG5mYYFB40eje3ozJGamAACnoZ4YPHks7NxdAABW9rbwGDeSl18ikcDVayiGTB3PKei2zo7wGDcSpuZMRs3M0gIuI4Zg8OSxvCx2bs4YNH4UL4uFjTVcvYbC0iADZyKRwGGQGwZPGgtTczP+3W6jmXwYwIiwjoM94D7Wiz/X2skBHuNGcTk5c0sLOA0bzBUETCQS2Lm5YND4UTCRMBq9ubUV3EYNh42z44Pv9nTn5HaAEVI9xo2EuaUl/27n4YO5DRHBxiA/YvgDzK2tGBnb3pY/x2GQG6wd7NgtoghrBzt4jBsFiakERARTM1M4jxgCWxfDcwURdq5OcB05DAAg6AWYW1vBfYwXzK0s2QKJKMJxsAcsDYRMQcekvzzGjjTY6GFiymRNrAzfLej0sHNzhqmhn/VaHZNRGTsSEjMzThZ2GjIIdm6s73UaLWycHeE6ajiICDqNFmYW5nAdNRzm1lYQBYHJqAxyg8SM9ZlW1U8EHwGJxAR6tYZJugwfzOn2eo0Wdm7OXJlAq1TBwtoS7mO9YGpmyl5yRKws7i4QRRFahRI2zo5wGz0CRMQo6JYWcBs1HBY21gx4qNMxmKWBHq3uk8PSzhbuY71gYmLCiLMSCZyGDYa1gx30Gi10ag1sXZ3gPHwIRFGEslcKc2tLuI0ZAYmpBBq5AkQEh8EeXA5Rq1TB2skBrl5DAWKKBKbmZnDxGgozCwuo5QqQwNqln8KrkSthZW8Ht1HDIQoio+qamsJ5+GBOgtdrtLB1dYLDIDcIOkZHtrC2guvIYSCRoDAs5jkO9oCFjTU0ciWXinPwdIfOoNRgbmUJF6+hICIouphSQ7/MkVqmgEaugKW9LZyGDoJOrYZaJmfjcBiTlFJ09UDQ6WHrymRBtQoV1DIFLGys4TTEA1q1hslNmpjAcbA7Jzfr1BrYODnAysEOGrkCyt4+mFlawGGwB/RapmBBRLD3cEVfawdkHV3QqdSwcrCHjbMja2tBhKmFORw83SHo9ZC2tIMEAbauTpC2tEPV0weNXAELW2vYOjtCo1QzpQmJhPW9IKK3uQ2CTg8bZ0dOiFbL5EyxwMkBerUWso4u/l5S9EjR19oBnVoDK4NMkqqnDzBh7xNrR3votTpIWztAIsHWxQnK3nr09Zff3hZmFhaszoaxYO1gD0j6RcX+ff2fupYvXYi9F8NQXteKb99dALlSgzWfvowXn5yCwLgc2Fpb4tk5ExB7bj32X47A04+Ng421JTb/8DbmThmNzh4GKXpixlhsX/0eLgclw93ZHlaW5lj9yUvwdHXE6OFMXm7+7PEwM5Mgo7AaAOBkb4PPlzwNC3MzDHJ1hImJCZ6fNxk6vQCdgVA+xMMZry+YCVOJBBbmZpBIJFgwexwUKi2GuDMfMMzFFnNHu6Khm028zU0lGO9uB6VWgKUZ24txsDKDq84CpoYxJjFh0nUGYDmnkptKCL0qFhM42VoyqTqDbB1MTABLG5jotezfAEys7GBi5wQTC4OckrklJA5unMpuYiKBqZMrzN2HQGJh8I229rDwGIx+VL6JuTksBnnCasRI/lwLFxdYjxgBc0fm/02trWE9fCgkhpjBRCKBlYcbHMaPhakFo6tbONjCadRwWBhsJOZmcBjiCbcB8YitqzM8xo3kPpeRpYdAN0DBxt7dBYMmjIbElPk+CxsruI0axmM0iakpHDzdOd0dYOotHuNGwdzKUEcLczgPGwxzg8xUP1V90Hgml0tEsLCxZuoZBpldgPl/M4O8LIkiiyvGj2I+l4j7gH6f2y+L5TZ6BP9s0e//+yWuiLicLsBiBCtDXNFP3zc1YzJq/WUR9ALs3Fwg6NiCkKDVsrhi7EiYmpuxxZ0BPpfdw6S/3MaMYKoEWh1Mzc3gOnIYrOxsQEQQdHqmiGKg3uvUGljY2sB9jBdMJBIIWh1MJBI4D/OEjbMjiyPUGti6OMLVi8U4OpUG5laWcBs9AmaWFmzjxRDj2Lo6MXikUgVrR3see2uVKkjMTOHiNRSWdrYQdDrm/91deJ9pFCqD/x8JE4kJVxJwHjYYNs4OBpihBrYuTnDxGmaIGWQwt7aE+5gRMLMwZyBF4UG8JQqMom/tYAe30cMZCV4q4+1tYWMNrVLF2sXdlUOhVVIZLA3t0m/T3y6W9raMvG9oF8chHhAEpgLQH1MCjMQviiKXrdMqVdAolLBytIfz8MEQ9HquduMyYigjzvf2QdQLsHN3Zb5fqYJGroSlnQ1cRgyBXqOBrL0TEomJQa5YAmWPlMUiLk6MxK9UQyWVwcLGGs7DB0Ov1XGlLEdPdwh6galGqTSwdrSHnZsLU5ro7uWqM4JOxwCTggA7dxeo+uTMRqGEpZ0t7N1doVWoIAdTRnIc7AFRENDX2sFiV1cndJqbQd0nh1omh4WNFezcXKBXa9HX3sVVAQS9HtLWdug1Wlg72sPCxhoqmRwqqQxmlhaMbK/TcQC5nbsLehpaIGvvhFalhqW9LVMJ6FMAxOJ+G2dHiIIAaUs7REHkksuKzh5oFCpY2NqweEylgqKrByamEtg4OQAgSJvbIej0XKVJ3tkNjVwJc2srWNhY83nKf/b6HzmhL41NxpNfvIvqlGyUxCSjo6oeuQERyA+Mhqm5Gdor62DtaI8svxD0tXbA1oW9DKpTc9BaUglTczMmxSRXoL28hr1gDA3a/0OwdXECAC730v9iBZhzcBkx9MFE0MQEDp7ucJc/kFWzdXHCkKkTuOSHmaUlPCeO4ZNoExMTuI4ajmEzJnG5M1sXJ4yYNZVPdk3NzDB02kQ+YQYAV6+hGDl3On+ulb0dRs6bifsN3QCkcLa1xJBpo7j8HMAmZ2OemWMYXIC5lRVGzZuJbsNCgYmJCTwnjYVWqeKTcTtXZ4OOM3tBm5qbc+3n/st9jBfGLXiC/83a0QHjF8zjmvISU1OMmDWVBxUA4DJiKCa+8DTXTre0tcG4BU+gw7CyLpFIMHT6JIiiyB2Xo6cHJr30DJeKMbeywrj5c7mTMjExwZDJ4yAxlfB+s3NzweSX5/PFEDMLC4x+ajYkZqYws2AavoPGjYK55QNJKVtnR0x++Vm0FJfz9h817zGYmpnxCbHbyOGweM2KT6qsHewx6cWnYe1gx+RoTE3hNXsazK2tYGsYHy7Dh2Da6y+g00DTt7S1YW1gbgYLWxtIJBIMmzEZlna2vN8cB3tg2pIX+WkNC2srTFj4JMytLGFn0OcdOnUCbJwceHs7eLhh+pIXYGlnw+s4fsETBpkT1i6DJ42FrYsjVwywc3XGtNef5y8sU3NzjH1mLqydHHjfDxo3CnauzkwCxMQEts6OmPb6C2xiN9QTpmZmGPPUbNi5OaO3me3ouI8eATs3Z1jYWMHSzhYSU1ODhix7aUtMTTFq3mOwH+TGFQNcvYZh9vuvw8wgw2Zlb4epry3kL1KJQefccbAH7FydYGZhAZfhQzD7/cUwNwRRlrY2mPLqc1xv1cTEBF6zp8Fp6CCYW1nC1oXp/s754HVYO9rD3t0FFtZWmPzys3D0dEdtZgEkEglGPDYVzsMGw8zSEs7Dh8DR0wNz3l8MG2dHCDodzK2sMPml+XAa6gkbJwdY2tli2PRJcB4+BJZ2tvCcOAYOHm6YtXQxbN1c0FXbCDMLC0x84Wk4Dx8MUwtzOA52h42TI5yHecLKwQ727q6wd3dlmr6D3FCVnA0LGxtMfP4puI4cBjMrS7iOGo7Bk8bywEirUsPO1Rmzli6Go0Gqzt7dFW5ew+A2egQsbKwxZMp4eE4cC+fhQ2Dn5oy20mrYODti9tLFcBk+2LBINQSuI4bCY+xINrF2ccSg8aPhPHwI7A2SMfYerpj17iIm/WZlCffRwzFu/jwMGj8aNk4OUPXK4DF2JJyHecJxMNOedRw8CMNnToG7oSwe40Zi3PzHMWj8KNi6OqMhrxjuY0fCbdRwOA8bDImpBE5DBsFrznS4jxkBKzsbmFtbYewzc5lmsLsLihzuwm3sSAybMQnOI4bC1MICjkM88Ng7r3Kt4Z7GFox9eg7rh0FuMJFI4Oo1DJNfmg/XkcNgbm0FxyHueOztV+E5kf0mqpKzMfqpWRg+ayqchgxiCxVDPDD1tYVMv9bwHn7s7VcxePI42Lk5I+9OFLxmT8PE55+E09BBMDGVwNbVCU9//QHcx3jB0t6OvdsaavHv6//cFZ5UgK/fWYC9F8MQlVKEr995DpeDkpBfVg97O2v0ypSoaexAVEoR5Ao12jqlGOLuhISsUjS1d8PGIDXY3t2H+pYuuDvbQy8IIDJDR48MDvbWsDMsquv1AizNzTDM04V/v4W5GcaNGAQLczbZMpVIMMzTBRqNjt8z2M0Jk8cM6Z/rwsHGClPGDIGTnbXBxgSj3G35ZB0AnKzNMdLFBuam7G9mEgmcrc2hF/sn2iawNJNwCTIAMAFgaiqBVMXe5862FmxCL+i5DZlbA1YCYML8tIm5BSSOHnzSbyKRQOIyBDB9EDKaObqCho+FiWFCL7G0gtXYSRCk3dzGeuRo9gyD/7dwc4PT7FmGUgGmVpZwnjMTypo6XhbHCWMBQYSZ4fdm7eqCYQuegKaHbYiYWVhg2LyZRpNqD8OmTb+ftnFyxMQXnua72aZmZhj5+EyYSCQ8dnIbORxmr1jwBWUreztMeP4pvnEgMTXF8MemQGJmymMy56GemLLoOe5zLWysMWHhk7CwseYbM0OnTYSZlSWP2xw92TukrYwt+JhbWTGddjMzWNnbwsTEBIMnjeVysQCLX6a+thD2hkm1mYUFxjw9B+ZWlly+a9D40bB2tOcxjq2zo0Gz3ApmVpaQSCQY/eRsWNrbcZ1r99EjYOPkgMYC5nOtHR0w5dUFbJLj6sz88uMzYePkwGNVlxFDMfPtV2Dr4sTkZ+1sMfmVBbC0tYHTsMGQSCTwmj0Ndm7O/ESq87DBeOydV2FuZQlrBzuYmptj0kvzYeVgx9rKxATDZ06BvYcb6rKYSo/jYA889s4rTEJ1sAcsrK0w8YWnYevqBI1B9m3otIlcXq1/MjTr3UV8wd7c0hITFj4FO3dXtFewky1DJo+Do0EL3d7dFZa2Nkzr3ckBFrY2MDU3x/gFT8DB0x1VSVmQSCTwnDgWjoM9YG5tBRevobB1ccJjb78CO1cnLtk27tl5cBo2GJZ2tnwC6zjYA5Z2tgY/5IgZb70Mew9XtJRUQmJqirHPzIXLiCEwtTCH01BPbtM/6bR2dMCMN1+G42AP2Hu4wcLaCmOemg0Xg8/1GDcS7qNHwGmIB2xdnKDo7oWVvR1mvPESW2iysoSdmwvcR40wyK3awGP8KLh6DcO8z96GvYcrGvLuw8rOFtNef4HFIuZmcB05HO6jR8B9jBesHB1gbskWA574/B04eLobJGxdMH3Ji3AdNRxmVpYYNG4URj0+k8m4ujiht7kdzsMG44nP32HSb4ZJ/Mi5M+A+xgsWtjZwGzMCXnOmw22MF+zcXFCdlgunYYPxxOfvwnn4EJiam8FpmCfGPDkbHuNGwtrBDkQivGZPg8dYLzgMcoOFrQ2cRwzBsBmT4Oo1FGaWFnAe7olpry2E54TRsHZyQEdlLYbPnAKPsSNZ3CqRwHmIJ6a8soDFRbY2cPR0x9RFC+E5aSzsXJ1QFpeK4Y9NxvDHpsDZsKjh4OmOmW+/AvexI2Flz6SOp7z6HAZPHgd7D1fk+Jti0KSxmPjC00yGzsIcdq7OmPfZO6z8jvZoKijF5FeexfCZk+Ho6Q5RFOE6ajjGPj2H9+t/lWzd/8gcellHF/3sPJ3+HPk0he049gC4duUWbRy/kOemlCem0+4n36bIvQzk0lFdTz4//E1bpr/C8rZkcoo/5k0bxy/k+cH3o+/RqXdX0KUvfyUilody+8899PfYBSTv7iVBr6e0K7fowMIPOUylpaSCrn73Ox184WMiYrm2MQfP0baZi3gOdFVKFp1+73sK+I2BRpS9Urrz117aNnMR6bVaBh+7HUEHnv+Ism6G8u+++t3vdO6jH4mI5ePEH79M22e/znOi67IL6eTb39GR7RfJa30I+SVX0p2/9tK+Be8TEcsNyguMon0L3ufU7666RvJetpZ8Vm7gz409fIF2zFnC8+yr03Pp2OJllHSe0SMVPb1089dtHHoiiiJl+gbRrife4oTMtooaOvvhKgr8ex9rB5WKwrYfox1zlvCc7pLYZDrw/EeUcyuciFiu1tXvfucQQkGvp4STV2jbzEU8P6suu5COLV5GUfvO8LbzX7udw+v6ATE75r5BZXcZQKi1vJrOvP8D+fzwNxGxHLCQzYfon8kv8ny4ooi7tPeZ9yjJQArvbmyhS1/+Skde/Zy3S8yh87Rp4vM8l60qJYsOvvgJ3fp9Fx+LPj/8TRvHL2R5SYJAyRf8aMv0VygngNWxIa+Yji1eRqff+56VX9pH/mu30+/Dn6SeplYObtk+azFF7DrBy3/q3RW07bHXePmDNh2gP0Y8xeGGBaFxtGvemxz811XXSOc+Xk3rPOeQWq4gnUZDkXtO0V+j53MoTmlcMu15+l3a9+xS3v7ey9bSz87Tqfl+BQfPbRj3HIfiVKfl0IGFH9Jvg+dyFYNr3/9Fv7jMoLzAKA712ThhIZ148xsiYoC+wy9/yqF4/VCiX90eo8i9p0kURUq/doc2T3mJNk16gYgYtfXY4mW00nIcVaVkkUomp1u/76J1g2bT5W/Wcyjhlumv0Br7KaRRKKmtooZOvv0drbIaT6ne/ryd1nnO4b+BgpBY2vbYa7RCMoraKmqoo6aezrz/A62ynkB3/tpLWrWawrYfo9+GPE6/DZ5LRETFUYm0Y84SWmEykorC46m7oZnOf7KGfrSZSKeX/sChfuuHzqNVVuOpr72TyhPSaNcTb3EAS29LG1368ldabTuJts54lbXtkYsctlebVUCVyVm05+l3aYVkFPms3EB97Z10+Zv1tNpuMv3sPJ3UcjmDuxlAbRnXA6kmI4/2PbuUVkhG0aGXPmX9seJPBtszG0OtFTWUdN6P/hz5NC2HF4VsPsRgNQs/pBWSUfSH11McONQPkbkfk0Sp3v7095hnaTm86Pwna6gh/z4dfPET+t50NK22m0wd1XUMVmOwiT/uTenXHsBqdsx9g5qKyujwK5/R96ajaYVkFFUkZZD/uh0c6ue75h/KuhHCgUO/uj1GDfn36ehrX3LwTNrV23T7j93c5siiLygnIJwDblZZT6CSmCQ6vuRrbhO06SAFbthPPztNo+Xwor9Gz6e8wCgjwE3a1dsMcGOA1Zz/ZA0FbTrAbX5ynErp1+5w4OByeFH4juN08u3vuM2Ox98wAg6utBhHcUcvGkFxrnz7O516dwW3Wes+69859P+N179q27T8SnJ6cjlNf+cvOhfA1Bi0Wh1tOXWHHv/oH9Lp9CQIAvmGp9HEJespPoP5sMyianr/12P02R8sZmhu76F/Ttymca+to9bOXtJodXQ9LJWe/2onh+LlldbR91sv0bNfGGCwSjUdvBxBjy3dQOkFjOtxN7OE3v/1GP20i7Epunpl9NcRf5rx7t+kVDFg3J2EQnpj7Xm6HsXyb5u6FbTtTiGtNXBx9IJIdys7aFdMObX1MQZAl0JDSTVdVGyA4OkFkdplKqrpesB80en0pFCp6eTdCvJaH0LlzT2kk3Y8gOKJIok9zSTU5pGoYzm7grSDtPmxpG9gfk/UqkmdE03K2KvcRlmSQx2X95GmycAY6WijVu+j1HH7CnuGVkttd25Q6bpVJBho7r25uVSweg21RbG8Xk1XNxVv2km5PzIfJgoCVV+/RZEvvkcyAyG7s7iMQj9eSZn7TjEbuYJiNu2ns8++y+tYEBRNB+e/R/cNyhudtQ104bOf6fI361kbaDQUufc0bZ76Ms+jLk9IowPPf0Txx1kcJ23roGsr/uRxXD+4bcv0Vzi7pC6HxSI3f9lKRA98+cYJC7lCRqZfMG2f/Tpl+NwhIqLWsio69e4K7hv7fdRfo+dTRzXLmS8Mi6PdT75NIQblja66Rrrw6U+0eerLrF8NwOYN456jYgMhuzwhjfYteJ8ufPYzL/+Vb3+n3wbP5bFqggHyFXf0EhER1WTk0aGXPuVQPHl3L/mu3kRrPWZTXU4hB8Junvoy+a7eREQMFnxs8TJaN4hB8VR9Mgr4bQf9NnguZfoGsfjlZihtnfEqj51ay6vp5Nvf0Rr7KdRV18hh0uuHzuM09IKQWNoxZwn9NXo+EbF89LMfrKTVtpOoNC6ZtGo1he84Rr8Pf5LHh/ej79GueW/SattJpOyVUk9TK138/GdaYz+FUeENsOY/vJ7ikOryxHTa8/S7HFItbeugy1//RmscptLNX7aSoNfT3ROX6a/R8+kXlxkkCAJVp+fS/uc+oO9NR1POrXDuY39ynErHXv+Kw3b/HvMsfW82hrobW6gup5AOvvAxfW82hiJ2nWA+dvUm+tlpGo8P++co/eC/xsJSOvzKZ/SD+Vjy/modh/r97Dyd1thPIaW0jzJ9g2jTxOcZFO+CH7WUVNCxxcvoB/OxtPeZ9zgs+xfXmbRCMoqa75dTTkA4bZ7yEi2HF93+YzeD7b7xNf1gPpbWeswmtQGY+IvrTFoOLyoIiaX8oGjaMo2B2k69s5zDdldajKNV1hOovaqOQrYc5oC+6ANnqSg8nrbOeJWWw4s2T32Zw3ZXWjAIbnliOoXvOMZtrq34k+5H36Ntj73G4XUtpZV07qMfOTg35eJNI9jugYUfUmlcMm2f/Tr3uWUJqXTh05+4ze0/91D0gbO0bhCzWT90HpUnpHFA73J4UaZvEF384hcOAjyz9HuKO3KR1nnO4YC+vMBo2vXEW9wmbPtRI0Dv1hmvUvzxy9zme7MxdO+cLwcOLocXeX/9G13+Zj23+dllBsUevsAhhcvhRaFbjxjZHHrp0/97oXiiKFLErhMsuLMaT1k3Q6kwLI6yboRQ6pUAPhHUKJTUXlVnLHkhCNRSWmkk66FRqR6VN3lIRkWjUnFARf81ENpGRI/8PxGRTmcMnhn4vf2f/9Xf/n99/ld/Cy1oIq/1IRRX2vbIvf9fvQZCaPqv/0jb/VfZPFyegbJq/+qzIAiPjI+Hx9C/GlMPj7tHxqFG88h3qRXGckMqudzos06rfeQeRa8xAEne3WMMN9LrH/md9EumcJueXiPwnyAI1NtiDDd6GIio6pMZydaJomgkoUNE1F5VayRbo1YoqKPGGFQ0EOpHxAKGgeAfjUpldI8oilSTnmtUx676JiNQkVatNgL0iKJIFUmZRpKWPc1tVDcAZqjTaKgoIsHIpiotx6jeva3tXK6FiPVH1s0QPs5EUaTazHwj+T5ZRxdl+4fyz3qdjjKuB5K86wGUqi6nyOi7ZV3dlHj6Gq+jXqejrBvB1GiQdCMiasgvprQrt/hneXcPRe49/QBuqNdTzq1wKo5+ADNsLCyl6APnHtj09FL4rhPUZZDmEfR6yrsTxeXliIia75fT7T938zoqeqUUufc0ld/L4DYFITFcBo6IkZx9f9zEx6ZS2kfRB85SuiF4FvR6KgyP52oiREQtZVV0fdUGvvColPZRzKHzXDWjX9Lw/CdruIxUW3k1+a7exNU4lH0yijt6ia6v2shtiqMS6dQ7yzncsK2ihvzW/ENR+89ym7vHvenUeyv+PaH/b7z+VzHCh+uOk/nMZeT10s+UVlBJ/lGZdDMqg66GJJNUxuSJevsUVFTRQFUND/ymVquj8lpjqGxXr4xUD8modUuN36FyhTFAThRFUqsfihm0j8YD/13+6OFrd3gJea0PoQ6Z+pH/+//q9R+JEf6j7f0fee7/LkZ4OD4g+t/HCDqd7pHnPBIzqB6CHQqCkWwt0aMxgkomM2pPQRAekR9+OB5QKxRGcYUoio/ECL2tj0osP+z//5Xk78B6azWaRwDIbQ9J80lbO0g2wDfqdTpqKTGW720oKDGqY19H5yOgwoFAYSKiutwiI2iyvLvHyP8Lej2VxqcY2TQVllJn7YPyKnqlVGbYqCFibZsfHGNUx+b75Vx6jYjFSbl3Io1sCkLjjGCMreXVRtBhlUxOyRdvPIAbCwIVhscbwRfbq2q5PyUiUiuUFH/sEodfC4JAxdGJRs/tqGmg2MMXjG2OX6Y2g0SxKIpUGp/yCBwwaNMBI7hxwulrfONRFEUqu5tKkXtOcZtug7Rdv2ydRqmie+d8KfVKALcpT0ynm79u43XsaWyhgN93cYlCrYrJ4YUbNs/65fAuLVtLasNvoKexhW7/uZsy/YK5TYr3TfL9cdMDm5RsOvfxamqvYguaPc2tFPj3Pl5erVpNaVdu0Zn3V/JN55r0XLrw6U9UFM4WHntb2iho4366/uPG/3uheJX3MqCSygx53uMwfckLGDptIpLP+cL7i7VQSWXoa+/EjZ+2YNP4hcjyZWCUguAY/D16Pg4s+IDlMXT14Op3f+An+6mozcwHAOQHRWPTxOdx7bs/AQB9bR3wXrYWvw+ZB3WfHESEDJ9AbJr4PO6d9gHAYHBnP1iJA899CIDlLscf88bG8QvRZDhO3Jh/H8cWL8OtdTsAsNyfoI0HsG36qzxvuSQmCfvmL0VuAAO59bV3wuf7v3Dx058AsOP/KRdvYPusxehtZMesWksrcWbpD0gJZJAWe1NC2PZjOLDwQ95eZfEpOPjCxyi7m8qfe33lBvit+Yc/N/m8H3Y/8RZUfSx3sKmoDKff+x4plxhYRKNQIvifgziz9Af+3MKweBxY+CGaDIC7nsYWXP3uD4RuOfygHY5ewr75S/lR8pr0XJx44xvkB0UDYCA3/7XbceWb9QBYTnr6tTvY89Q7/Ph2a2klzn+yBrGHL/C2C9t2FEdf/dyoLIde/IQDbrobmnFt+R8IWLudlUWnQ9yRi9j5+Jv8WFtlchZOvPkNMq7eBsBALv6/bsOZ975/0N6XbmLXvDfRXl7N+/Hch6t4HVV9MgRtPIDd897i5c/2D8P+5z7gILe2ihp4L1uLy8vWsfKr1IjcfRLbZiyCsqsHAFAccRdHF32Bu8e8efl9fvgbh174hJc//uglbJu5CA05DOJXkZiOk29/B/9fWR372jrg/+s2bJn6CgSNFqIgIOmcL3bNexO5BjhgbWY+zn24Cmff+4G3/52/9mLT+IWQNrdDFEWkX7uDfc++j5h9DBDTWFCCS1/8gj1PvAOAwXdCtx7BPxNfQE0aA9zlBITj0IufwHfVJlbn8mpc+fZ3bJ70ItQyBbRKFSL3nMLWaa/w32NhaByOLV6Gk29+C4ABh66v3IC/Rz+LrppG6DQaxB6+gB2zFiN67xkA7Ddy8u3vsPepdyFodehpbMGNn7dgw5gFqE7JhqDTIeHkFeya9xZurNnM2+nsByuxddqrUHT1QtrajoDfdmLTuIXIvhECQa9H0jlf7H3mPZxZuhImJiaoTsvB+U/W4J+JL6Cjsg7yzm4E/r0Pmye9iLtHL0EUBKRdDsDB5z/CsdeWQSNToC67EJe+/BX/THge1Sk5UHT3Ivifg9gy9RUE/rkHoigiwycQh1/+DPueWQp5Zzca8+/jyjfrsXniCygIioZK2oew7cewbcYiXP9+A/RaLbL9w3Bs8TLsfuJtdFTVo7m4HD7f/4VNE19A8vkbUMvkiNx9EjtmvY7Ly9ZB0dOHvDuROL7ka+x6/E3UZRWgtawK11dtxOaJLyJqz2lolSpE7z+LXY+/ibPvr2KQuZBYnHz7O+ya+xZKou+hvbIWN37ajM2TX0LE9mOQtXUi9tB57H7ibZx+ZwW6ahpRHHEXp9/7HrvmvoHsGyHorGmA/6/bsHXqKwjecAB9re2IP+aNvc+8h5NvfYvGglKUxCTh7AcrsWP2EiSfu4HOqjoE/LYTW6e9ilvrdqCvpQ0JJ69g/4IPcPz1r1GZnIWy+BSc/3g1ds5egpSLN9FcVI7bf+zGthmL4P/LNnTVNOLeGR8cfP4jHH9tGYrC4lGRmI6Ln/+CXXPeQMKJq2ivqMWdv/Zi+2OLcfOnLWgtrULyeT8cfulTHFv0JYrD76IkJhmXvvwVO+a8gfgjl9BZ24igjQewc/YS+P24CQ25xUi5dBNHXv0CR1/9AkXhd1Eak4TLX63DzjlLEHf4Irqq6xH8z0HsfvxNXF+5EVX3MvHv6//sdTkoCVNGD4WDrRWenDkW86aNwaihbth6KhBrdl2DlaU5Smta8PmfZ/DY0o3ILamHIIg44RuLwc+vwdp9vgCAiro2vL7yAIa/+DO6pQro9QKO+URjxEs/46z/XQDA/aomvL7yAJ7+nL2HNVoddp8PxahXfkXWfXbsN7OoGi9/twc/7WYxg0yhwu+HbmDym39AbTiGH51ZiZd/vgi/OPZ+75JrsD24GL/dYEeSRSKk1XVjb3wFOpXMpk+tQ3p9D8o7FfyeToUGDb0P8sD1ggClWsOheI6WEgiyLgh97Ng4EYGkbRDr80ECe66o6IWuMAFCE/PtpNdBW3QP6gQ//lxNTQl6fI9C11rPvkfag44b59AVwtqORAGdUaGo2PArRB071i4vK0PJH3+iM475Rr1cjoqDx1C0fiMvS2NIFOLf+AyKega4ldbUI3bFeuQeOc9sNBqkHjiDq4s+42WpiE/B2cVfosIAzutr64Dvj5vg+yPzR6Ig4N4ZH+ya9yZUUhbj1GUX4vS7KziwTCXtw50/9+DUW9/xsmT5BWPf/KVoMhxRby2rwsXPf0HQ3/sAsFgkfMdx7J73Fo/jCsPicfjlz5B7KwIAA9FdW/Enj+P6Y5GtM16F1BDjVCSm48Sb3yBmH/Nzfe2d8P91Gw48+z4vf/J5P+ya9yaHytVlF+Lch6vgt4q1nbKX+fKtU1+G1sB8ybweiP0L3keaAcjXXFyOS1/8guNLvmF9qFAibNtR5ueq6kFEyAuMwuGXP0PoZgZW7qiqw9Xv/sCOWUsgCgJ0ajWi9p3BtumvojSGtff9qEQcf/0rXP7qN1bnhmb4/rgJG8cthLKnD3qtFvHHvLFj9utIOufH63z63RU48tKnrJ9b2xGwbgf+HrMArSVVEPR63Dt7HXueegfBGw8AYPHjuY9+xM7Zr0OnUkPe2Y07f+7BpvELURKdBFEUkXY5APsXvM/LUp9bhEtf/IKN4xdC1tYFZa8Uwf8cxD+TXkTKxRu8nw+99CmOvPwZiAhNRWW48s16bBz7HJoLy6CWyRG+4zi2TnsFYduPgYiQezsCRxd9gf3z34e6T47W0kr4fP8XNo5biLLYFGgUSkTtPY3tsxbDd+VGDr4+8cY32D7rdfS1tqOjqg5+q//BpvHPI/PaHWhVasQcPIddc9/Apc9+hl6twf2oRJx6Zzm2z1yM5uIKdNU14uYvW7FpwvOIO3QBOo0Gd49fxt6n3sGpt76DsrcPZfEpOPvBSmybsQiViRnoaWxBwG87sXnySwj8ax+He++bvxTHFn2J3uY2VCSm4/zHq7F12qvIvxMFaUs77vy5B1umvITbv++BvKsHyef9cHDhhzjy0mdoK61CVUo2Ln7+C7ZOewUpF26gr60DgX/vw7bpr8Lvx02Qd/Yg5dJNHHrhYxx6/mPUpOehJj0X3svWYtuMRUg4fgW9ja0I/ucgtj/2GnyW/4nelnakXbmFwy9/hoPPf4yS6CTUZRfiyjfrsXXaK4g/egmdVXUI3XoEO2a/jqvfrEdnZT0yfAJx7LUvcXDhR8jxD0NDXjGuLf8DW6e/iqhdJ9HT2IrwHcexc+6buPzVOjTmlyDLLxgnlnyN/Qs+QP7tSNSk5sDnh7+xbeZriNhxAj0NzYjYdQK7n3gb3l+sRVVKNrL9w3DyzW9xYMEHyPUPR21GPq6v2ojtMxcjbNtRdFbXI2rvaex96l1c/OxnlMWlIPtmGE69sxz75r+P9Ku30VJSAb81/2D7Y4sRuuUIOgzA8v/09Z9eEvhvvv5Xq+9HX/uSVlqOI981//DVO1EUqSAk1miFraW00kgurF+2YOBVnZZjJKMm6+x+RNajX/uz/+qsbeDHpYjYaszDK3eNhaVc152IHVtvKRkgMSIIj0jodTc0G8nJaVUqo92z/p3HgSus8q4e2hOQRV7rQ6imQ056nY4a8h6cSugv70C5M41C+YiMWkP+fSNJN2lbh9HKqE6jeaQsreXVRqu0yl6pkXxfvzTGw7ueA6Vi1HKF0XP75ScG1lHa2m4kJ6NVq6k268FqZb+E2MCTFvKuHqPn9kuVDJR0a6+qM5J0UfZK+Upef/kflnTrqms0lnSTyY3GR7/kxkBJt56mViNJN41CyY+V9ds0FZUZjQ/pQ7u2/TIw/bIk/TIwA6ViZB1dlB8cw+vYLwPTWv5gpbS1vJruR9970E7dTJqsv4797dQ/nvvbKds/7BFJl/5V8X4pr4HP7aipp7Qrt3gdldI+KgyL42ko/fIsWTdCHrRtfROlXbnF66jqk1FRxF3eDv3j6d7Z67yO3Y0tlH7tDpfD6ZdN6X9uf3/EHb3Ef489Ta2UcT2Qpy9oFEoqiU2m+OOXeepEY0EJxR29xMddv9Z8f0pMv1xe+I5jpFWr+W8z/pg3l62TtrZT1o0QfuRRo1RRaXwKBW06QL0tTLKqqbic4o9f5mko0rYOyroZSkEb95Og1/N+D9l8iOpzi3i/J5y8wo+Lst36MLrx8xZS9kq5xF7IlsNUEBrHfx8Jp67Snb/2GnZKmMTe9VUbqbWsysgm4eRVLhmUcOoqXfn2d9IoVVxiz/fHTXQ/JomPr9CtR/hzW8uqKPH0NTr/yWrqamgmeVcPs1m9iZIv+BnZXPziF9LrdNRaXk2Jp6/R2Q9XUWVyFpPYux1Bvqs3UeCG/VyWL3TbUTq25Cvq6+iitooabpN29ZaRzflP13BZvtBtR+ngCx9TXW4Rl+U799GPFPzPQS7L1683r5T2UVVqNoVtP0YHXmDpT/2yfOc++pEufPazkc22Wa9RS2mVkU3YjmNGNnufefffO/T/jde/aluFUk3jXltHHs+upD0XQkkqYzsvKrWWYlKLjO5NzCql3r4Hu4jtXVJ+VJ6ISK8XKDq1yMiHVTe2U0XdA6k1lVpLqXkP3t1E7Ch+z4DndkvlVFT5YFdOEARKL6g0em5jh5QaOx6cjFLr9FTWYixj1yJVGcnWafQCydQ6o3tU2kdPgy2/kkVTN0UY7hFI1BmfOBDVcmPZOo2KRNWD+EUU9CT0GJ8A1PV0kKAaIFurUpKmrXmAjUDKmkoSB+xOqzs6SN3xYFdWr1KRrOxB24miSNLSCtINkHRTdnZT74BTWnqNhpoHxGiiKFJHZS31DZCKVfZKjeMKgy8fKOnWVddoFMepZHKjOK7fdwyUw+ttbjPy/xqliiruZRhLuhWXG0m69bV3Gku6qdVUcS/DSNKttazKSNJN3tXDdyuJHvjl/tip3y8PfK6yV0pF4fG8jv1+eaBkXmdtg1EM3C+B1l/Hfh87MA7qbmyh3NsRvI79Pra/7frbaaD/72lqZbJfhjr2+9j+2FoQBGosLOX+lOiBv+yXR+73l/3lFQ3ysskX/PjObr+8bP8uc78f6/f//b4v8fQ1fkKv3/f175z3+6SEk1fYb8EQJyWe8eGxk7yrh3LvRPLn6jQaqkzOosi9p0mjVHG5vKRzvlSRlMlsDLFV/DFvoz4M33mcuhtbeB8mnfejbP8wImLzhPygaAr+5yDpdTou+xqx6wQfm0wu7wb3//3xWMBvO0je1cP7PXLPKS5b11FTTymXblLg3/tYyoxBYs9/3Q5qKi7nv4/Ivacp4eQVPlZSLt2ka9//RWq5gsdw/ut2UFHEXR7DRe49Tbf/3ENE7DeV6u1P3svWUmdtA5PLC4+ngN92UOIZH24Tte8MXVq2lnQaDZPYuxxA3svWUnlCmpFN4N/7uCxf1L4zdPLt70ja2k7dDc3cJtXbn8vy3Vq/ky589hPpdTqqy2E2Rxcvo9qsfCOboE0HuSzfrfVMXk7eK6X63CKK3n+Wji5eRpm+QVzKz/urdXThs5/42L/1+y7a9cRb1HS/jEnsHThLx15fRqHbjlJPUyulXb1N3l+to73zl5JS2sdtdsxdQvlB0UY2l7789f/eHfq+tg68t/8vAEDSaR9o5Apk3QjBhjHP4so361GbmQ9lrxQBv+3EzZ+2cImR8oQ03PlzD1Iu3oQoilDL5Eg8fQ2p3gFoN0DZajLykHzeD1UpTJJG2StFbkA4CkLiOB2zIa8Y+YHRHACi7JWiOCKB25BBxqM0JgnKHgZPU/RIURaXirZytmIviiIa8+6j8l4GB/LJO7tReS8Dsna2ci4KAhpyizmkDWByYNWpOdBr2Iq3XqtFXXYh2jvZ9zjbWKCrtpHLlAGAWq5AXVYhJ/cTEVpKKtFRVc/vkXd2oyG3mO+kC3o9mgvLIOvo4vf0NLSg1SDFBrDV6ca8+1xygYjQXlGLnsYHMk3yrh40Fz0ov6DToaW4HKoBxP+exhZ0GdoSADRyBZoKSiEYiMCiKKK9ohYyA5ESAOQd3RwyAzCqaktxBd99JyJ01TXykwwAoJLK0HK/kgODREFAe0UNFN29/J6+tk50Vj9oF41CiZb7FRAMqgGiKKKrronL2ACAsrsXraVVHG7IZENqoJE9aG9p8//D3ltGx3WkW8O7W8ySZSaZ2XEcO+QwZ5KZTJJJMjOZJBOaGAK2EzvmmNmOKWZmklkGmcTMzNiCVjPzOc/343RXd0u+b+bemXvf964vtZZ+HK1T1fVU1alnV9VTe3cwEkJAOOVuL68FORn1eYcDivpm6OUq9o5ermJkgUJ7WyCtrIPD2d48x0ElaWcydgBg0uiYlIyrLoq6JtbeRASdVM7GLgBY9QZIK2rdzLd2B1RNrYz4R2hvJWTV9cxGm8mCjup6RlTIcxzULe1QNbex3zFrdGivcNvosNqgqJfAoBCiEojnoetQeNlo0RvRXlELu9kpw+TgoO5ko1GpgdRJ6ifUxQxZTQOzkec4aNs6vPrRpNGhvayaqT84bEJdXDYSEfQdcmajiw1fWlkHm/O75x0cVM1tUDttBACDQi30o5OUylUXt40ETVsH5E5CRJFYBLNGB2lFLfuGOZsNysYWaNvdY0rfoUB7RZ0zjxhmnQHSyjqBoV8kEvqouQ2qphavPmovqwbn4CD28YHNaIK8thEGJ5M78QRNawc6qhsYgaNRpUF7eQ0cVhvEPoKygLJBAm17B+trnVTOvnsfXx+YtXp0VNXBqjdA7OMj1L+pFcrGFoEA08cHepkS7WU1ABF8/HxhNZggq2mEQalhagqaVinktU0QicXw8fWFUalGe3kNiOfh4+cLm8kCZUOLUH8fH+E7apdBVtUAH18f+Pr7wazVQ1bdAM7ugF+APxxWG1TNbdBJFUxxQS9TQFpZJ5BFBfjDqjdCVtMIh80O34AAOGx2qCXt0Erl8PHzhdjHBwaFCh2V9QgICYJfYACsRhMUDRLYLRb4BQYwtluNRIqAMIFYyaTWQlbdiICQYPgHB8JutkDZ1OrFmv1b+p9JKp0Rm+f+FWqdCceupcFotmDDoesY8fsfMWPVUah1RjS0yjFtxRGs3ncVaYU1ICKcvZWFFXuuIC5ZiNiTSFXYceoOzt3KglJjAM/ziE8rwfFraSivE+aBlg4VzsVn4W6m4HM5jkdKXhVuphZDrnJGvMnUuJFSjLJa4dTZbncgo6gWSblVjPm+TaFHSrEEHU5WezvHo6xVhxqZgdmlMdvRpDbD7sQMHC+w15vtQhlEBDvHw+pwk+ISEXieoDXZEBnsJ5zIO+wgJymeUJAdsBgYiz3xPMigBtks7nJMOvBa9xxFNiscHS0gu9392/J2cBo3ZuD0OliaGuBivucdDpgbGsDp9ewda4ccppZW9uwwmqAtrwI5SVmJCPr6Jlg8/JFJqYaq2o1FOJsNsvIa2JxEbgCgkrj9ESD4/9bSKvAuaT6Og6y2CUZnlBwA6GVKhgUBwG62OOdHN8ZRNrWw6EEAbj/n8rk2m+CPnJEALv/vIugDAKvBhLayanBOG3mOg7JRmOtcyaBQMalhQIjs66iqh83oxjialnZoWty+0azVe9WFs9mhqG9mGIeIBJ/riXEMJrRX1IJzkgNyDsH/a9tlLI9RofLCfnazBfLaRlicEZ3EC6oinjZadEJdXJjSYbMxCVVnwUJ7OzGxqy4uyVdXu2hapAxTklOxRfC5vLsudU0MaxPHQ+vhc1kfOf0cIGAcZVMLdB426mUKtFfUMr9nNRjRUVXP5JM5hwOaFqnXmDKqNGgvqwbvcEAkEsFusULm9LkuG7XtMkbQB5HIWRcB44hEInA2G1RNLSxaAxCwn7SiFiCCSCSC1WiGrKaRKWXxTlzEMI5IxNqFswuKAjaTGfK6JjeOI0Db1sGwqkgsZljEbjIDIhHsVgGLMMJssRh6mRJS55jy8fWFRW+ErLoeZo1OUDCw26GWtDEML/LxgUGhFsa33QGxjw+sRjPkdc0wyFUQicVCu7R1QObEIj6+vgyL2K02+Pj5ClikUfjWRE5STZ1UDqmTYNDHyXbfUd0Aq9EEX38/p3yw8N2LfXwg9vGBUakWyNB9fQX/bzBCXtcEq94g5HFw0LTJoGpuha+vL8TOunRU1sHHzw9+gQGwmcxQNkgElnx/PwG7SuVQ1EsQGBoKH39/mDU6yKobIfYRwy8oEA6LFarmNpg1Ooj9XFhECXlNI4KiIuAbGACLzsAw0L8j/a9c0Pv4+uLghzMx7JnH8OW5neg9ahgmf/B7zLxzAiOefwK9nAyTby75FoOfmIjw3oK8zLBnHsOI55+AX1CgwIgaFooRzz8BsY8PkxTpM3oYgiLC2CI1KCIcYT2jhcHrwUZvM5rYpOMbEADO7mASDoBzInJKFQCCIzMoVMx5EMfBoFRD2eR2ZEa1FqrmNrZIspnMUDa1Qu2csIkIqqYWyGsbYXdOTEalBrKaRih1ZohFQLAPQVpR6+UIVE2twmLAOfladHq0lVZBLXEvvtpKq9BWVsPqq2mVoqW4gtlkt1rRlFvstYiWVtSitbiSsaEalWpBy9E5GfA8j8bsIrQWVzIHI69rQnN+GQxKjVAXgxH16XmsvkSE5rwSSArL2aJO09KO+swCaNqEyddhs6EmOZuFwQGCvmdTXgmb1IXNkRy2aSFojWejOb+ULc6lFbWoz8iH3jnhmXV6VN1PR1tZDatLXVoumnJLYHZuhijqm1GTnM36zWa2oOJOKprzSpiNDVkFaMgsYItzTasUlffSmC49Z7ej/HYKmnKL2SZRc34palJy2AaETqZAeXwyJAVlbDxV3E1FY3YRDM4x1FZaheqEDMhrBcdl0mhRcv0+mnKKwNnsICJU3ktDXVouc87SyjpU3E5Bm1Mj12IwovjaPTTmFMOs1YOIUJ2UieqkLLbol9c1ofRmIhqyiwTpGLMFRVfvCDY6N5/qUnNRdT+DLbTVkjYUX7uH5txi2ExmQbv26l3UpuawcVefWYDy+CQ0FwhAWNsuQ+GleDTlFMOo1IBzOFBy7S6qEzPZ+GjKLUbpjQQ0ZhcJEihyJQpib6A+Ix+atg7wHIfS6/dReS+d6QC3FJaj+No9oR+1eqbjWpuSDUV9M3ieR+mNBJTdSkJDVqEQcldSicJL8WjMLoJWKodZq0Pu2ThUJ2YywFR2K1GoS04RbCYzpJV1yHfVpaUdFoMRuWevofJuGloKy0FEqLidwupiVGkgq2lA7plrqE3OgqKuCTaTGblnrqE8PhnNeSXgHA5U3ktD0eXbaMwugk4qh7y+GTmnr6I6MRPSijrYLRbkno1D6c1ENOeXwWYyoyohA/kXbqEuPR+a1g4om1qQdeISKu+moq20CnarFblnrqIk7h4k+aUwaXSoTclG/vkbqE3NFTYuWtqReewiym+noL2sGjajEbln41B05Q4ac4phVGlRm5qDnNPXUJOUxZxvxpFYlN1KQntFLcwaHfLOXUfhpXg0ZBbAqFSjPiMf2aeuoOp+hrCR0daBjCPnUXojEdKKOhhVGuSdu4782BuoTc2BXqZEY1YBso5fROWdVKgkbVBL2pF26ByKr95Fa0kVTCoNcs/FIe/cddQkZUHfoUBjTpFQ//hkaFoFIJZ28CwKL99GS1EFTCoN8mNvIPfMNVQnZsKoUKMhqwjph8+j9EYCNK1SaFrakXbgDAou3EJzXilMah3yY28i++QVVN5Ng1mrR1NOMdIOnkXxtbtQS9qgbZch7cBZ5J2/gSbnd/Vb+p9NUoUWK/dewctPjMWRlV+iT48o/Pj5mzi1fjqemzwKkWHBGNyvBxZPfQuD+vVAnx6REIlE+OMLj2DCyAEIdOKB/r2i8Nj4IXBwPAL8BXm5h0YMgJ+vDxzOhUrPbuEIDQ6E3rnQ8vERIyIsGGqtEZxz0REU4AezxQqNTvDtIpEIVpsDrR3uxaTNwUGmMcJoEfyTneOhMtqgMLgXkwYbB7XZxljt7TwPk42DzUNq1c4R7Jyb5Z6IwBMPtcmOqGB/YdHOuRf0RATYzCCbmS3oYTODN2rYgp54Dry6A7zejXEcajkc8jb2Dm8ywtrSCIfavUlqbqyDpaUJcNbXKpXCWFMDu1bw05zFAm1RCWO5BwBdeRW0ZVVwOPGVSSqDLK8YxjYBB/EOB1oz8yErqWR5ZBV1aMkvgVmtASBgqdqUbLZZTE6VI0lBGVvUyeuaUJ+Rz3yjzWRGdUIG8xsA0JhdyPwGIPi12pQctnB12GyovJcm+H/neJAUlKEhI59hJ71cicr76cw38hyHqvvpaM4rZdipvawaNcnZbLFo0mgFH+C8XkdEqEnKQkNWIfP/sup6VN5PR4fzOqDVaELpjQQ05ZbAbrGCiFCbmoPa1FxoWoXForKxBeXxyUxZxm61Cnlyihl2asgsQHViJlssato62Ds8x4Gz21F6MxH1GQVssdiUW4zKe+loLxewk06mQNGVO2jOLYFFbwTPcSi7lYSalGyonNippagCZbeSmI1GtRaFTj9nkCvB8zzKbiWhKiGD4c72smqUxN1DU24xHFYbzDo9Ci7eQl1aLtQtUhARyu+koOJuGrOxo6qO+SyTWgur0YT82BuoSc5m1wyq7qej/FYSGrOLwPM8FPWCclZjViG07TLYLRYUXLgp4EPnFdOa5GyUXr+PptwSWA0mqJpbkX/+OurT86BsbIHDZkN+7A0nPhRsrE3NQdHVu2jOK4FBrnTqq19DdVIWOqobwNntKLhwC2W3ktCUWwKHzY76jHwUXLiJhswCaNs6oJXKkH3yMqsL53Cg4OItAfvlFsOiN6IxuxD5sTdRl5YHVVMr9HIlsk5cQsWdVEgKysA5HCi8FI/iq3fQlCNgSkl+KfLOxqEmKQuK+mYYlGpkHruIsltJaC2uhM1kRtGV24IvzyqEXq6CpLBMwCIJmeioboBJo0XWsQsovZGA1pIqWHR6FF+9g/zYG6hLzYGuQ47WkkqhLndT2SZ/5rELKIm7j5biSpg0OhRfu4e88zdQm5IDbbsM7eU1yDx+ERV3UqBokEAvUyDj6AUUXr6N5vxSmNRalMTdF9oyIQOaVmHjwuXLlQ0SaKXOPJduO/GLBiU3EpBz6goq76ZC36FAW2k10g+dQ+n1+5DXNUHboUDm0QsouHAT9ZkFMCjUKLuVhKzjl1Aenwyj88Ay7cAZFF+9i47qehgUKmQcOY+8c3GoS8uFUS18y1nOtjRpdOioqkPq/jMounwb0so6rwPOfyn9y2f8/83pPwpDyDl7TWAQjBxPTXklVBafRHErtlHcyu0kr28mq9FEDdmFVHT1DtWl5xKREO7iIolwEZQ4bDZqKan0CnM3aXVdwtFltY2MMIlICB/yJJ/geZ6FCbmSWW9gRBKudzzD3omE8BovohGHwytMn4i6PNssFq+6EBF9djCTJq647VU/z8RxXBciFKvJ+9lmsXgRt/A83/WdzmQqDkeXunR+p/Mzz/O/Whe71epFevagdzo/P9DGTu1gNZq82pvnea8+IiIvghNXXTqTynTuk87kMJzD0aUcT0I2VxmeNnIc1+Udz6sgRILNnceUTuZNMqPtkHvZaLdau5TjOd6JhGsmnm3nsNu7vOMZQkgkhHl5hiJyHOd1fYFICPPyvMZh1hu8vhNXqGHn3/FsT6vJTLLaRq88kqJyLxs17R3eV1UsFi+iF57nqbmg1Ksf9c6wbWazzUb1mfle5baWVbPwfyIhhK7Rg5jGRXjjSUIkra73Ktek1TH1BSKhnSoT0r0IhOT1zdSQ4w5xNOsNVHjlDvseOY6jmpRsr3ZQNrVQqZPVmUgY29lnrpHFSWbE8zzVZ+Z7XfVQtbRT1qnLzEab2Uw5Z+NYv/E8T425xVR07Y5X2ybuPs6+c5vFQvkXb1J9ZoFX27oUMYiEMMi7Ww6wOdJutVLR1TuMZI5IuJJ0a/1uZqNeoaL72w+zKxkOm41KbtynpN0nWJ628hq6tGA9Gx8GlYYSdh6jwqvC3Oew26ksPomu/rTZ3R9VdXT+h1VsnBnVGkrcc4KFK3IOB1XcTaGT0xa6SfFqGih27mrWviatjpL3n2JhhRzHUeX9NDr4t5mkdl6tkdU10cX56yh570nWh6kHz9Lhv3//W8j9f2P6j9p2/tZz5PfwZ/TQu4uotUNFx6+l0ep9V2n9wTjSG82k1OgpvaCGLt3LpcoGIUzcaLJQcbWE0grcoc9Gk4VyS+vJYHLPHVKFhhpbPcLGHRxVPYBIzzOU3+HgqF3uPb/LlFovn2t3cKQ1ePsanbkTsZ6DI7vD2097PhMRcZ3I4Hiep8dX36WPD2Z5/M87D/8AYlfe4e2DXSz4nmXwnYl/bd54gHOyv3vWhbN62+jo5F85u524zmRvnbHIA/2/dzkPwi+e/ojn+S4YoTMecNhsXXBFZ99u1hu6EMZ1fqczRrAaTV7h/zzPd/X/Ku9nu9XapdzOvt2gVHuNKYfd3qUcT59GJPhyz7biOM4L3xKR1xVCIqGdPH+b5/kuGEHV0u5lo81s7uL/PX0aETFVHFeyW61e1y2JBD/g2d4GpdqrXIfd3oUUV1pV59XXJo2WhdMTua9keCZZXZNXO5j1BuafiIR2qk3L9SKvUza1eJVrNZoY0avL5vrMfNJ7tJ26Ver12zazmUpuJjBcwfM8NeWVUEdtA3tHK5VR+V33FQe71UqFV++QWadjeSRF5VTn4f/1ciXlno9zk+LabFR8/Z7XtZPWsmoqjrvHng0qDaUdOse+AYfdTqXxSV7lSqvqvAjvTBotJe87RerWdta25XdTqdCDxE9W20i3N+9nGNis01PqwbPsqgfHcVSVmEHJe0+xPPKGZopbuY2RG1oMRso4GkuFV+JZnuqUbIpbsZXZqGxqoatLf2bjwWo0UeaJi5Sw8yhrp9r0XDrz3VJGiqdqaae4Fduo5Pp9IY/JTNmnr9DlRRvcfZhVQMe++JEUTjJmdauUrq/aQYnO6wo2s5lyz12jI5/PYaTZDTlFdPSLH6k6OYv14c11u+jSgvX//2W5Vza1UNapy7Tr7X/QoY9mEedwEOdwUPzGvfRD94nUUdPApDR+GvEC3Vj9CxEJkiN735tOi4c9xxaV11ftoDk9J7G7NPWZ+bTx6feYTIZLEmJOj0fYJFN5P41WPPQak60zKNV0asZiWj/lXSISOjsv9gYtiJnCmJWVza20973pdHbWciISBnjCzmO0eOizbEBLispp4zPvM2ZFq9FElxZuYFJxRILU2k8jX2B32zXtHXTo49n04oJYemFTApPTcEl2EAnAefPzf2b3kC0GI11auIGOfj6XvVNy4z4tG/MyW6iqWtpp/1++YXdpXHJmW1/5iOVpzCmidY//0c0erdHS2ZnLKHbOatYOOWev0fJxrzIn2lHTQDve+JTdm7KZzXR95XYm6UYkSNstG/MyW6C5bLy55hfWdkm7j3vZ2JhbTOse/yO7E+2SDHFJuvE8T9mnr9CiIc8wh91eWUtbX/mISbpZTWa6smQz/fzCX7zaZfHQZ9nddlc/uiTdXPJliwY/zSaQ6uQsWjH+NSq8IiwytB1yOvLpD7Tr7X+w+ifvPUlzejzCFuNNeSW07om3mcSiS1ZsxfjXWP2zTl6mub0ns/vZbeU19POLf6Xj/5jP+vXi/HX0ffTDbOOi4HI8LYiZwtjFZXVN9MvvP2eSbjazmeJWbGOyJEREZfFJtGT483R50UZhLEjaaN8HM5hsncvm70LHUOnNBMHmpExaPu5V2vv+DC+bvwkcQXq5ko332ZHjGRtqfVYBrZn8B1o54XUiEr6jE1MX0DTRIGrKKxHk8A6epR+6T2QSi80FpbR+yrs0O+ohsprMbMxN9xlC2aeveLXTlpf/RkSCg3JJtsnrm8msN9CFH9fQDL9hdG3ZFjZXzB/wJC0YOIWIhEX59tc/oamIoYq7qWQ1mujK4k30dcBwOvDhd0REVHT1Di0a/DR9FzqG9HIlyeubaedbXzgl3Y55te3qSb8nIuH7XTL8eZqKGGouKCVlUwvt+dM0mooYOjtzGdmtVrq1bhd9FzKafug+kWxmM1XcS2Pya7nn4ti3ORUxtO21jwWpns37aWb4OPo6YDjJahuFMfjQa0wiRSuV0aGPZ9M00SBaOOgpJqHnkmyrvJ9Gdem5tPqRN2kqYujQR7NIJ1PQ0c/n0jTxYJoZPo407R2UtPs4k7pJ3HWMGrILmTTMmsl/IL1CRSe+mk/TfYbQdN+h1JBdSKkHzjDZmrMzl1FTXgmtf/IdmooY+r7bBNJKZXRqxmIm85Z9+gqlHT7HpGG2vfYxNReU0san32PKJg25xXTm26U0w28YTUUMXVu2hTKPX6Qf+z5GUxFDC2KmUEtxBW1+/s80FTE0TTSI8i/eonOzVzBJnf1/+YayT12m+f2foKmIoe9CRlN1chZteelDJicTv3Evxc5ZzeRxVk54nXLOXqMFA6cw2Zrs01do6ysfecnWXZy3lr4JGsnK/W1B/9+XHtS2WcW1dD2pgB55fwmtPSD4U53BRF+vOkoj3pxLNpudLFYbbTsRT32e/5bi0wSel5spRfTcp6vpL3N3EpGw4P52zTHq9dw31KHUEs/zdOFODo19ewGTrWvtUNHfF+2jR/+ylIiEufrolVSKeWU25ZQKwL62uYP++N1W+nqVACJtNjttOXaLBr/2PZnMwgK4sLaDfr/wPJ1NFDYijVY77UqopdlnCphdVTI9/ZxYQwqDkMdsd1Bhq4aqZHr22xqTlZo8ZOs4jiOzxUojFt2g707nE89z5NCryK5xb4DyBhVxDXnEO4SFCW8xkq00mezNAhcPz3Fkq8kl092jLI+tQ0KqU1vI1iYsyDiziRRXTpL8whFWF21OOlX/OJ0450aApb2dKpcsItltJwC32anp8HEq+vYHVq4yM4+SXvoTGZsEoGxWqCh15mLKX7eD1aXkWCwdf+qPLI+0tJIOvPxXqr4tKHqY9Qa6NG8tHf54FqtL4ZXbtHjYc2zRLG9opl1v/4Pubz9MRMTm3o1Pv8fKrUxIp2VjXmbqIlqpjA7//XvGdu3CIosGP80Wri4sknPmqtCPTl++441PWV2yTl6mH/s8ynCcy5e7JN1cuPOnkS941X/hoKfYvXp5QzPt+uOXDKu6ZN6+7zaBbR5U3E2lpaNepKQ9wqaopq2DDnz4Ha17XGg7l2TxzPBxbMFTl55Lqx7+HZPm08uVdOyLH2lOj0fIYbczOb/vu01gvC8u/PLL7z932/zdUvo6YDhp2gSumMwTl2hu78lMXaS1rJo2P/9n+mnEC6zPLs5bSzP8hlFNag7xvCBTO3/AkwyruvyyS9LNJQH4dcBwSjskbCgXx92jRUOeYf3oaqepiKH2ylrWTt8Gj2Lyw+V3UmjpqBdpbq9JxHGc4GP//DVNRQwVXbvr9rFhY2n3O18RkYB5Vox/jb4JHEHqVqkwNj6ZLUi6bd4vYJ5fjtLsyPG0fOwrQttm5DEfW5+ZL7Ttl/NommgQnfhqvrttox+m2ZHjyazTM5w9FTGUcewCGVQaOjVjMU0TD6ZNz30gSCUfPkdzek6i6b5Dqb2yliSFZcxfXl600Y2TfIfSj30eJY7jKPPEJSalVnLjPrWWVjF/uedP08is01PsnNU0w28YfRcympSSNso5e435y7tbDlB7RQ3zfcvHvcow6NcBw2maaBDVpudS/oWbTEL3xNQFQh/+7u/sQFYrldGVJZuZzFv60VgqvHKbFg15hqYihjY99wHJahvpl99/LsjWBQynprwSurZsC30bPIrJ1hXH3WPYam6vSez7dvnlgku36PrK7fRdyGgmzVd6K5FJAn4bPIrqswpoz5+m0TTRIJqKGLq1bjfdXLuTZoaNpamIoWVjXqbyOylM2na6zxDKi71B+z6YwfIc+WwOxW/Yw2R3vwsZTcVx97ykbW9v2kf7//INTRMPpqmIoQ1P/Xt4dv5XLuiJiI5+PpdmR46n098tJXl9M5m0OjKoNAJhnMdur8Nm63KC2fnZZjZ32ZXtcpraaQf2QSe7Dzox7nJ6/QCJsc674p3zODrtVHMc57XLTET04qYEemenm+ik8+n2g/7X+fmB0iudpdY6PfM83+V/Xcp1Sjb8Z+rywHI7tUPnZ9di0zN1aUunQ/JMvyYD96B+fFC0QOfx0fmdzuPFZrF02aH/tV19u9XqtcvM83yX3XejWuPVdg67vct47vwNmLQ6r3I5h6PLLr6LxMWVzHqD9wm9w/HAHXrP9rQaTV4n6RzHeZ1mEwmgw0tezmT22qF3EQh69qNWKvPaobeaHkAmWVbt1b46mcIrOsBmNnud0LsIeNQe9dXLlV6EmS4CHpeNLgIezwgfvVxJlQnuE3q71Uo1Kdls598VpdDgSW6oUFHhVfcJvYuAx7Wx5CLt8TyhNyjVlHfhBhmcbecihXNFKLlIe7JPXWE2uojkXBI/rjyFTiId1wlK0p4TzEajWkMFl28z4h8X0Y/rhN5F9JO46xgDrC4iORcAdOVxndC78xxnJE8mjZYKr9xmG6cucqArSzYx2Tp5fTMl7TnhlpfTaKno6h26+tPP7jxZBXR50QYGWF157juJilx5Ts1YzCKD6rMK6MriTVTs3KGX1zdT8t6TdGnBeiGPVkfFcffoyGdzSCVpYyREV37azOorr2+m5H0n6fAns39b0P83pge1rc1mpyc+XE5DXv+e1uy/SkqNnpQaPam0BiqrbSG73YP8VW8ifSfJOZnSW7JTpe3q/z1P34mEDQPPZLc7yNxJts61eHcls8XWxTdaOhHa2R5w+u7g+C7/80ydyzRZHRQzL46WXin9D99xkYF5/Y/reorfJc+vvcN19f+dT/65B/h/vjP26IwrHoRxfgUjuA5/PFNn3975mef5X8VxLlJUzzy/FoXosNm8yv1nogU5h6NLREFnjGDWG7pE/pk6S9B2jvwzmrz9P8d1kXLWSmVeNlpNZi///6AoVZ1M4dUONovFixCZ53mv02Eiwfd5lmu3Wr2k41x+zNPGLif0Nhu1lXsTLcpqG73ayqjWeEfoOUnUPP2/vL7Zq1yTkzTNM09DdiFZPNpO0SjxwhUmrY5qPE7oXaRwnu2gaJR4kRAKRIWJzEYXKZwnrlA2tVD5HW9JupIbCSwK2JXHdQBEJBxI5Zxzn9C7iOSkznI5h4OaC0qZ3yMSDnTSj5xnY9NiMFLprUTm/zmOo+aCUko/ct6dp6Wd0o+cZ1LCLvK5/Evuk3SBFO4As1HdKqWMo7EMr7jI51ybUa48N9b8wmTrXHlcuMJqNFH5nRSKW7ldWEM4CbZvrNnJ+k3T1kGZxy8yokKr0UQVd1Pp7KzlZDGZWJ6ba3dS4ZU77jwnLrJDLhe5+qmvl5CsvomRKN9ct4ud/GvaOxgxniAL6cwzYzFV3E1leW6t300X5637/y8pHme344NtSxESHYX8c9cR0acHlI0t2PrSh1gx7lW0FFXAYbPhxupfsHjoc7i9YS8AQbJj99v/wPZXPwbP8+Dsdtz9+QC2vfoJ6tJyAQhybUc+/QE3Vu4AINwxurvlAPa/P8N9xyi7ECe+WoCiK4L0msVgRPyGPYj9fiWrY+W9NJz8agG7+6uTKXB95Xak7ndKujilvk7PWMJIQ2S1jbiyeBNqU4W6OGw2pB06h3hn/V2/HfvDKnY/y6jW4t7Wg1CoDYgK9gcRoeRGAi4v3MjyKBok/alG0QABAABJREFUuL5iG1qLK5lNmccvImXfafZOY04RLv64lt1bNyjVSNhxBBV3UgAId9BLrt/HrXW7WR5ZbSOur9jG7pPZTGZkHI1Fzqkr7J269DxcWrCB3S/Xtstw9+cDaMgqFPrS4UDBpVtI2HGE5WktrcLlhRsYkYtJo0XKvlMovnaPtV3F3VTELd/mZePN1b+g3XlPzWYyI+vkZSZJAwD1mfm4+ONadodOK5Xh7pYDqE7MFOpit6Pwcjxur9/jrktJJS4vWM9IcIwqDZL3nEDu2WtCu3Acym8n4+KPa73aJW75VjTnlQAQCPAyj11gknREhJrkLJyftYLxJagkbbi9YQ9KnVJ3NrMFuefimFwLEbE+cpH26DrkuL/9MDKc0oIOmw1FV+/g3Mzl4JxERa0llbiyaCPq0vLc9d97kn0Trvqf+WYpI6vpqK7H9RXbUOiU3THr9Eg/ch4X566BSCQCz/OoSszA+dkr0ea8x6hokODWut1I3nMSgHCfL/vUFZyesRg2k0XgI0jPw4W5a1BxNxWAQIZ4d/N+XHf2o91iQV7sDZyasRiq5jYQEZpyi3F54QZkn7zM+ixhxxGcm7UCvMPBbD7z7TI0ZgtjqqW4AteWbsG9LYLMkUGhQtLuEzg1dSFMKuFufunNBJyfvZIRZraV1+D6yh24vGADRCIRjGot0g6exekZiyGrrhfa6U4KLsxdg7RD54R2qmlA/LrdOPfdMjgsVph1emQcjcXZb5ehLjWXtdOlBRtwe4MwpuT1zbi9cR9OTl0Ig1IDi8GI7FNXcG7WChRevg2e51GbmoOrSzbjyoINII6DqrkV97YewukZiyGtqofNZEbeuThcmLMaaQcF2Z36zHzELduK87NWwmG2Qt3Sjvvbj+DMt8tQm5Yn3AG8eAuX5q3DHac0UlNuMW6s3I7TX/8Eo0oDbbsMibuO49ysFSi9fh92qxVFV27j0oINuLFyB+wWK5rzS3Fz9U6c/eYnKOqboZMpkLLvNGJ/WI3sk5fhsNlQEncPVxdvwuUFG2A1mdFSXIH49XtwbuZySArKoZcrkXrgDC7+uA7Ju0/AYbWi9GYi4pZuwcUf18Ks0aG1tArxG/bi/OyVqEnKgkGpRvqhc7g0fz0SdxyFRW9AWXwS4pZvxcUf10HT2oH2ilrc/fkAYn9YjZK4ezCqtcg8egFXFm1C/Pq9sBnNqLibihurduDy/PWQVddDWlWHe1sP4eKPa1F4KR66DgWyjl/EtSWbcWvtLlj0BlTeS8PNNTtxaf56SArKIKttRML2I7g0bx1yz1yDQaFGzqkruLZ0C26t2QWDQo2qxAzEr9+Nywvc395v6X82HV3zFZQaI1LyqhEVHoLM4jpMfG8JHv9wOax2B1RaA6avPILx7yzE1cQCAMCdjFK88o8NmL1BkJfT6k2Yv/Uc3pzxM9rkGgDA7fRS/GXuLpyLzwYAKDUGLN5xAdNWuOf3Kwn5+HTxfpTVCr6xVabGou2x+OX0XQCCPz11IwNTVxxmsnU1rRqsPJWN1DLhHrXVweNKURuOZrrvl0s0ZtyukkFvFe6/2zgejSoT2nUW9ttGmwNKp0Sd67fkOuE+ekSQQIrHm/XgTe57m2TRgxSNAO8k17NbwbVUgVe5eXa4tlrYy9NYHk6jgCkjHpxaIMrj7Tboc1NhyE1h75hqK9Fx5ijgxDh2tRrtF2OhL3XeDec4KBKT0XLSjUUMtQ2o3vgLrE5/ZNcbUXvyAprj7rC6tKRkIWOV2/9rJW1I3bQXUifGcVitKDgfh/R9p9g7zfmluDhvHeM+0suVSNhxBOW3nRiH41By/T5urv6F5ZFW1uLaTz8zjGPW6ZF26ByyT1xmdalKSMfFuWsZjlM2teDW2l2ozxTGlM1sQc6Zq8wfAS4ct5phHK1UhntbDzJM6bDZUHg5Hlc8cFxrSSUuL9zAMI4Li7hwHM9xKItPEvyRE+N0VNcjbtlWVCVksPqnHznPbHT5qLMzl0PtJJ5VNrUgft1u5JwRMI7NZEbO6Ss4//0qgVCRCPUZgi93Sehq2jpw9+cDSNh+WOgzqxUFF2/h9IwlMDvlnpvzS3Fl4UaU3khk7Z+48xiuLtksjCe7HcVx93Dmm5+gcBLatZZW4drSLcg4fJ7ZnLr/NM5+uxSczQ7O4UD57WScm7WCYfiO6nrcWLWD+VyXXz45bRH0MuFuflVCOi7MWcMkouX1zYhftxsXnBLAFoMR2Scv4/SMxWhzEinWpubg0vz1DOOomltxd/N+nJ6xhHFq5Z69hrPfLkPlvTQQERqyCnB18WZcX7GdtdP9bYdxcupCaFo7mF+O/X4Vcs9cEzBPXgnilm3FhblrwNkd0HXIkbTrOE7PWIyWwnKGeS7+uBaJO48zEu6bq3bgzNdLYDUYYVCokLLvFM7NXI7Ku2ng7HZhXbBgA26u3AGRSIS2smrcWrsLp6cvhqatA0aVBmmHzuH87JVMzrf8djKuLN6EK4s2wWG1QVpZi9sb9uDMN0vRXlYNk0aLjCOxuDBnDVL2nWZcT9d++hnnZ6+EzWiCrLYRd38+gHMzl6M+LRdmnR5Zxy/i4rx1uLflIBw2G6oSM3B9+Vacn70SOpkS8vpm3Nt6CLGzV6L0RgIsegNyTl3B5YUbEb92N+xmC2qSs3Bj1Q7E/rAa8tomKBoluL/9MC7MWY2cU1cEnHT2mtD+y7bCZjShLj0PN9fsROwPq9FSVAFVcysSdx7DxR/XIufkFZiUAq9O3LKtiFu2FSa1BvWZ+bi1bhcuzFnj5GpoR/LuE7i0YANS952GRSvwOMQt24q4pVugae1AY04Rbm/Yi0vz1qHyXhpUza1I2XcKVxZvQtKu47AajCi6fBvXV+5A3LKtUDS4SSr/leT7bynlfzhZjSYc/3I+xr35AiZ/8Hv4BQai/0OjMT/rMtIPn8fAiWPh4+eHNxZ9gxHPPwEfXx8AQN+xI/DxgfUoi0+GWCwGxGK8OPMz9BgWgz5jRwAA+o0biTeXfMcIwfwCAvDs1L8hsl9vBIaHAgAGPToBYrEYvoEBAIDA0BA89fkHTMseAIY/9ziIiBHyhffsjsf+9jYMCoEoTSQSYezrz8EvMABiH6F+PYbG4OF3XkNwVAQAwNffH+N//yIjUwOAAQ+PgVVvZHUJiYrA2N89D8ORSkQG+0MkEmHYU5Pg4+fu2m4D+2LMa8+yuvgFBGDkC096MYf3HTsCY159hpEDhnSLFNrO+SwWizHosQnwDwnyKnfkC0+y+voFBWLIlEmMTR8A+owZBotOzwgFQ3t0w9CnJiGsZ3cAAsFhzKTxCI2OYnmiB/XHiOceh3+w8FuB4WEY/PjDgLMMkUiEvmNHMMZyAAjv3QNDpkxCiLMcv6BADJg4FiYPBvuewwZh+LOPsfEQHBWBQY9OQHC3SMFGX1/0GTsCPv7+LE9k/z4Y9vSjCAwT2jswLAQDJo5lDKsisRg9hw/GsKcnszxhPaMx+PGH3e0dFIg+Y0cgtEc3Vv/owQMw9OlH4Rvgz+oy4JFxCI4MF/o+wB+9Rw5hRDsikQiR/Xpj8BMTWXsHhoWi3/hRjJ1W7OuL7kMGYuhTk9mYCusZjZjJDyGib08AgH9wIHqPGsrsEYnFiBrQF0OfmoSAkGBWl/4Pj2Hv+Ab4o+ewQbDqBW1bkUiEyL69MOixCQjtEQ0ACIoIQ99xIwS2VAA+fr6IHtQfQ5+azMZUeK/uGDhpPLoN7CvUJSQYvUcNZW0g9vFBtwF9MOTJR9zjOzoK/SeMZmPBPyiQtbdIJAJEIkT06YlBj01g7R0UEYZ+40YwIiMffz90H9wfQ5+eDL+gQGe7dMfAR8YhenB/oS1Dg9Fn9DAAcLK5+iDKWRdXe4d2F+ri4+fH6tJj2CAMeWoyRM72juzXGzGPuts7JCoCfceNQJiz7/0CA9BjyAAMe3qy8O2LxYjo3QMxk8YjytkugeGh6D1qqADKRCL4+Pmh28C+Qt87x0doj2j0nzCG1TcgNAQ9RwzGkCcnQuQjho9YhKgBfYR26dUdREBIN6EuAaHBICL4BQWix9AYDJ0yCT5+fhD5iBHZtxcGThqPiD49ASIERYajz+ihsBlNEDnnvOhB/TH4iYlsvIT1jEb/CaPhsFhBPI/A8FD0HDEYA9plEIvF8PHzQ9SAvoiZ/BDr19Ae0eg3fiR8/f3A8zwCQ4PRY1gMBk4aB4LAph/VvzcGThqPoMhwgAgh0VHoM3aEML/wBP+gQHQfPAADJo6BSCyCSCTMA/0fHgOTSgPieQRFhqPXyCHQtnWA5zn4BQYgOqYf+j88hvVjeK/u6Dt+FNpKqyASiRAUEY6eI4YIJEscD9/AAHQb2Bf9J4yGb4A/iOcR2j0KvccMh1GtBURAQFgIegyNgaqpVRg/fn6I7Ncb/caPFIhQ3eTbv6X/gVTXIseCrefx9z8+jQVf/gEikQhvPDMBhRdW4WpCAUKCAhASFICdiz7BxSfy8OQE4dt/5clxGNyvB6qbBN8YERaMpdPeRuydHPSMCnO+MxZR4cHwdfqR6MhQzProVaQVCoRgIpEIv3/2YQQF+KN/b+G779czCl+8+yykTjUasViMP77wCEKDAhHgL/jqYX0j8PaTQxASKIzLAF8xnhveHfVOjXkA6BseCDvHI8hPOIvx9xGjR6g/OCfpnEgkQpCvD0QebSESiaBzbgBEBfsJ86Z/EODJcu8fAlGwAxA5z3h8/SGK6u1Vhji6H+DjxhXi8Cj4xYyAOChEePbzR+DgEeBNbv8f0G8gQsYaACeLs29EBMLHPwSfECGPyMcHYWNGwyc0lOUJ6tcH0U8+Ch/n/OIbGozukx4C7yTsFYlE6DZ6OBxmNwN/SK/uGPDEIwjtKfgjH39/9H94rJcaTfTgAYL/d/qj4KgIJ6YRfkfs44M+Y4dDJHa3XmS/3hj61CRhDgIQEBKMAQ+Pgc352yKRCD1HDMGwZx9jTNWh3bth0GMThDkUgv/sM2Y4giLCWLndBvbF0KcnM78WFBGOARPHwt/pn3z8/NBr5FBGzgwIc9vgxyciJDrS2WVB6DtuJKwGJ9GiWIzuTlwhdo7N0O7dEDN5PCL7CX3pFxiA3iOHwNeJcUQiEboN6IuhUx5BYFiIsy5hTj/n62xLP/QYNghDn5rM8kT07YXBj01AWC8BxwWEBqPPmGEwqQWbfXx90S2mH4Y+NQl+AQIuDe3RDQMeGYdIp2/0CwpErxGDvbBUVH8B47jaOzgqAv0fGsXa1jfAn2EckY8YIrEY4b17YNCjDyGiby8AAi7qM2Y4w4I+vr7oNrAfhk55hLV3aI9oDJg4lmGGgJAg9Bo5hJEJin18EOmsS0h0FEQiEYK7RaLfQ6PAOwkofQMD0H1oDIY+NQm+/n4QiQUsEvPoQ4ga4PLlYegzZhgCQp1j2d9PwEVTJgn/E4kQ1lOoS2j3KGf9Q9Br5BBB0UYsgtjXF1ED+mDwExMR2l2YT0Kio9DvodFsc8ovKNBZl8mCLxeLEdG3FwZOHo/IfkK7hESFo+/Y4RD7iMHzvBOLCG3pHxwEiEQI79UdAyaOFcYqEcMiAqO9E4vE9MeQJyay8RzWoxv6TxgNg1INIkJgWAh6Dh+EQY9NgEgs9FFkv96ImfyQMHadvrzv2BEgXtgg8g8OQvchAxHz6EPO+osQ2bcnBjwyDn6BASAiBEdFoPfoYYI/deKX6EH9ETN5PHydYyy8dw/0nzAaakk7OIcDgeFh6DliMDStUvA8wS9QaMuBj4yFn3P9FtqjG/qOc68nAkIFX9533Ejmy6P698GAh8dAJBaDiBASHYk+Y4Y5yRsJgaHB6O7M47I5ok9P9Bs/UiC65AnBTiyiaZGC43j4BwlYpM/oYQw//qvpf+WCPjgyAq/Pn44NU/6EjMOxWFx8E2aNDve2HATP8RjxwpPoMWQg8i/chKK+GX2di3V1qxSN2YWw6PRMusQlkeFiPreZLdDLlWxCBIQTVv/gIDbxEM9D5CNmCxUAgBMIuh9FCOkWCbGPOwgiKDyU7ZwCwuTkmlBcecJ79xA2G1x5IsLYogkQFvlRA/t6levTLRocCc4aECYR16IJEBxV9OABDMACAoh1MdoDgH9wEHoMjWEDy7XodDkLQHAO3Qa4y/X190fPEYOZgxSJRIiO6ecldxYcGYGewwezBb2Pry96jRwC3kNWJ7J/HzZJAsIGSe/Rw5hDEYvF6DliiJe8XHjvHug1YrC7/kGB6Dd+JMsjEonQa/ggphDgqn+fMcOZnJVfQAD6jR8Jm8ntnHsMjWH9DDgXZONHso/fx88P/caPYjaKRCJED+oPq9HEbAwKD8OAiWPZotrH1xf9xo+EvM5jM2RAX/R/aBRbzAaGhmDgI+NgcUrdicVi9Bk7go1TAMJi65FxzPH6BwchZvJ4ZqNYLEafMcNhNRiZjeG9eiDm0YdYXfwCAzHo0QloC65m9e89aijMWh0DNmE9ojH48YlMIsUvIAAxjz4kjHunjT2HD4bVaEJwlDDmQ7pFYuiUSYwZ19ffH4MefQgWvQF+gQGsbe1WGxu7IVERGPr0o8zJ+vj5IWbyQzDrDAiODIdIJEL3wQPAORxsYyYoIhzDnp4Mh8UKsa8vRCIRBk4aD5vJzDaJomP6g54lxowbFB6G4c8+DrNWj4DQEPj4+mLgI+PA2Wzsm+g2sJ+wgeUnlBkYForhzz4Oi86AkOgoiH18MODhseAdHFOqiOrfB6NemgKb0QT/oECIfXww/NnHYDOZEdGnJ8RiMfo9NFpQkXAqJ0T27YVRLz8No1qH4KgI+AcHYfizj8FuscLH3w9isRj9HxoNsVOmTezjg4g+PTHm1Wdh0RkQ3qs7y8PZ7TDIVcLvjBPGvlmrR2BYKPyDAjHm1WdgNZgQNaAP/IMCMfzZx0E8ISgiHGKxGH3HjoBvgD+MKg1Ce3RDeM/uGPPas7CbLfDx84VfoJBHJBLBYbPDPygQfccMh39QICw6PSL69kR4z+4Y+7vn4bDZoZPK4RcYiGHPPAaxjw9Mai1CukUipFskAkKCYDUY0X3wAIT1iMb4N14AccICOyA4GMOeEYC2UaVBZN9e6D1qGAJCQ2AzWSASixDavRvGvfECiAhWgxEh0VGIGtAXfkGBMGv1iBrQF71HDUNgeBgcNjtUTa0IjY7C+DdfgEgsglGhQliv7ug+aAD8ggJh0RsRFdMPvUcORXBkODgHB5EICO0ZjXFvvgCxryBdF967uwC+QoJgM5rgsDvQa8QQBEWGg+cJZo0WYT27o8/oYfB1StdE9OmBoVMmISg8FHaLVWC3LnZvyv6W/vvTqMF98M5Lj+DLpYeQnFeF5CMLkZRbhXPx2Qj098W7L08CAMTezkGbXIOh/XuiX88oVNS3obhaAh/nHGW12VFeJ2zS2Bwc/Px8oTWYYTBZ0S1CmIeJCDqjGcGB7o1gu4NDSJA/xCL34tDXxwfBQQEez2J0j3IvZEUiESLDAuHjsaAM8vdBRLC7XLEIiAj0Y/MwAAT4iGETkUc5gK9HGSKRCFqzgG+iQpxliX0gIo88YjHIL9Br0xwBwYKcnSv5B0IU7IFxxD7wjezhtcj3jewGzgO/+AQFI6B3P3e5YjEC+/YDb3fjIP/u0eBtNo88gQgZNhhiPzeuCBs0EFaVWxEgKDoKUcMGuX/X3x89Rg9j7SISidBt8AD4+LrrFhIVgb5jR7D/+fj6os+Y4SxKDhB8B+dxUBAYFoq+40exhbbYxwd9xgzzkhiN7NsLfcYMZ7/tWvS7TuxdftkTL0b07sk2CAEBvwycOBZGlZbVv9fIIWyzHhD88oCJY9lGu19AAAZMHMsUd0QiEXoOHwyLzsD8Wki3SMRMfgi8Ux7P198fAx4Zxw4tRCIRug8ZCIvegIBQYTwHRwobHS6VHh9fXwx4eIwgbers2+iY/rA9amGLuqDwMAx58hEmyyz4yzEwa/XMv3cb0BdDnpjIogcDQ0Mw5MlHGFYR+/ig30OjYTWY2MZ1VL/eGPrUZGidGzMBIcEYOmUSbCYzfP2FRVy/8aNgt1gR4jyYiejTE8OeeYyx0fsHB2HoU5Ng0ekRFBHGfB9ntzMMHN6rB0Y8/wTrL/+gQAx7ajKsBhPCenQTDpHGDBfk+ZwHYeE9u2PUi1Ngda4PfPz8MGTKJNjMFoT1iIZIJBIWa2IRY7kP7d4No16aArNWh5BukfALCMCQJx+Bw2Zn0ne9RgyB2McHDpsdPn5+CI2OwqiXnoJFb0R47x7w9ffHkCcfcUbvtTmx7mBBxlWjQ2B4KAJDQzD65adhd+IiHz8/DH7iEWEMOA8SegyNEfy/WovQHtEIiYrA6FeegcNmB+f87cGPTxQk8Ixm+AcHIThSwCwWnR6R/XojODICo195GpzDAUW9BD6+vhj02MPw8fODUaVFSHQkwnt2F/ynyYywntEIigjHmFefEfCkWAz/oCAMenQC/AL8YVJrEdGnB7oPGoCA3wfDbrHCbrEiKDwMY159BhCJBEzWLRLRMf2Z/+8W0w/RMf3x0B9eBmezo72iVsjz2rMevrwHeg0fjMCwENiMJoRER6HbwH6Y8MdXQRwPh82OkO5R7GDTpNYism9vxEwaj8CwENjNFhg1OnQb0BcT/viKoDqiUCOsZzcMcH7LFq0Okf16IWbSeARFhMFhtcE/uAyRA/vi4XdeYzKA4T2jMWTKJPgHC7jIteHzr6b/lSH3FoMRBqUa76ybh1d/nIrugwZgwMNj8cK3n0ItaYN/cJAArp95DKqmVqZHGdo9Cga5CkVX7jCtaZNai4ILt5iUlkmtRcXtFJReF0KfOYcD1YmZSN59gu2GdVQ3IONILBqzhRN5l2xUujMUFxDkTu5tPcQWW2atDkm7T7CQaiJC2c1E3Nm4l038Kkkb7mzci5YiQcaL5zhkHruIzKOxrFxJYRlurtrhJft2c7cQcuVy1qU3E3Fn4z6WR90qxc1Vv0DmlDfhOQ5ph84h98xV9k5zfinilm9jmttmnR63N+xl4aJEhMLL8V6h8YoGCa79tIVJrTlsNiTuPMbCxgCgJiUb15ZuYTbq5UrcWLkDkkKnjTyPzGMXkLrfHXInhIlvgtHDxvj1u1n4PxGh6Mptr9A4RaMElxduZA7FYbPh/vYjLFQbAKoSM4QwYKeNug45ri75GbXOUC2e45B24Azubz3E8jTlleDi3LXu8aHRCuHol+JZXXJOX8Vlj2sF0spaXJizhsmx2ExmxK/bjZS9J1m5xdfu4sKc1TA4naaiUYKLP65FeXwyq/+9LQfZ1Q8AqLyfjvOzVzI9WG27DJfmr0fW8YsAhLGavPsELv64jtlYn5mPczOXozYlB4BwleLywg24u3k/a//0w+cR+8NqFlbYUlSOs98tY+FoZq0O1376GRfmrmEhd7lnruLcd8vRlCtcK2ivqMWZb35C0u4TAIQomusrd+DCnDXQy5Rs/JyesZh9A/K6Jpz7bhnilm0FIHxHt9btRuzslWwBXHYrEaemLkTmMcFGVXMrzs1cjtgfVsFuscJhs+Hu5v04+90y1CRnCf2ckI4T/1iAez8fYO10fvZKxP6wGmpJGziHAwk7juDU9MUocPZjbVoujn85j11V0ckUiP1hFc7PXomWwnLwHIfkPSdw8qsFSDskhP815hTh2Oc/4tL89TCptTCqNLj441qc/XYZqhIyhLY9dA7Hv5iHu84w9+aCUiHPvHVQ1DXBpNHi0vz1ODV9MQovxYOIkHn8Io78/QdcX74NDpsNrSWVOPb5XMT+sBqSgjKYdXpcWbQRJ79aiIyjF4QxeOYqDn80G9eXb4OuQ472iloc+/xHnJ+1AjVJWbAYjLj60884/uU83N92mF35OfS3mYhbthWy6gZ01DTg+JfzcebbZSi5ngCbyYzry7fi2GdzkbD9CMxaPYqu3sHBv36Lq0t+hqSgDPL6Zpz4ch5Oz1iC3LNxsFssuLlqB4588j0Sth+BplWKkuv3sf/P3+DKwo2oS8uFolGC41/Ow0lnv1qNRtxauwuH/jYLCduPQFbdgLL4JOz/4GtcmrcOVffSoZK04eRXC3Diy3nIPX0N2nYZbm/YgwN/+Rb3thxEW2kVKu+lYf8HX+PCD6tREncf6pZ2nJy6EMc+m4vcs3FQNbXizub9OPDnb3Bn0z605JeiKjED+96bgfOzVqDidgrktU04NW0RjnzyPXLPXIO8thn3th7EvvdmIH79HjRmFaImOQv73puBczOXoyohE7LqepyavhiHP5qFrBOXIKtpRMKOI9jz7jTcWrMT9Rn5+C39z6amNgVGxPTGJ289hdXfvYewkCD8/rmH8c5Lk9DcrkRQgD9CgwMxedxg5JQ2QOuUD+sVHY6apg4k5wqh2z5iMZqlKpy6ngGzRVhctcrUuHI/H7llgq8xmCy4nV6Ko1dS2e/nlNZjX2wiJFLn/K7W49jVNNxw6tsTEW6mFmPbiduwOTXkJQoDDt2uQmmTsHDleMKdShniy92b0h0GKzKaVTDZnNrePI9mrRkqo3vhZ7Zz0Jrdz0QEhV7YtI50Xssjsx68xX2SThYDSCkBeKeUncMOrqUCvMat08211cJRncPycDo1jJnx4HWCjcQ5oM9KgLE0l71jqq2E/NIppinv0OvRdvYkjNVVrFzZ7btou3CJ5THUNaJm0y+wKYSQe4fZgqq9R9F+zx3KL7mfitz1u9izrlWK5JXboKgUwtE5hwNZ+08h7/gF9k5DVgEuL9zAJGiNKg2ur9yBmqRMVpesE5dw2wM7tZVV4+KPa1nEptVoQvz6Pcg7f53lKbp6B5cXrGeLZkWjBBfnrUNjTjEAIfz83paDSNx5nJXrCvl2SeZq22W4vHAj842CvzmJq84rd4AQpn/++5VsoWpUaYRw9CMCPnRhqYs/rmUSxa0llTg/ewULubfoDbi+YjvindcKXX4g9vtVLMy9o6ZBCLt2Xiu0mQW/fGHOanBOG0uu38fZb5eiwXmtQNnUgvOzVyJxh3DtxGGz4c7m/bgwZzW7rlh5Px2nZyxG0VXh2ommrQMX5qzG1cWbWJ8l/nIU52YuZ5JztWm5ODltEdIOCFcn9XIlLvy4FrE/rBYO5jgOKftO4czXP6HSeZWvKbcYp6YtQrzzeqhRrcXlBRsQ+/0qyGsbWTudmrYIeWfjAAjX9E58tQAX5qwBz/OCj128CednrWByvTlnruLEP+YjaZfQj+0VtTg5dSEuzF0LnUwJq9GEuGVbceabpSiPTwIRoeDiLRz7bC7Dqh01DTg5dSFif1gtHCaaLbixagdOT1+MnNMCHi+Ou4cjf/8B15Zsht1sgaJRglPTFwt1ySwQcNLaXTjx1QIW/l8Wn4Qjn3yPq0s2CxKtkjacmr4YZ75dhoo7KUJ/bNqHY5//iPh1ewRJ4/vpOPTRLFxdtAnt5TVQt0px5uslOD19MfJjb4Cz23Fvy0Ec/XQObm/cC5Nai5rkLBz620xcmrcejTlF0EplOPPtMgGLHIllfXj449m4s3EvlI0tqEvPw6G/zcKFH1ajOiEDerkSZ79bhhNfzkfagTOwGU1I3nMCBz+cifj1e9BeXouG7EIc+tssnJ+9EqXXE2BQqHBu1goc+3QO0g+dg1YqR8q+Uzjw529wa81OSPJL0ZRXgkMffidg19ibMKm1iP1+FY588gMyj16Aor4Z6YfPYd/7X+P6iu2oz8hHc0EpDn34HU5/vUTADJJ2XJizGof+NgtpB8+io6oOGUdjsfdP03Ft6RbUJmejpagcBz+ciVPTFqHsRgIU9RJcmLsGB/7yHVL2nUZ7eQ2yTlzC3nen4eqSzahNyUFLYTkOfTgTJ79agLKbiZDXN+PSvHU48OdvkLznJNpKq/FvSf/yLfz/5vQfEQXcWP0LzYoYRwc/nkWatg5SNrdSXXou1SRnMcIvnufJpNWRus2bqMOk03eRZ3sQ8Vzn9CASmf8XUmGzmmLmxdGJzMZff/m39L8+/do4fCC50T8xdn/tnQd9E79KovgAosXOBIj2B5Abdv7fg0iJOn/DLskRV3LJt3mW0ZmoqDOhkEGl9pb8s9l+lVBQr1CSzaN+DoeDNJ3mHEWTN1mgQa3xkrB0OBwk7UQO2F5Z52WjSavrQg7UXFjmnaeilhHGERGZ9Xqvd3iep+rkLC8bO2rqvcq1GI1U5VSLcOUpjU/yIoKS1zdRY65bvs9mNjNVB1cqu5PiRSikaJBQaXySO4/FQulHznvZWHE/zYt0UNnUQlknLrFnu9VKiXuOe/VJVVImldxIYM+qlna6u+WgO4/NRsl7T1JrmVuKrDolm7EiExGp2zro6tKf2Tiz22yUcuA0lXnUtzYth26s2cmetVIZXVywnhH/Oex2Sjt01ku+ry4jj87OWvYbKd5/Y3pQ2/I8Tx/88AsNenU2zdtylkxmK5XXtVJGYQ2l5FUxcjqe50mh1pNc5U0a1pngjuM4LyI91/86/+aD6vH/Qjqe0Ugx8+KoSKL+v12V39L/QPrv8P//TJ4HfRP/WaJlol/HCA8iN+5CXPwAieXOZIadMcKD5AdNnSSKPeVmiQQCO8/f4vmuUsKeBHhEgo/tLPnXGSMoGiVe7WA1m7u840n8RyT4S8/62SyWLvJ9jTlFXjaqWtq9/L/dZqO69DyvPLXpuWQxugkbNVIZNXr4abvdTiU3E73yNGQVkrKphT1rZQovmT2Hw0G5Z6952diYU0QNHvJ9eoWKcs5cY88cx1HWiYukk7vbtym/lEpuuEn8DCoNJe48xmzkOI6yT18liYeMsaSo3IvEz6jW0M21uxiG5DiOcs9f98IVrU6ZXZZHo6Ubq3eQvL6J5cm/cNPL/7eVVVPs3NVsrJq0Orq5ZidVOJUqXEpU11dt//8vKR4R4bX50zHihSehrJcgvHcPhEZHIf/CLWx95SMYFMJdjowj5/HT8BeQ+MsxAMKO4P4/f41lI1+ESCRynq5ewcKBU1B5TyB7UbdKceAv3+Dwx7MBOE8wj5zHkuHPs5BveV0Tdr/9DyTvEU4jOYcD97Ydwo43PmV1lBSWYevLf4OksAyAsLN7edFGrx3Xirup+PmFv7AQJL1cieP/mI/CK7eZnZnHLuDktIUsj7SqDrv++CXUzlNxu9WKO4eEXejIIOGEvjopE/ven8HyGBQqnJy20H0SzfPIOBqLy4vchCvtFbXY/c5XsDhD7G1mC+KWb0XOaTfBXfntZBz/x3z2rG2X4djnc9FWLpym8hyHpN3HcXuTe4e7Ob8Ue96dyk7ozTo9YuesRtmtRGZj3vnrODd7Bcsjq23EvvdnQCuVMRtvrP4FKR4EN5X30nDgr9961+WLH1Gfmc/q4km4Agg7t7+8+RmLtDCqtTg3azlynJEK5NyhP/rZnC7tIq0STsVtJjOu/vQz4te7yQGLr93Ftlc/Zif0ikYJDv5tJrPRYbMhfv1unP56CctTlZCOzc99wIjotFIZTny1AInO3V9X/Xf+/nOWpyG7ENte/ZiRvxlVGpybtZwR8rnG6rrH32Z371qKK7DrrS+R7SQqtOgNuDR/HRsfRITcc3FYM/kPLJKlo7oe+z74GjdWbmc2xy3finWP/ZHZWHztLjZMeRfl8UnM5sMfz8axz+eyPotfvxvLRr3EyCRd4921w61uleL4P+Zj64sfAhBIce5tO4SlI19Eq3OHviYlG9te/RgX5qwBIJycn/56CZaPfhmczcZOzleOfw1Fl26zdtr5+8+x7z3BRoNSjfPfr8SCAVOglcqdUQnnsHriG4yoqLmgFLvf+QrrH39HiNzRaHFp/josHDgFTbklwtg4eRlrH/sjzs1cDkA4vdn/56+xdORLsOqNsOgNuLpkMxYPehoFl26zsb1hyrvY96dpAITv9+DfZmJBvyegaWkXIhlWbMOSoc8icccRFsmw+bkPsPmZ98HZ7ZDXNeHIpz9gfr8n0JRTLJyYrN2Jn4Y/j0vz1gEQTky2vPQhVk98Aya1FopGCY598SPm93sSJdfuwW614vbGvVg2+iUc/fsPEIlEKL+djO2vfYylI1+CskEinIJPW4gF/Z9E2v4zQpTI1oNYOf417H9vBqx6Iyrvp+OXNz/DTyNeRFNOEdStUpz+egnm938SN1b9As5uR8KOI1g54XXseO0T6GUK1CRnYddbX+KnES+g7GYitFIZzn63DAsHPoXYH1bDbrEgcddxrH7kTWx98UMoGiSoTcvF7ne+wk/DX0D2qSvQyRQ4//1KLBr0NGJnr4JeLpD+rH30Lfz83J8hKShDfWY+9r43HT8New6JvxwVTnPmrsHiwc/g5NSF0EnlSDt4FuufeBubn3kf1UlZaMguxL4PvsaSoc/i/tZDUDa14uK8tVgy9Dmc+HI+lI0tSD9yHhue+hM2PvUeSq7dRVNeCQ789VssHvIs7m0+AHldEy4v3IAlw57Dsc9/RHt5DTKPX8SmZ97HhiffRfYJ9xz6W/qfSweWf47QkCDYbA4EBfojMiwYm47exHvf74Cfrw8sVjtW7LmCIb+bg9QCwYcVVTXj2b+vxscLBR9mszuw4dB19H1xJuRq4dSzsKoZL36+Dj8fE6J7LFY7Vu69gmf+vpr9dkZhLZ75ZDUyioQTY53BjLmbzmDupjPsnevJhXj6k1Xs5F+mNWPukVxczRFOg3kixFd0YMNd9+mN0mTD5bJ2qJ0h9BxPaFAZ0ax2kzRY7BxkThI8QJjjVa4T+iB/RorH6dxX48hmAt9aAXLeqyeOg6OxBFy7+6oI19EIa9Y19syb9NDfOweHTIjsIp6HIScJ2gT3OxZJI1p2rAE5nPU1m9Fy5ADUGWmsbsrkFNRudPtpc2sbimYtgLlViIrj7XZU7TqM2oPuCDdpZj7ufjaLPZsUKtyZtQySFIGokOd55B45j1uLNrB3WksqsfutL2DWClfJLAYjLi1Yj0xnhBsRoeDSLRz+5HuWR17fjP1//hotxYI/slutuLV2J26s8oicu5eG7a99zE6vXVjEheNcvvzk1AUsT0N2Iba+8hHDcUaVBmdnLsO9bYdY/TOOxmLH7/7urn9pFXa99SWLRLPoDbi8cAPDTkSEvNgbWP/kO+yqpKy2Efv//DUjzrVbhBPhPe9OZeWW3UrEhinvoq1MGGcqSRuOfPoDI+Tl7Hbc2bwfax99i+G46qRMbHnxryhy2qjrkOPktIVu3MxxSNx1HMvHvsKiEBqyCrD99U9w1xk5Z1CqcW7Wcmx8+j1mc9qhc1j50OssqklSWIZdf/wSZ7/5SRgbWh0uzV+HpSNfhM1kBhEh+9QVrJn8B2Q5iQrbK2qx74Ovsev3X7B+vvrTz1gY8xTjOCm4eAsbprzLIiBltY049NEsrHrodeF6jfPkfPGQZ1DjJE0ujruHzc99gBNfChhY0SjB0c/mYNHgZ2DR6gXMs2EPfhr+PIsoLL+Tgq0v/w3bX/0EgEAEfOKrBZjf93HIahqECMMtB7Bs9Eu4tVqoS1ViBra//gnWTn4LdosV2nYZTn+9BAv6PYGaxAzhFHznMawY/xpOTV8EQIhk2PmHL/DTiBdgUKihkylwduYyLBwwBTmnrwo4ae9JrJ74Bna99SXrj91v/wOLBz8DaUUtDEo1Yn9YhYUDnsTdnw+w/lj76FvY9vJHsGgNaMorwb73Z2BRzFOoTc6CUS3gpMWDnsalH9cK0Q/HL2L9k+9g/RNvQyuVo6WoHAf+8g0WxTyFgtibMGt1uLxoo+CXpy2CzWxB9qkr2Pj0e1j76FvoqKxDa2kVDv5tJhbFPIWUvSdh1ulxbenPWDL0WRz7fB4MCjVyz8Vh83MfYO2k36M+owDtFbU4/Mn3WBTzFG6u2SlETCzfiqUjXsDBv34LTasUebE3sOXFv2L1w2+g9EYCpJW1OPrZHCyMeRq31uyErk2GG6t/wfLRL2P/+zMgq2lA4eV4bH3lI6yc8Dvknr6KjpoGHPviRywe9DSu/bQFKkk7bq7ZiRVjX8HeP01Dc34piq7ewfbXPsbKh15H+sFzaK+oxfF/zMeiQU/j8sINUEvaEL9hD1aOfw173v4KNUnZ+Lekf3lL4L85PWjXwm610tmZy+jKks1UcS/Na7ep826UWW/oIqUldUo0uZJBqfaS9eA4rksedavUa0fQYbN1lfXoJPNlMRi7SIx5nsq5ftuz/g67nWnBu1LnE0Kr0eS1G3kpX0Ix8+Iorcb9+51lShx2+6/KnVgMRq/dUp7nu9TlQTJqtk67k53fMWm03rueDkcXOZZfs5HjuC7vdJZesVksXuU+sL1VnSTdbLYu0isuOTFW/39C0k3dKvWy0WIweku6cRw7yXMlTXuHt6Sbyfyrki46mcKrb20WCykaJV55pFV1XjbqFSqvcu1WK5M/c+WR1TZ6tZ1RrfGSinPYbNRcUOot6dLQ7NVWJo3WSyrOYbdTY26xl42KRolXuWadnuoz893t5HBQU36JV78pm1tJ4nHKbNYbqDIhnX2PnMNBksIyr11mVUu7l1SMxWCkirupbDy7pEk8y1W3Sqn4+n1mo9Voosr7aazfOI6jlpJKqvY4vda0d1Be7A02Vq0mM1XeT2Pt4JLY8zy91kpllHsujs0fNrOZqhIzWLkuubyMYxeYjTqZgvJibzDZGpvZTNVJmVRwOZ7laa+ooeS9J5m8jF6upPwLN6k2TZCBcUnspR44w6I42itqKGn3cbaT7srjKtdmsVBNSjbd3rSPHDYbG19Je06wE3q9QkX5F29Syv7TROSU5UvNoeurdpBeoWJ5kveepOK4e155rq/czmQha1Jz6PrK7dRSUslk+ZL3nmTlGpRqKrh0i2LnrCaTTk8Om41q03Lp+qodVHorkckZJe87RdeWbvHKc+bbpdRR2+iVJ8XZDq48J6cvIpvFIkj5XY6nM98tpcqEdCbld33VDrr602b2vSTvO0UH/zaTVC3tTJbv7MxllH74vFeeI5/+8NsJ/X9jelDbypRa+nzJAVq26yI1trrnap7nqaRG4vVua4eK1B4SdA4HR3US7xO1hla5l/+3WG3ULvf2Ry0d3r5GZ/CWw+N5njo6yeHJVTrviCAHRzqT92mk1uz9bHNwZPeQreN5vqu0XSdZuxXXyihmXpxXWTzXSYK2k7wcz/PE2ztFT9m8Tzh5h6PLO5zZG2c4TEbvcjmOHJ2iqex6b5zhMJuJs3hLutk645XOGMdmI2sn/2/qJOlq0uq8Jd0cji6yr51xncVg9JKT4ziuywmstkPuZaPN3FXSzVOu1fU7ntjJbrV28f+eJ5xEAn7xxEEOm83rHZdf9rTRpNV5/bbDbu+CgZXNrV64zaw3eGEPzuFg87IrqVraveprMRi98LdLlstTrk/T3kGyWnckqdVk9pJr4ziOWsuqvdpX2yEnSVE5e7aZzVSTks1sdPkxT1yhlyuZ3yNy+zEXduKd8rKe/l+vUFFZfBKz0SUV62pfl0+qTs5ieQxKNRVdvcP60W61Ul16Lquvy1cUXbvrzqPSUNHVO6ztXBKunv5fVtdEWScvMxxnVGuo6NpddiLvklb19P/y+mZKO3yO2WjSaKk47h7DQS6JvbRDZ5mN8oZmSj9ynrWdSauj4uv3WbkOu50ac4ro7taDzEZXHhduM2l1VHLjPvPTLlm++I17GT5UNrVQxtFY1g6CLF8C3Vq3i0lJNuYW0+1N+1hEoStP8r5TQh69gUpvJtClhRvIqNEyWb7bm/ZR6c0EIhIk9jKOXaBry7cK6xenLN/FeWup3YmLm/KFPK76uvKc/nYpWYwmrzzld1OI4zhqyi+hO5v309WfNgt5Wtop8/hFOvr5XFI2tTBZvovz1lLaobNMyu/O5v107IsfiXM43Hk+m0s1Kdleea78tPl/5wn97373O0yYMAEPP/wwXnvtNUgkkv90Gb7+/nht3nSkHzqHfe9Nh0Ghgqq5FXv/NA2HP5qFlqJytyzc9MUovS5IUxmUatxauxP3tx1mZGOV99Jwb8tByOsEMi+DQoX0Q+dQcUe4j0NEqEnJRubRWHayq+uQI+fMNSYfwvM8alKymQQWIOzSFly8xU71ObsdtSnZ7F41INwHLr52l5Gw2S0WVCVkCKyIzt/uqK73kj2yGIwov53M5OWICA3VQt0jneQ5BoWK3ZkChAiC+vQ8dhoMCHeeJAVl7NlmtqDqfjrbgSUitJZUMsIVQNhF9rwPynMc6tLzvEhlVM2tAgmUq1yTGTXJ7t0nIoKksNyLfVYvV6I5310Xzm5HTUq2F4u9vLYRinr3WDHr9N514Xk05RSz02BA2A113TdztW91Yoab3JAIraVVXmz/BoWK3Qt3tV1dWi7re0DYzXXJEQLCrnFtqvtuIc/zaMothsGjvVXNrWhxSuq42qU6MZORAxIRWosroPJob51UjoasAnf9rVbUpeUy9nYA6Kis82pvo1KNmuRsdpLOORxoyimCtl3G3lE0SLz63qLTozopCw7nqT7P88L96Dq3XJK6RYq6tDxG/GMzmVGXlsdIfMhJ/ObZ3jqpHNWJmSDOPb4bs4sYHwGRQFzn4qIAhLFQk5TFThgcNhua80shdRLcAYCivhm1ydmA00aTWovatDw2pjiHA63FFYynQWj/NlQnZrIxZdHp0ZhdxO5G8hyH9vIaNGTkMxs1bR2oSc5mY8pqMKI5rwStzvtOPM+jo6reqx91Ujnq0vOZjXazBS1FFcxGIoKstgnViZksGkYvV6Exu4jxP9gtVrSWVKImKQtwchYoGiSoSc5yy1WqtGjKK2GyQQ6rFe3ltai6n86YelXNbahLz2NEhWaNDi2F5ahLy4VIJAJnt6OjugHViZkwqbUgImicxKGuO10WnQEtxZWoup8Ozu4A73BAVtOImuRsZqNOKkdTbgm7T2nRG9FeVo2qe2mw6A3gOQ6KBgnq0nIZUaFepoSkoBzVScJpk9VoRkdlHaoSMgTmWI6DsrEFDZkFbKwaFCq0FFUI85TdAZvJjI7qetQmZ0EtaQfxPFTNbWjMLmLfjVGlQVtptdAuZgtsZgvkdU2oS8uFvKaB2dycV4K61FyACCa1FtLyGlQnZsKs0cFusUJeL0FDZgHay2tBRNC2y9BSWM7mNrNWD2llHWqSs6FXqOCw2aFsakVjdiFaPMbhb+n/nP4d+AAAenQLx9T3n8emIzfx1x93w2Z3ILesAa9+tRFTlx+GwWSBw8Hhl1N3MHfzWXYfvrpJiuV7LiP2tjCfcxyPs7eysPvMPah1wil4bXMH9scmoqhK+K7sdgfikgpx4Y7bB9Q2d+D0jUx0KIXTYLPFhvi0EmR5kCNWNbbj0r08OJxzh9HqQEqFDC1KYV4gIjSpTChpc8vLWR0cGtUm2Dm3DzPYOJjsbpJZjudh8SCdJSKojVb4ikUICxAIyMhhB9ndDOrEc4BRA5C7XDJqQGa3ryGbGbyi1SMPD0d7I8jq9o0OjRL2jhb2zNusMFWVepVrbmyAXeWODrBrtdBXuH0j73BAk18Ezuqun6lJAmO92x/ZDUbIMt24iIjQUVAGs9JNnGeQyiEtqXDXzWZDXVIWU44BhNNcdbM3xnFJ6gKCX2jILGBktQCgbGxhPDaAgMk8fS4RQVJQ5oVxNG0daPbwuXarFTXJbowj+M9qKBvc492oVKMu3W0j53CgITMfJrV7PMjrmtjJOiBgkerETIZxeJ5Hc16JF8ZRS9rRnFvMnq1GE2qSsxnGEbBIJTqq3T5XK5WjzgPj2C0WNGQWMA4gIoK0so7dfQeE+VrwjULkAme3oymn2AtTyuuavNrbrNGhNiWbKSVxDgckBWVeGEfZ1IrqpCxmo0WnR116PsM4PM+jtbSKyQYDgLZNhurETKZOYDWa0JRbAlltk1f9XVxDAKDrUKA2JRsGhdppsxWSgjIm/0xEkNUI/tNFrmdUalCfWcAwvMNmQ0txBfONRARlg0Tw/07cbFRr0ZRTzNYTnN2O9rJq1CS5+1EtaUddag6z0azVQ5Jfysj2eI5DR1UdqhMymI2aNhkaMguYzLFFb0RLUQVqkrMF+WGOg7y2CTVJWYzoV9ehQFNOEYuQtBlNaC2tQnVChuD/OQ7KBgnq0vKYjQa5Cs15pah3jlWbyYz28hpU3U+HWSsQkCubWlGfkY92ZzSvQamGpLAcVffTQTwPu8UKWbWApXTtMvA8D5WkHQ3ZRawfTWotWkuqUHUvDQ6LFQ6rDbKaBtSmZENeLxHmuZZ2NOUWoy5VwDhmrR7tZTWovJ8Bi1YPh80ORb2E1cXlyyUFZQKXBhGseiOklXWoTsqCQaYEZ7NB2diC+swCSAqFtaW+Q4GWogpUJ2SA53hY9AZ0VDegNjUX6hYpOLsdquY2NOUWozGnCDzPwyBXoq20ClUJ6eDsdliNJshqm1CXng9Vo3vO/FfS//iC/syZMygqKkJhYSHefPNNzJs37z9dBs9xkFbW4sszO/C3vWsQ1iMa3Qb2w9+PbsZDb72M7kMGQiQSYeK7r2Pin15nEhKh0VF45P030W1AH8bWOeTJRxA1sC/8gwUW05DoKPQdN4Kxmgusk4MFZkgnU3hIdBRCukUy4C8WixHWM9qrjp7yboAgzyL29WWTm+t/douVMcACAOdku3Qlh83utZjkbHZYDSbGCs9zHJTOcLqoEIHZ1KI3ei36HFYbjCoNm3SICAa5ymshbtbqYFCq3eU6HNBJ5WzjABA+dk8ZOIveAJ1U7uWUVE2tjHQGEBZoug4Fc3Z2ixVqSZtXuaqmVi8Ge6NKA21bB6sv53BAVtvk5VTVknYvh2nW6qFsamWh5sJk2+i1wNe0dkDbJmObFjaTGbKaRrZ4dOXRy9xgQyeVQ9XUCrtTncBhs6G9vAZmjdupymqboGnx3hSQ1zaxfuM5Dm2l1V4LfHl9M9SSdtZ2Jo0O0so61m+uDRVNa4dXOykaJGzCtugNaC2pYg7HlUctaWNjSC1pR0d1A6x691UKSX4pY40FgNbSaqiaWljbads60F5ey9rOYbOhKbcYakkb68e2smrIaxtZn+g6hNAq14KTczjQmCMs3l1t115Ri46qesaeb1Rp0JxfysAGz/NozC6CsqkVVqObgFJaXsMcjkmjRWN2EVROWRIiQkN2ERR1TQwEyGsb0VpcyZyfRW9AfXoeVM2tLEyvMbsI0so6RryoaJCgOb8USmdIns1kRm1qDpSNLbA45fqackvQVlYDfYec9Ydrg8JutcFusaA2JRuKuiY2PprzStBaXMFsVEva0JBZALWkHVaDCQ6bDTVJWZBW1rHx0ZxfCkl+KVTNbeA5Dpq2DtSl5kLZ2AKzRidseCVlor28lrEttxRVCH3UIoXNZIauQ47qpEzIaxthUKrBORyoSshAS3Els7GlqAINWYVQSdph1uqFjcDETEir6qHvUIDnOFQnZqK1qByaVqmToK8K9Rn5UDa2wKjSwqBUo+JuKtrLa5zSMDyqEjKcILIDVoMJbaVVqEvNhbyuGQaFCkaVBhV3UtBWWgVNS7uTeDQDjTlF0LRIYdYZIK2oRW1yNjqqG6CXKWHSaFEen4yWogpo2jpgt1hRlZiJhswCKBtb2YK6OjET0opa6KRymHV6lN1KQnN+KbTtMlgNRtQkZaE+PQ+KumaY1Fp0VNWj6n462stqoOtQwKjWoexmIppyS6BpkcKiF8B6XWoOZDUNMKo0kFXXo+JOClqLKwV7lGqUXE9AY1YhVE2tbIOsJikLHVX1grTdb+mfSv8OfAAIIe42O4ddi/6Ofcs+g7+fLyaPHYwjq/+B3z09ASFBAfD19cFX77+ApyYOR58ekQCAETG98eYzE9Czm8Cy7eMjxouPjUb3qDAEBgj+dXC/HhjUrwf8nYoqfn6+GDGoNwI8VGR6d49AUKA/xE62+cAAP0SFh7j2IAEA4SFB4DxUTPx8xBABcAm+CMS9gIP3yAQhzN6zHJ68n4mE/3kmjcmOiCA/dtUQxMO7EA7EO7wLsVuZLj0AkNUMsrv9Ntlt4M0GYTMATuI8rRq8xf0OZ9CD02sB50+Rww67Ug7eQ+3HKpPBoXV/Iw69HlaZnBHpEcfB1NwKh9F9rcAklcHs4aftBiP0klZwHv5fVd8Ms8pdrl4qF3CFc7PDbrEIPszgLlfRIPFS6TEoVFA2tTJ1Is7hgLSi1sv/KxtboGmVssWXSaODrLaJEQzzPI/28hovXKFqboNK0sbKtRpN6Ojk/4U51e3/Na1SyOuaGa6wWyxoKa5k/h8QVJvUknaGnXRSOTqq6hkm4+x2SArLoGlzb/B3VNVD2dgCu9nKbG4rq2ZYj+c45o9cNspqGiGraWDYyaTRoaWogtlIRGjOK4GquY3hCnl9s4BxnG1n0RsYrmB58kuhbJCwclVNrWgrrWaM+zaTGY3ZRYLfcNooKSyHvLaRtZ1a0gZJQRkj47NbrahLFxagLkWjlqIKSCtqGa7QtErRlFsMlRPjcHa7QODaIGEYp7W4Am0lVQx36jrkDIvYLVZwDgdqU3Mgq25gbddWWg1JQTmz0aBQCXWRtMOqNwqHYqm5Tv8v2NheXoOmvBIB49gdMKo0qEkWFq1mjQ48z6M2NQetpdXQOm2UVtSiIatQ8P9GM0waLaoTMyCraWBXkOtSc5za623Ow8IGwZc3Cf7TrNOj6l4apJV10ErlICLUpuVBkl8GdYtUWHTXNqIuTTgkMCrVsBiMqLyXxvw/EaEuPQ9NucXMfyrqm1GTlOXE1krYTGZU3ElFa3Elw3H1GfkCFmkW6qJsbEF1YiY6quqhk8phM1tQcTsFksJyaNpksJktqM8sQH1GPhQNEphUGiibWlB1PwPt5bXQtEpht1hQHp+MprwS4XqjwYiGrAKhj5y+XC1pQ+XdVLSWVEEnVcBqMKIsPglNOcWCL9cb0ZhdhNqUHMiq62FQqKFplaL8drJzvCth1upQHp+MhswC53gxoimnGNWJmWgvr4FRqYGmpd2JRcqEdZRGwBn16XmQ1zV5rZn+pfQvn/H/C2nlypX017/+9f/4zn8UhpB/8SZ9EzSSdr39DzKoNKTtkFPqgTOUsv80I2JSNEqoNs07/EWvUHmRQrhCobwIqux2UrW0e/2eQaXxIs7jOK5LWHvn8PQHkXB0JuWyW61diEU6E/R1fuZ53iukeumVUoqZF0dmm/t/DyIa+TUykn+KwOSfIUZ7wPOvkaf8l+ryX7CRczi6tncnApbOzzzPd33nV0jbeJ5/IJFb5zI616/z+Oj8zHFcl3I6X6WwGDqFOPK8V8ggUdexajObvcrleb7L+O585cFhs3Up50FXSryuONjtXd7pTBhj0uq8wv85jusSrqhsbu1yxcEzVNIVeuiZVJK2LlccPK/WuEL3OtfN82qHzWIhaVWdVx5JUbnXWNXJFF5hkK7rCp6ptbTKq+0MSrUXwY3Dbqea1ByvPO2VtV7zkkmjpfqsAvbMORxUeT/Na9zJahu9yjXr9FRxN9Wdh+Oo2oNIlMg5b6a7wxUtBiPlX7xJDmc/8jxPdem5LPyfSOgPT2Iaq8lMuefiyOgM4+R5nuoz86k2zW2TulVKWScusn60mc2Uf/EmddQ2sDyNucVU4HFdQdPeQYm7jpHVSdBjs1io4HI8C6/keZ6aC0pZOB2RELJ5f/thdnXCbrVScdw9yr9wg73TUlxBN9fuZORLermSEncdo7pMoX0dNhuV3kyghJ3HWJ7Wsmq6vHgTazuDUk3Je09SXqxQrsNup7L4JLq8aONvIff/hfTP4AOi/xgjLN15kbo/PYNmrz9JdruDyuta6dDFJDp8KZnMFhtxHEeVDW2UnFtJDc6wfJ7nqbVDRcXV7rB8jhNC8F1EekREJrO1S/h852eL1UZGk/dc3Zlsz1UPV+J5niy2Tj7B8QCisc7+9FcIzN7dlUYvbU78P77juobj/b/Ov/0AsuDORGgPeO5S7q/l4fmu//t3+P8HkLR2fuef8v8PwAO/huM64wHO4ehSThe82OmZ5/lfxZQ2s7nLmHoQRuhc187l/tp1S87h+NXroWbn1SiWh+O6XJXsfMXB6gx79qx/52uQmrYO7ysOFksX/9/52qy2Q+4V/m+3Wrtcg/S8DkAkzOmd1wYdXchra7360ajWePl/zuGgFg9CNtfveOIrs07v5ac5jqP6rAIvGxWNEq/6WgxGavQgkHP5ZU8bVS3tXmSwNrOZKhPSvfI0ZBd6YTBNewfVZbhJ8WwWCxVfv8++E5ePbSt3l6vtkFOJM+ydSBhPxXH3vMZDS0mlF67Qy5WUffoKG6suH+tJDtxaVk2FV72vK6QeOktmJ5kh53BQ+Z0Ur3KlVXWUdvgcazuTRkuph86yq6mcw0EV99Io/+JNlqejpoFub97HvgGTVkfpR2NZO3AcR9VJmZS05wTLI69vpuurtjPSdbPeQJknLlH+hZssT01qDl1bvpXZqGiU0PXVO9h1RYvBSNmnr9D97Yf/LRjh/8qC/sMPP6Q+ffrQ2LFjqa3N+4Patm0bDR06lP117979Pyznzub9tP8v37COK72ZQEtHvciAfFt5De1+5yu6ueYXIhI+musrt9OaR99ieaoSM2jTs+9TxT2BddCk1dH5H1bRiakL2O+U3kqk1ZN+zyY0vVxJJ76az+528DxPOWev0Z53p7I8yqYW2vv+DAbkOYeDEnYeo6tLf2bvSIrK6Zfff84mA6vRRJcXbaSCS7fYO2W3k+n0Nz+xZ61URkc+/YFNVhzH0V9XXaZh891MkK1l1XT4k9ns2Wo00dWfNnvd/SmLT/Kqi6a9g458+oP7jrHDQUl7TlDWycvu+haWedXFrNNT7Nw17L4wz/NUcOkWxW/cy96RNzTToY9ns8nAbrVS/IY97C4tEVF1chbFzlnNnvVyJR37ch7bmOE4jlIPnqWk3ce92s7TRlddXIsgnucp/+JNurJ4E3tHVtdEe/40jTkzm8VCN1b/QpnHL7J3Ku6l0dHP5rjbpa2DDn00i02KnMNBCb8cpeurdrB36rMKaPvrn7AxZVBp6NSMxVR09Q6rS8bRWDr+j/ksT2tpFW156UPmqMx6A134cQ3d3XrQq/7bXvvYXf/aRtr5hy+YjTazmeJWbKMz3y5l75TeSqTVj7zJHLhK0kb7//w1Y/R02Gx0e9M++uXNz7zaf9XDv2MLNG2HnA7//Xu6vGgjszlx1zFaNuZlZmNDdiGte+JtdifKoFTTyemLaN8HM1ifpR0+R/P7P8EcraSonDY9+z7d2byfiJzf2vcrafUjbzKbs09fofn9n2AL1faKGtr6ykd0ctpCIhImwEsL1tOcHo+QzWxmLKGLBj/N+lFW20i/vPkZ/fziX1k7XVu2hb4NHsXmhpIb92nJ8OfZnShlUwvteXcqzR/wJBEJ4/Tm2p30XchoKrudLIyNu6m0dPRLtP8v3xCRsCDd/5dv6JugkWRQqslhs9Gdn/fTzPBxlPDLUda2K8a/xmzUSmV0+JPZNBUx1FxQysbT7MjxrB/r0nNp1cQ36PtuExhQOfblPJomGkQ5Z68R53BQ8t6T9H23CWx8NOYU0drH3qLpvkNJ0Shh/TFNPJjiVmwT+uPQWZrT4xFaOOgpIiJqLiil9VPepamIocr7aWRUa+jMt0tpmngwHfpoljBuj12gub0m0XehY0ivUFFLcQVtevZ9mooYStp9nPXhdJ8hbF7NPn2Ffuz7GE0TDSJJYRm1llXTzy/8haYihs7NXsHG+nTfofR99MNkt1op91wcze//BE1FDOMK2PrKRzQVMbT9d38X+n3hBprhN4y+CRxBsromyr94kxYMnEJTEUM3Vv9CHTUNtP31T2gqYmjx0GfJajTRlSWb6Wv/4TQVMVRxP40Kr9ymhYOeoqmIoUMfzSJZXRP98uZnNBUxNDNsLKkkbXRt2Rb6OkDIk7TnBBXH3aNFQ56hqYihNY++RfKGZtr51hc0FTE03Xco1aXn0fWV2+mbwBE0FTF0dtZyKr2ZQIuHPUdTEUOzI8f/tqD/T6T/Ez4g+ucxAs/z9PGCvfTzUTfA2nvuPj3y/hLGWJ+YU0FTPlpB8WkCY7NEqqRv1xyjvy/ax8o4fi2NJvxpMSnUgm9salPQR/P30I6Tt1m5+2MT6I3pbl9T1dhOf/x2C2UWOTkvbHbafPQmzd96jr2TU9pAr0/fQmaLsOAxWOy08WoZxeW5FwN5zWrameLeQDRa7XS3RkYa5114nudJqjNTi8a9YLM5OFLove/uv7DxPr27y2Mjz2Ikh869icfbrcS1VRHvcJfraK0hR5t7047TyMia68YmvM1KxvQbZO9wb36YKotIm3jdXReVnNoObWP37HmHg2TXLpI6010XXVkZ1e9w+1ObRksVK9eTSeK+u9xyIY7qD7jBtKa6nlKn/8ie7SYzZa7eRpJE92KlNj6J7i9x94la0kanPp5JJrWwkHLY7XR3ywEvtYu69Fw68ukP7FmvUNGJr+ZTU74wPlx+7dqyLeydlpJKAcc5F64uLOLa2ON5nvIv3KRjX7jr6/LlrkWGy5fHb9jD3imLT6Jtr37EnlUt7XTgr98yrOqq/6kZi9k7Nak5tO6Jt9liUSdT0LEvfqTkvSdZ/ZP3naLtr3/C8jTll9DGp99jWNWo1tCZ75ZS7Nw1rP6ZJy7R8rGvMBzXWlZNW176kHLPC31t1hvo4ry1tPudr9w2X7xJi4c+yzahXX75xupfmM3Xlm2hFQ+9xupScuM+/TTiBapKzCAit1929YndaqVb63bRnJ6T2KK/8n4aLR/3KsPjmrYOOvDhd7ThqT+xdrq37RDNjhzPNuxrUnNo1cQ3mI06mYKOfjaH5vaaJGz6OPHv99EPM/6bhuxCWvvYW7Trj18SkRPzTFtI3wSOIK1U5vaxPScxDCwpLKONT79HS0e/RETC4vLszGU03WcI1WXksbb9sc+jDB+2llbRzy/8hWaGjyOz3kBmvYFi566hGX7DKONoLPE8z/zlpmffJyJi/nKaaBBJq+vJajTRpYUb6Gv/4XRp4QaGzRfETKG5vSezu/073viUpiKGSm7cJ6vJTFeX/kxfBwynve9NJyJivu+boJGkae8geUMz7frjlzQVMXR3ywGymc2C7wsaSSvGC/1YeiuRlgx/nqYihhqyBab7PX+aRlMRQyenLWR9+G3wKJod9RDjN1o66kWaihjKPHGJVC3ttP/PX9NUxNDPL/yF4dbvQsfQDL9hJK2qo6rEDFo+9hWaihi6smQzado66ODfZtJUxNCPfR9j38fMsLE0FTFUeiuR4bGpiKF9H8zwwmPfhYwmZXMr3d9+mGZFjBNs3HqQatNyadXDv6OpiKEV418jbYecjn42h6YihqaJB1NNajYl7DxGsyPHMxvrM/Np9SNv0lTE0KyIcaRsaqVjX86jqYihqYih9KOxwvjqNoHZ+L92QU8kfPCbNm2i6dOn/x/f+48kaeI37KFz36+k/Is3vXakOu9EEj34ZLRz+rWT6AfvXv+/IUnz8cEsenz13V9/8bf0vy49aIz9M+Pw1955UJ5fjbR4QHTDr51uuJyjZ/q1yIUHRiGYfv0U4p+KQuhE4Nj5RMFF4uZZN8+TCZ7nuxAi6hUqL5vsVqvXifeDTgsMSrWXvJzdaiVFJ3IjaXW9l40GpboruaHHKbkrj6fMjkGloQ6PUweHzUaNucVeEUqy2kYveTmDSuMlHeew2agmJYv1iYu0x/NEwajWUJXHzr+LfM5VX1ceTzkco1ogn/Pcoa9Ny2WbZy6in5Lr97zy5Jy9xvrNYbdTbXqel8yevL6Z0o/GsmeTRku5568zIiiH3U71mfmUF3vdK8+9bYdYP7ryuIClK0/CzqNeeW5v2sfazqTRUv6FG5Rz5qpXnqtLt/y2oP9Ppn8WHxA9GCOYLTb6fsNJWvrLRUrOqSSHxyl351NznufJaut0UmrrOo/9WpTZPzMP/99KE1fcpi+O5Pz6i7+l/3Xp3+X//5k8/6VIy1/BCA+KQP01jGC3WrsQOHfGCL8WhcDzDyZ99rTxQSTVnSMMTFqdV7mcw/GrUYhmnd4LV7hI0zyTsrnVq63MOr1XOZzD0SVaQCVp8/L/DyI3lBSVe9mokrR5SXtbDEYvEkKO46gxr4QsHmsrVUs7ST2wh8VgpJrUbK88TfmlpG5126RulXpFFFoMRiq5mcBsdBHJeRIrqlulVHrLLR1rNZqo+Po90jkPiTiOo+bCMqrxOKxUt0op+9RlZqOQ5z61OTdzXHlcxH9EwiZQyv5TTLbOajRRyY37zP+7SJRdm0auPEl7TrL2tRpNVHozgbKd/t+V5+banew70bR1UPL+0+xQzmoyU2l8Et3bevB/JymeK4lEInzxxRc4duzYfynvC999ipbCcsR+vwpiHzHMWh2O/2M+vo+agMYcgYCqLj0Pm555H7fW7AQg3B++tmyLl8RYY04R9v5pGiNnspktuLH6F8Qt3cJ+rzYtF4c/ns3u/pp1esQt34qCi7fYO2W3EnFx3lr2rJMpcHnhBkZ0QU6JvLRD59g7HTUNuDB3DZM7cdhsSNx1HDUpbhK5+sx83N9+mD2bNFrcWruTSboREdpaFQh0uO+tKRokuOm02VVuyv7TTHoFECQrMo7GsmejSoNb63bB6rz3RU4Jl8r76V71TdhxhD3bLRYk7T7OiMUAoCY5C/kXbrJnrVSGW+t2MRJCnuOQfeoKGpzSawDQUlSOlP2n2bNZp8fdnw/AoHATrpRcv4+S627SQXldk5c8nt1iQcq+U14EMTUp2cg8dsFdl3YZbqzawe6gcw4Hsk9d8bKxuaAUd7cc8GqXO5v3Q9EoYXUpvHIbuWfd0jzSqjpc/elnNqYsBiMSdx1nEnpEhIq7qV5tp2iU4OqSzTAoXYQrFqQfPofCy/Hsndq0XFzzGIfadhlurtnJiOc4hwM5p68gZa9bzqc5vxTnZi2Hw+q+D3dn836U304W2p/nUXDpFuKWb2V52sqqEfvDKnbPy6TRIuGXo8h0jg8iQsmNBJz+egnjjeioacDlhRsYMaHFYETK/tOIX7+H5am8n47jX/zI7rYpm1q8vhub2YLMYxdwfvZKL5tPTVvEyNPUrVLcXLMTib8cFdrJakXOmas4/PH3TO6xMacIZ75diipnP+o65Li9aR8uLxRkGTm7HfkXbuLAX79jd/wlhWU4//1KZB2/xNrp/vbDOP7Fj4wwpujqHRz++HtGytZaWoWL89bhttNGo1qLpN3Hse+96bAazeB5HqU3E3D0s7koibvHxsaVxZtwfpYgLWTW6pCy/zT2vPMVVE2t4Hke5beTceIf85G2X5C0ktc1IW75Vhz+aBaI42DRG5B++Bz2f/A16tPzQUSoSkjH6RlLcH35NmE8NUhwY9UO7H1nKixaPaxGEzKPX8ShD79DwYWbjNzzzLdLccbZj6rmVsSv24Xdb38FeV0TbGYLck5fwZGPZyN5z0l2H+7c7JU48vc5cFhtULdKcWfTPuz70zTUp+fBbrEg91wcjn46B9dXCDKHDdmFuDB3Dfa9Nx1mjQ7adhnubTmIA3/+BkVXbsNutSL/wk0c/2IeYmevBPE8mvJKcHGeIKeobJBA1yHH/e2HcfCv3yLt4Dk4bDYUXLqFE18txOnpi2E3W9FcUIrLCzbgwAdfozmvBDqZAgm/HMWhj2bh7qb94Ox2FF+7i1PTF+PYp3MEUsDiClxdvAn7//wNKu+mwaBQIXHXcRz5+w+4ueoXWPQGlFy/j9Nf/4Rjn82FukWK1tIqXPvpZxz863covBgPg1KN5L0ncfSzObiyaCPMOj1Kbybg7HfLcPTTuZBW1qGtvAbXl2/DoY9mM8mo39I/n/4VfAAId9bnfvYmTt3IwJYT8RCLRWholeP1qRvR/+VZMJoF4sizt7Lw6F+W4WqiQFolU+kwY9VRfLdOkKQlIly+n4e3vt2KdrkGANCh1OL7DadwIi6dvXP2Vha+Xu2ua3O7Et9vOIVCJ3Eex/E4cjkFO0/fZe+U17djztaLMLvuUds5nEhtQHq1m9+kskOPq6Xt7Nni4FDQqoHB6ubDUZlsUBrdBHIOjofO7L6jznE8NCYbIoN92f/IZgFvct8vJ84BXilxy9YRgVNIwKvcv80b1LBX53jlsZRmgFO762ttroWpxI1fHHotVPGX3OXyPDTpyTBWuYkiTY2NkF51Szs6TCZITpyBVe6+cy5PzkDH7QT2bGxpQ8WOg24b7XZUnrgAhQfGacspRPFxt/83ypVI3rgHVuedaJ7nURB7A5V3Utx5yqqZrBog3PO+v/0wIxYjIpTFJzEZWEC4G35t2RaG4+wWC1IPnPEiyq1NzfHCcZq2DlxfuZ3hOBcWyYu9wd5pyivxkjk2KNW4s3k/I1Z2+fKk3Sfc9S+vwYW5axiOM2t1SPjlKEpvJLjrfyvRy//L65pwedFGZqPVaELqgTNIO3iW5alOysSZb5eyO/QqSRuur9gmEIlB8MuZxy964c76zHycmr6I4TitVIb49buRe+Ya67Pcs9dw9rtlLE9zQSnOzVzOiOcMChXubjnA5GV5jkPh5Xgc/XQOu5vfWlqFC3PXoOxmIgDBLyfuPIaLTklXnudRciMBhz/5nhG5SavqcGXRRqQeEHyuWadHyv7TOOKULHRhtuNf/Ih6J6GdvK4J15b+jOsrtrF2Sj9yHvvfnwGzVs/a6eTUhShwYmBVcyturP4Fp6YvBiBwAGSduIT9H3wNaWWd8556Ls588xMSnfhQ3dKOW+t24cCfvwFnd8BusSDnzFUc/HAmqp0Seg3ZhTg3awWuOKWnte0y3Nm8H7v/+A8YZEo4bDbkX7iJI598j+yTl4W2zS9F7JzVOP7FPIhEIuhkCtzbdgh7/zQNbSVV4Ox2FF65jaOfzWXt3VJcgUvz1uHAn7+B3WwR/OXOY9j//gxU3E0D53CgOO4eTvxjPi7P38D648qijdjzzlfQy5QwqjRI3nMCB/7yLXJOXQHPcSi7lYhT0xfjzIwl4B0OSCtrEbd0C/b+aTray2tg0miRsv80Dn80C4k7joDnOJTfTsapGYtx5JMfYHcS4l5fvhX73/8aNSk5MGt1SDt0Dkf+/gPilm1jfXjm26U49OF3MMiUkNU24uaqHTj4l29RdPk2LHoDMo7G4uhnc3B5wUbYjGZUJaTj3KwVOPzRbMhrmyCvb8attbtw6MOZyDgSC4vegMzjF3H8y3k4N3MZrEYTqpMycf77lTj00WxI8kuhaJDg9vrdOPzxbCTsOAqzRousk5dx4qsFODNjCYwqDWpTc3Bhzmoc+Wg2W3/+q8n311/59yW9Xg+dTod+/foBAM6fP49x48b9l8pqyinGX3etgsNqha+/P3z9/fHx/nV4/KO3MXDSeADA0CmT8FXsLkbu5R8UiDeXfIfG14vYwmTQoxPw7saFCIoIY++88sOXkHswqg97ajKCwkPZO0HhYXhx5mewepCpjH71WUQPHsCew3t2x3Nff8LyiEQiTPzT77zYxnsNH4xnpn7IyPZ8/f3x+Edvg/Ngdx/02MMI792DPQdHRuDJT99HcFQEK9fiH4g+Ie6ujB7UH49++BZ79vX3x6T33/Bqv5jJDyGiby/2HNItEo/97W0vMsCxrz3HmLgBoOewQfD5g/t3/AID8ch7b8AvKJD9b/ATExmBCQCE9+qByX/+g5tA0McH4954nrGCA0CfsSMQ6GwnV/s+8v4bCAgLYXUZ8fwTbEMFAKIHD8CEP77iVZeH3noZvgEBXjZG9uvtrkvvHnjkvd/B118gL/Lx9cWY1571au++Y0fAL9BtT3BUBB5++1WERke56/Lc44zdHQB6DBmIR/70OnsODA3B+Ddf8GrLQY9NQESfnuydbgP64uF3X0NAaDCr/+hXnvFi9h/w8BhWVwAI69Ud43//IivHx9cXI55/kjlMAOg9aigm/ul38HESNAV3i8TY159jJI1isRhDn5qMCI8x1WPoQEx4+1U2poIiwjH6lacZYY9IJMLgxybAx9cHRASRSIRuA/ti3JsvottAgXAyICQYI55/gmnOikQiDHh4DGwmMyOcjOjTE2NeexYBIS6bAzD0qckIcbat0P7DMeGPrzCSyfCe0Rj18lOsLr7+/hj8+ERmPwD0GjEY4998AdGDhO8vJDoKI194khHR+fj5IWbyeNjNFgSGhwIAug8ZiLGvPYuAUGGMBUWGY9jTjyIwLAREBLGPDwY8PAYWvRFR/fsAEL6r0S8/xTaEgsJDMfiJieA5Hn6BARCLxeg3fhTGv/kiug8R6hLZrzdGPP8EujvnhoCwUAx+bAIcFitCoqMgFovRd9xIjP3d8/APFvoovHcPDH/mMfgHB0EkFsM/JBgDJ42H1WBC9KD+EIlE6D1qGEa9/BQjtgzv1R1Dn5oM4nn4hwTDLygQAyaOhVmrZyShPYcNwsgXnkRkv94gIoT2iMbgJybCbrEirEc3+Ab4o99DozFWpYVfYABEIhF6DB2I4c8+Bl9/P/j4+SGkWyRiHn0IVqNQF9+AAPQdNxKjX32WEQxFx/TD0Kcmg7M74B8SjOCocAycNA4WvQHdBw+Ar78/+owZjpEvPYWwntEQiUSIGtAHQ6ZMgsNqQ0i3CARFhGHgxLEwa3QQ+/rCx88PvUcNw8gXnoCPny98A/wR1b8PBj8xETazBZF9eyEoIgz9HxoFo1INTWsHxL6+6Dl8EIY98yg4Bwf/4CCE9+qOmEcnwGIwodvAvggIC0G/8SNhkCsRHBUOv8BA9BgWg2FPT4bDZkdQRBgi+vREzOSHYNYZQByHwLAQ9B07AqNenAKxjw/8gwLRY2gMhjz5COwWK4KjIhDeMxr9Hx4Do1oLeW0jUOsmt/otPTj9O/GBw8GhvK4VZzZOR//ewhgb3K8Hbuz+Aan5NQgJEubmP7/+OB4aMQDdI4V5oWe3cGye81dUNgoLWZFIhLdfnISBvaPRK1qYH3tFR2Dx1LegM1rYO++/+ijGDuvHfn9gn2jM/uR1hIcIc5+PjxgfvvkkWjrcc/WYIX0w9d2nEeic4wP8fPD25P6w2N1EeSN6hiIq2O0DAn19MLJHKPx9xey3I4P84ODcBHe+PmIE+7v9tMHKgScgyqmCAwDwC4DIiTsAQOTjC4T3BMTucsVRfQDO7Y9EIZHw6TfCK4//0Ie8yvHvNwhcRDd3XcIiEDb5KUAsvCMSixE2cTLI7i43aOBAiAPdfts3OBg9X30JvmGh7H/dHp0Iu8btc4P79UH/N19mzz5+foj53YsQid0Ew70mjEFwDzdZcXD3bhj77uvwdeIVsViMkS8/DbsH6XCvkUMg9nXbExgWigl/fMULbw2dMskL40TH9MMj773BcJxfYCDG/u55iH3c52UDJo5lZQDCHP/wO68hKFzAPT6+vhj10hRGBgsIvtAzhXSLxPg3X2D+UiwWY/gzj3lhyh5DB2Liu68x7BEYHoYxrz3LfKVIJMKgxyciKDLc3bYD+2LCWy8jtLvQb/7BQRj10lOMDM7ly3kHB5FzfET06Ylxb7yA0B5CHr+AAAx/9jF0HzKQldtnzHA8/M5rCHT2Y1iPaIx+9RlWFx8/PwyZMgkBHv3cc/hgPPTWywybBkdFYNSLUxhpmNjHB4Meexicg2PYqPvgARj3xgsI79UdABAUEYbhzz7GsIlYLMbAiWNhM5oQ0i3SaXM/r7oEhIZg6JRJ8AvwZzb3Gz8S4//wMqJjhO86om8vjHxxins9ERyEwY9PBGezIyAkGCKRCH3GDBfq4sRXYT2jMfzZxxje8gsKRMzk8bAaTQjv1Z2Rbo9+9RnWtqE9umHYM4/B198fPr4CmfbAR8bBojei57BBzn6OwaiXprBxGBIdicFPTITDakNgeCh8/PzQ76FRGKd+geHF6EH9MeL5JxDavRuICMGR4Rj82ATYzRZE9O0Fsa8v+o4dgbGvPcsOp6IG9MWwZx6FSCyCb4A//AL8mS/vOXwQxD4+6DNmOEa9/DQ0LcKcGdW/N4ZOmQTOZkdgeBgCw0IYFgnrGQ2RWIyeI4ZgxPNPIDA8FGIfH4T37oFBjz8Mm9mC8N49EBAagv4TRsOk1oKz2SH28UHP4YMx4rnHIRKJ4BsYgKCIMAx67GFYjWZED+oP/5BgwZcrnoairknAL8NiMOyZR8E7HAgIC0FYj24YOGk8zDoDQqMj4RcUKGCRF6cgIDQEfgH+iB48AEOmPAKH1YqQ6EiEdo/CgIfHwKTWwmowwj84CH1GD8Pw5x4HEcEvMADdBw8Q/L+z/qHdo9BvwhgYVVq0l9fAPzgIvUcNxfBnHwPvcMA/KBBRA/oIWMpgFL4Bt/DEfzn9jy/o33nnHZjNZmGSGDAAJ06c+PWMD0jBURHYOOVddB8ag9n3T0EsFuP+9sPQy5SIHtQf0TH90VZWjbr0PPQYMhC9Rw0TpOPScqFrl2Hw4xOFXaoOOeS1jeg9ehgQHcUkFmwejKo2kxlmnQG8wwGxvz+ICBadgQ16QNhtdLFuuhLvcLAdTQCMQd6ViIh9xK7kWvh6PrsmHVfy8fN+1prtGNU90CuPv8ciGwB8AwK8GfbFYvgG+Hu94x8c5MW47+ME8Z7lBjoXQJ55POvs4+fHJkWWJ6xrHk+Wex9f3y7lBoaFeJXrFxQIP4v7FEIsFiPYwykBwkLU00a/wAC2YHbVJbhbpFebB4WHejFM+vr7IzgqvEsesUcfBIaFst1hl80h3bt51Te0ezevxXlgWChbTAKCYwrr2Z2BACFPlJckjX9wkNdiVywWI6JPT6/+D+0eBbuHvI9r0eKyUSwWI6JvLyZJBwhqD55qBX6BgYjs24v1tUgkQmS/3uw0GxAWyS4HBAgOvNuAPmwMiUQiRPXvwxbegPCNRvTuwcr19fdH9KD+jGlWJBIhsn9vFqUACBtWUf17M0Di4+eHHkMGssW58Du9oWhw2xgUEY5uMf3h5wTpPr6+6D5koNcYi+rfB2G9urMNn6DwMHQfGsPAnI+vL3oMi4FWKmc2RvbvI9TF+S0Fhoag54jBTFpQ7OODXiOGQFbTyPoksl9vRA/qzzYKAkND0HvUUMZMLHY6s47qBvaNRvTp6VXfgJBg9BkzHCpJG0RiseD0Rw6BvK6JbcyE9+6BXiOGQOmUO/EPDkLfcSMgrayDX4A/xGIxeo0YDGWDBEHOcRfRpyf6jBkOs1b//7H33XF2FeX7z92eTW8kQOgIiIIogr2gYKOpoKCCSBcEKQIh1NBCeu+9l01PdpPN9mzvvfd29/beTp/fH+feOWfuXQw/FPWrmc8nf5zNvHPnnZkz73tm3vd56B5x8Q3XwdLRi6TUMVTGOWikiMcTZkzHRV++FvbeQcQnJiA+IQGzvnI9bN0DSA6/ozOuuUJFYA4v/wkzpuPiG6+jhiwxJQWX3HQ97L2DSJk4nsp4TFb4rHYY4uIw4YJpuPSrX4KlvQfJ48chMSUFs266Ho7+YfCBIB0Dn9UOS0cvEpKTkDw2FZd+7cuwdvZizMTxSExOxiVf+zKcQybV+TQYcME1V8Jvd2GkuRNJY8dg3LQpuOzrN8DWM4CxUyYhMTkZl37ty3AbzXANm5GQlIgZ11yJgMMNU2s3xkwYh3FTJ+OyW25UEWy9PiQkJeHSr30ZHpMVptYuJI9NxZRLL1aZKjp6kTp5IsZNm4IrvvlVuIZGVMRmjXXpfPmE8s/0DxIS4uEP8rjn+eW4/ye3YOv7j8Pi8GLN/lzIioJbb7gSKcmJKKrpQEuPEd/92jWYPmUCPL4gKpp6aUQZAPQZbRi2uHDdFRcidUwyBFHCoNlJP8QBwO0Lwh/Q9htFUeAPchg7RrOFIU6ApPMBCCFhxHpC9xyFAKwHAMSN4hOARFWKEtKLuMO39ZN0BwOjCsXFsX+LiwMUzVYaDAYggW3DEPWMuHgYElm/Ii6Z9UXiEpOY8TXExSF+TCpTJ35sKmOn45KTmI9+g8GApIms/U8cmwpFZ3PjEhORNHYsIzNm0kTGTiePS2Vo7OITEmL8irFRPkPS2FQk6w4B4uLj6YG/XkZvf5JSxzAf0RFmJIPuo3/slEkgOkaDxJQUjJumtWswGDB+xnRmblMnT2QuXRKTk9U6uoOZiRdeQFluACB10gT6YQuoNnbiRTOoDTMYDJgwczrj36ZMGI/xOvsfn5CASbNmMmM58cILmAOJMRPGM/5KXHw8plx6McPANPHCCxg/I2XcWEyeNZP6FXHx8Zh6+SyG6m7CzOmYOHM6PUhKHptKD7ojYzv1iksYFqfxM6ZhwszptN3IIWzED4qLi8O0Ky+Fa9hE2xl/wTRMueRCav+TxqSE7X0fHadpV14CS2cv1XHctCmYesUs5nBnxrVX0kMA9ZD8Mli7B2i746dPxQVXX06ZnhKTkzHzuqvg6BuCIT4+/DuXwt47iKTwZci4qZMx49qr6HpJSErCRV/6AiztPdph/JWXwjlgpAcfY6dMwkVfugZ+m1P9KE5KwoVfukb1RcJ+fGQMIuw/YydPxMU3XAdrVz891L/oy9fC1jNIffSpl8/CjGuugCwI4fU1EbO+8kWY2rqRPHaMerhww3Vw9A8jITlJ/Z0rLoHPaod72ARDfDxSJ03EJTddD0tHL5LHpSI+IQEX33AdnIMjlP1n6uWzcNGXr4WpTdVxzITxqv3v6sOYiePDMtfCNawyCBkMBky9bBZm3fhFmFq6kDxuLMZMnIDLvn6D6s8kJaoyN14Hj8lK/zb1slnUF0mZMB5jJozH5bd+Bc5BIzwjVsTFx+PiG6+D12KHqaUTyWNTMfHCC3DpzTfA0tmH1MkTkRK+uHENjcBvdyI+KQmzbryOUtelTBiHqZfNwuW33gR77xBz+PePlH9pyP1FF12EyspKNDU1obGxERkZGbj66qs/W1tfugZ/Sd+CG+/6EVLGjUVS6hh85/EHwHn99EWZcc0VKjdxOJQ4PjERSalj0K3j046Lj0d/pcbTTRQF5vYe9JRU099yDZvQeCKbfqyIHI+27GLK1QyoNBiNJ7RwuqDbg5qDpygFCiEEnQVl6C7W2nUbzajYdYTSqCmyjPqjZygfNQAYm9rReFJrlw8EUbbjMKX+kGQFPk5CvFc7vfaYrCjboYWaKbKM2oMZ1PkHVAqO1syz9JnzB1Cy5QBjhFqzijBcr3GnOgeNTKiZLIqo2H2UoXnpq6hDR34ZfQ443SjauI/haK0/eobhcTW3d6NWF2omBEMo2ZLGbPxt2UUM77xr2ITicIgyoIasle88zGz8feW1aNaF6fsdLpxds5PqqCgKqg+kM5zsxqZ2lOvGjvMHULhuN6UqIYSgMT0X7blamL6tZwB5y7fqqPnU8H89d2p7bglq0jK0/hvNyF22hW70siShdNtBdOvWXV95LQp14XR+uxO5y7Zo3OmKgsq9x9F0MpfWGaxrRvbiTVTHkMeLvBVbaZgeIQS1h06hdJsWBmxq68aZBespBQofCCJvxTa0hUMRCSFoPJmD7MWbqI6RMCRTOMVB5DgUrNlJw+kAdc7OLNxAP9hdwyZkzltL+WxlUUTRhr04u0YLVe0qrMDpeWtgC/PDesxqmkFD+N2SJQklWw4ge9EGeqjSW16LUx+spJysfrsTmfPWUB0VRUHZjsPIXrSRHgwM1jYjfe5ytGYXA1DD9DI/XoucJaqOhBBU7jmGTF2Kg7GpHSffXorqA+nq2Hp9OLNgPbIXb6I87jVp6Tj1wUqqo7m9GyfeXkLnkQ8EkbVwPc4sWA9bz4D6Phw7g/R3l9H9w9rdj+NvLkL2oo2QBAFCMITsxZuQOW8t1bEpPRfH31pM02bsfUM4/sYi5CzeCI/JCpHjkLtsCzI+WIX23BIAalrQsTkLkbdCDf10Dhpx/M1FyFq4Aeb2HkiCgNwV25A+V0uLaMspxtHZ85G7bCs4XwAuoxnH5ixA5rw1GKhqhCyKKFi9AyffXoKy7WpfOgrKcPiVechdtgXuYRM8JiuOvbEIpz5crfLZShLOrt2F428sROG6PVDCdD8HX/4A2Ys3wtzeA6/FhuNvLkb6eyvQeDIXiiyjcP0eHJ09H0Ub9iLo8qC3rAZpL76HMwvWY6iuBT6bA8ffXIT0d5eh+kA6FFlG8aZ9OPzqPBRt2Av3sFkNVXzhPWTOW4Pe0hr4HS4cf2sxTry1BDUH0uk+ePiVj3B27S5YuwcwUN2IA3+di1MfrER7bikCTjeOv7UYx+YsRE1aBrxWO0q3HcTBF99HwaodMLV2YbC2GQeef1ddY2cKcb6cu/wz/QMAuOe2r2L1Gw/jrh/chLi4OFw4fRL+cOe34HT7kZSoOtxfufZSmO0eeP3qh8j4sSngBZGGygNqyHpBVRv48IG9KMmobelHa49mazr6zDhdrF2xONx+ZBQ2wGRX93dCCAprOlBSq/kMgxY3DuU1QpTUj1tJVpDfakGvTTtgHnKHUDes2XZRVtDtCIDXHQz4OImG4AMqD31Q9+wMhD/oU3Qf35IAwmsfPESRQdwWlqbObQHxazfRSsgHabCVkRG6G6AEdP0zDYLv1cLe5VAQ3tI82i4hBN66SnDDGqc8N2KE86wWTq8IAswnMyDqqOyclbVwVdVpMlY7endq6YuKLKP3SAa8/dq82Rrb0JOh8528PtRs3gdRl1bYciIbwzq+cktXH0p1aZFCiEPRxn0Mj3t7bgnzTruMZuSt3KbxrUsSyncconYDAHrLalGl8538difyVmyjH06KoqBq3wl0FWqht0P1LchftYM+h7w+FKzaTm2jmhZ5Bg3Hsmgdc0cPcpZsorRvQjCEs2t2MimOzafyaTg9oKb/ZS/aSG9YJUFA0YY9aNH5hx35ZchevJH6qh6TFVkLN2A4HBovSxJKt6ahcvdRKtNTWoMzC9bDG/5g99udyFq4noaNK4qC8p1HqD0CVLt8et5aWDvVlLug24OsRRupPSKEoGrvcZxZsJ7qaGzuwKkPVqKvQl0fnM+PnCWbUBIOpyeEoO5IJrIWbqCH8Wq49go0h8P0hWAIOUs3I2vhBiiKQn2e0/PW0PB/W+8g0ucuoyHsIschb8U2ZC/aSG/KW7MKkfHeCnSFQ6idg0akv7uMzqMkCMhfvQNn5q+DNeznt+eV4sQ7S1F/VE23dI9YcPLdZchatAFCMARZFHF27S6c/mgN1bGrqBLH31xE59FrsVEZ55AJiiyjaONeZLy/Ei3htdpbXoujry9A9qKNKpe6zYGT7y7DmfnrYGxqhyLLKNlygNpPQE1nPPLax8hZsgkBpxsBpxvpc5fj9Eer0V1SE57Dwzj+1mIUbVTTZgfrmnH41XnIWbxJpZRze5D+3nK1L5lnQQhBxe6jOPr6AuSv2gGJF2BsasfhVz5C1oL1GGnuRMjrw6kPViJj7nLUHjwFQgiq95/Akdc+RsHqHfDbnDRVNHPeWvRV1IPz+XHqw9U48dYSlG07qPpjBzNw6G8fIn/Vdjj6hmBu78bBlz+kvggfCCJz3hocf2MRKnYdBecLoO5IJg6+9AFyl2+Fua0bls5eHHzpA6TPXYHmU/kQgiFkfrwWR19fgIpdR+ExW1F/7AzS/joXOUs2YaiuBdbufhx86QOcfGcZmtLzEHJ7kDl/HQ6/+jHKdx6Bc3AEjSdzcOD5d5G1cD36KrT38x8q/3AW/udcPgkooPpgBtn8+7+GKYyCROR5Yu0ZIJauPgbEYjSwrNEAbv5TwGv+f4vNx5HLZqeTBafbzl35fDlfPufyrwLo+cxUiOcC6BmNsugc9EOSIMT8djSVUDRgjySKMUA/wSjwnZDXx7QrS1JMHb/TFSPD635blmUKIBMpbhNL+cP5A0w7iqIQxwAL4ucYNFJKt4g+0ZR/I1GUf86hEQYcSAiFiLGlg5Hpr25gdHSNmImlRwPxE3meAdJTFIX0lNUwe7zHbKU0MIRo9Df60ltZz9AYeq120pKlge1Iokiq004yOvZXN5Leilr67LM7SOXe4/RZliRSufc4cZs0SqWB2mbK/EAIIX6Hk+Su3H4eFO9zLJ8EnDt/czp55oPtZP/pcqIoCvEFQqRnyEK6BswMCJ4kyQwlHSGj07P+X/UR8tot5LLZ6eRUYyxjwPlyvvyry+cF0Hcuf2C0v53LZyDk3D6CLEmfC/AvHwgyOimKwtD5ERJLJSiEQoz9VxQlxkfw2hwxwL96gF5FUWJA/DwWG6OTJAgM4B0hKouUvvjsTuJzsJR/EWDaSDE2dzDj6Xe6YkD8+msaGZnh5namvwG3hwzWtWgyskza80oYHY2tncSq8yuCXh9D3yfLMmlMz2XGztTeTfoq6ulzyOdngHQVRSGN6bmMH2Tu7CWNOhBfLhAkRZv20XWmKAppOp1P+irraB1Ldz8p2Zb2fxsU7x8tN9//C0y/6jLUHjyFpFQ1rKOnpBqLv3s/3OGbRktnL5b/+PfI/HgtAPVEsHDDHnx4o5bvbOsdxJq7HkPrGfU0Ur0J2o29z75F65g7erD6zkcRiNymiiKyFm9E6TbtJHewthl7np5Dn/lAEMfeWIjhBu1EuzW7iAFc89kc2PeXtymYCiEE5buOoCWzgNaxdPXh1Eer6bPI88j8eA1c4dNUd1A9ffe2a6fBfocLJ95eQp8JIajYc4ye7kXaLVi7S2uX43Dqw1U0bwoAOvJLmegAr9WOzPlr6bOiKCjevB/mdu0merixDaU6ECjOH8CJd5bSEDsSBpXryNduuB0DwwwQjSQIyFq0gckN6yqqRNU+7YTbZ3Pg+FuLY/oSAUQEVLC93BVbtb74/Dj82sc0/JkQgtrDpxkgughAjH5cMj5YCXOHFlHQmlWIAt2tsnvEgj1/foPeXsuShNwVW9GqA9vpKa1h+ut3uLDn6TnwWu20/yVb05iT8+GGVux8/DX6HPL6cPDlD+hpOyEE1QdO4uRcDTjP3NGDdb96CiKn3tALwRBOvL2EAfFrTM9l2rX3D2HD/c/AEg4lE3kep+etwZkF62id9twSBkzSPWLBtodfomtVliTkLNuMfbr3prukGgu//WsaSuazObDrydcpiI8iyyjcsAerfv4IlRmobsSSHz6AgWr1tivg8mDfc+/g8Csf0XEq23EIH930C0jhEK/hxjas+MnDNDog5PXh0CsfYcP9z9Bxqtp/AnOv+zGN1jG3d2PN3Y9TwMzI+zrv5ruoTN3RTHxww0/REb5RsHb3Y8N9f8auJ15XxzYMsvnmFd+j0SRNGXn46Ku/QMmWNDq2mx98Dst//HtmbOfM+iYs4SiV1qxCfHzLPTgRXh+uYRO2PfwS5n7x9nAqj7rfvHHZd2hUTUd+KRZ++9fY+ocXAag3JjsfexWvX/xN+G1OdQ0u34K3rvgeijbsVeejuAqLv/9bLP7ub2i60e6n5uC1GV+HsVE9oS9YsxNvX/V9nHhb7UtveS2W/fj3+OCGn4L3B+G3O7H32bfw2oyvoyXzLL0JePfaH2Hnn16hc7jiJw/jzcu/C6/ZhoDTjf3Pv4vXZt6C0q0H1bW+5QDeu/52rP75oyCyjMHaZqz6+SN445Jvw9jQhqDbg4Mvf4DXZt6C0/PW0Hn/4IafYtltv0PA6cZwQyvW3PUYXp/1LbRlFyHk8eLwq/Pw2oW34sBf36M3AR/c+DMsuPVeuIZMMDZ3YO29T+D1i7+Jqr0nEPL6cPT1+Xj94m9i95NzwHn9qNp3HB999Rf4+Ot3w9jYgZHWLqz/9dN4/aJvIm/lNnD+AI69uQivX/wNbPvjy/CarahOS8e8m+/CvK/dic6Ccpjbu7Hh/mcw+6JvIEMHQHW+/GuKwWDAy3/8KSwOL+ra1HzKpMQE7M0oxx1PLqRh7IXVHfjK/W/hTKl6SxsM8Xhz5SE8+Kq295XVd+Nbf3gf5vBteyDE440VB7FqbzatU1jdgQdf1Wyj2xfEi/P3oLJJfccJIThZUIePNp6gdUwOH55behKcoNp/RSE4VjOM/DYNb8Hk5XC0SQOmkxWCJpMXPt0NvI+TYPdrKVWKQhhQPFf4hn5iipbeRSQBil9LdSKKAsU+CKLLmVc8Vih2DUuI8EGIbVr0HSEK+PYayA7t9lq0jSBQW6y1IfBwnj5EQfEAwFdfDV+jFm0n2G0wHdSi7YgkwZh2EJxJ09vd0IyR41qEm+D2oH3BKl1fCPoOpcNaqfk4rs4e1K/ZrvUtGELBe8vA6bB4Ok7no+mIBuLrGhpB+tuanZZFETlLN8PY1E7/1l1cxQDc+u1O7HvuHerHRXyRplNa1MFwQytj/yO2PGKPCCGoTktH0ca9tI6lsxe7npit6RzicPLdpQxoctOpfAY4zzloxOYHn6N+XMSXqtDdnHcUlGHnY6/SZ6/Fhu1/+huM4YiCiB3Q+519FXVY9fNH6A293+HC3mfeRMOJbKpzydY07H5K84GHG1qx/PY/UH88onNe2CeL2OWVP/0jlTG3d2P1nY9SQMGIXU578T0qU388C/Nuvov6cbbeQaz/9dMUfFTkOGS8vwLr7n2SttuSWYAPb/o5Bdt1Dhqx+XfP42R47CRBwJkF6/DhTb+gvmp7Xik+vvVeCijoHrFg+yMvY9tDLwKAZmOv/D71cbqLq7Dou/fTG3mv1Y5dT76Oxd/9jTa2a3fhrSu+RyND+yrrsfS2B3Hwpfe1sX32LbxzzW0QgirYbtGmfXj76h/QW/zB2mYsv+MhrP/V0wDUSIa0F9/DazNvgcdoASEEZTsOYe51P0bOEtW3Hm5sw6pf/AnzvnYXnY9Dr3yE2TNvQV9ZLQXufv/LP8GBv6rjPdLahbX3PoF3rv4hgm4vOH8AR+cswGsX3oraQ6fpuv3gKz/Dhl+rfTF39GD9r5/G7AtvhaNPTZk78fYSvH7xN5G3Yhv1rebdfBeWfP+3kAUR1u5+bPzNs5g981b0lddCCHFIf285Xp/1TRydvQAA0HgyBx/fei/mffUu+G1O2HoHsfl3z2P2zFtQf+wM/YZ549JvY/sjr8BgMKD5dD4WfOtXeP/6O2DrGYS9fwhbH3oRr834Ooo27KXfU29e/l1sfvB5cB4fWs6cxcLv3Ie51/0YfZX1cA6NYPsjL2P2zFtw+qM16lpZuB5vXvFdrL37cfgsdrTlFGPx93+Ld6+5Dc2nCuAaNmHnY6/itRlfx9HZ88H7A8hesglvX/V9rP75n2DrGUR7XimW/PABvPuFH6Jyj/Zt8w+Vf/hI4HMun3Rq0VtRR/qqGmJOiaLpIhRFoZyckRJ9yiXLcsyNWgzVnSjGnOaNdlIXXc5Fh/dpogX+3glmVZ+DXDY7nRyoHPjUMv9Inc/rNPU/qS+f6WR3tBvjc9wGj3pjHHUb/JkpXaIo3WJujKPoHUeldIl6T0JeXyylS1Qdv9MdI6PXQZakmDrRNHAR7lW9jMdsZeq4jGZGR84foHz3hKjzEeH4jRT3iIXRmw8EiXNohJExtXczOrpNFqZdPhhiTpllWSbGlk5mTjxmK3HoKOj4YIhy/BKijq2xpZMZB4/FRunaCFFP2rtLqpmTXVNbF3Ma7LXaGRoYgeNIZ2EFjUiKyOhpYHw2B2nNLqI6RmQi1GuKohBTezfpLqlmZOqPZ9F5FDiOdBVVUto6RVGIuaOHNGbkaTJ2J6k7mkn3Y5HnSVdxFW03IlOxR6OXichEqHgiMg0nsjWZzl5SvHk/nUe/w0XqjmaS3vJaKtNdUk1Kth2kMpauPlK4cS8du4hMpN0IXV720s1EFAT6O4Ub99Kb/4hM8eb9jMypj1YTX/jGI/I7jenqCb3fqdLynfpo1fkb+s+xfNINfU5ZM2noGCBuLxuhF+GTjxRBEIk/isrOF2D3yxAXG4XD8ezeHE19pygK5buPFD19HiGEyPJoVGBRz/+gbdxa3Esum51OWozuvyvz/9vuP7PO/7W+fBpa488tYuwctG+SKMa0G+0jRPsDsiTF+BXRPkL0jbEsyzHRr9E3xnwwxLQry3IMVWw0DZwQCjH2X1EUhgaWENUm6cdB4DjG91cUJYYGzmd3Mv0VOI6poygqtapeR7/Dxdh/keeJVUcDqygq7at+PP1ON2P/JUEgw41trEzPANPfgMvN0MBKgkD6KuvpPCqKSuGqbzfo9pD+qgZNRhRJX2U9Mwe2vkHG/gc9XtKeX0p1jMjo/SB7/xDpKa1mZJpP59M1JIki6a9qYPwVe/8QExUX8vpI8+l86tvJkkT6qxsZv8IxMEyqDpykOoa8PtKcWUCpeCMy+og3x8AwKdt5mOoYkYn0V5YkMlDTRMp2HKI6OgaNpGznYRqhF/L5SXNmAbX/siSRgdomkr96B9UxItNXWc/IFG85wMhkL9lE3GHf1Dk0Qsp2Hqb9jchkzl9LJEkKU/k1kazFG8lQvRpR4Bw2kfJdR0jRpn3/2zf0M665Anv//CYWfvs+iBwHRZaRs2wztvzur5QqzjloxOFXPkLDcfUUkYRvZDM/XktvGj0mK/KWb6V56yRM0aXPS3IOjaBk8356IqjIMppP59O8ZEDNYa07qt30ijyPpow8Jr/c3N6N3tIa+sz5/GhKz2Xyywfrmil9CKCe1unzqhRZRndxFTiveiPoCqon6opNu80WOQ6dYTqRSLsjrV1MHljI48WgLndMURT0lNbQW09APZGMAIBEdNLf8gMqzUtAB2oWdHuY0+xIu/riHDTCMaDl84scR29k6TjUNlPqFUC93TXpctJlSYpp19LZy9zqcz5/jI7dxVUMcJ5zaASWcL5WpC96/ARCCAZqmmiue6Qvw/Va5IUsijRPOVJMbd1MPn/Q7WHmXlEUdOSVMuB6tt5BekoOqKfTbTnabQcJ04jpQWRcRjP6dfk3IsehKT2PgjESQtScnq5+pv96qj5ZFNFyppABzjG1djHYAgGXBw0ncjTwJllGR34Zs6YsXX3o1t0ecD4/ag+fpuCAkfHXYwvY+4co3QygRhQ0nsiha4oQgv7KeibHyGU0o/bQKaqjyHFoPl1AsQUiOnfodPRa7ahOS6fvsCQIaM0uojmAADDS3IGG49lUR7/dibojZ+AJ4yfIkoTOgjKaHw8Alo5e1Bw4SVkbIuMU2U8i76s+H9Ha3Y+atHSEPBoNZvOpfAyG3wFFUdBbXqdS34T3BnvfEGoPnaa0O5w/gNYzhegM41UoioL+ygZU7TtB8RNcQyOoP5ZFczmFYAhtOcVoDM9jZJxq0jIo8Ix7xIKm9Dz6bgkhDh35Zag+kA5ZlEAIgbGxHbWHTtG9wWu2oflUPo1yEnkeXYUVqNxznIKHjrR0ouFYFn0ffVY7WrOK1HkkBJIgoKekGtUH0uEaGgEhBOa2bjSdzKGYHH67E23ZxajadwJCMARJENBbVovaQ6cpnomlsw9N6bloOK7u3wGnG+25JajccwwBhwuyKKK/sh71R89QOiJLVz9aThfQeQy6veg6W4Hq/Sdh7xuCLEkYqG5E44kciith6xlAa1YhqvYeBx8IqjKFlag9eIrmIw7VNqPpZC7qj2q25Hz51xSDwYBZM6fgzmeX4pE31ZxRf5DDa0v249G3NiHEqXaupqUPLy/ah9rWfgCAIErYdKgAO09o+3lT1zCW7z4Dt0+1R7wgYt/pcpQ1dDN19mbosGNCPA5lV2HYqtnGuvYBFFRp+eVuP4eTZZ0UKI8QgqZhN/rt2j7s5UR0WLWoOYUQWHwcBF0OvSApCIks2J7+/yM+wuQxWg49UWRA5BkZEvQCRNcOHwJCGo4NkSWGxg4AZJcVJKTrHxeCZNFsO1EUcL0ddB8DANFph2jTohAUUUCgU7N7hBAEurshB7RxEN0eBHo0O01kGa6qeqYvvr5BhExau2IgCHu95qMRQjBSWQ9ZB9zqM1lh19l/SRDQr7P/gIqd4rNpNjfgdDO2MWILiU5HW88A7L1aPj/nDzD+CiEEPSXVNA8cUCOz9L6TyHFoj7L/g7XNjM31Wu1Mu7IooiXzLI0WAFQfzaLDLAq4PGjL0da3Istozyult8yAaqP0Phnn89PbeCDs15VUU3sEqH5dJD8eUG1Hw/Es6uMQQjBQ3chgT3lMVkrxCqi2o/lUAfVxCCEYqm9h8JP8didj/2VRRHtOicomEi6m1i60ZWk4BwGXB7WHTtHIBUWW0XW2gplHa3c/Q0Ud8vrQcDyLRsNGfFm9P+7oH0bV/pPUx+EDQTRn5DF01X2VDfSWH1DnuSYtnY63EAyh9Uwh+nWRl4O1zYyOHpMV9UfPUB9H5Di05ZRQ/5AQguGGNlTvP0l9HK/FhsYTORhuUPccSRDQkV+G+qNnqI9jau1CzcFT1G/2251oysinWF+yKKK7qEq1/2EdLR29qDuSSddUwOlGS+ZZNGWoOkZ888q9J6jfbO3qQ8PxbKpj0O1BW3axmh+vKFBkGf2VDahJy6A4B7beQTRn5NF3IOTxoj2vVLX/gRAUWcZAdSNqD52mOjr6h9F8Kh91RzJVBjCfH50F5ajadwJesw2KomCothkNx7LQVaT6cc7BEbRmnkXVvhOQBRGcP4DuoirUpGXA0tkHRVEwXN+KxhM5WrSG0Yy27GJU7jlGaYJ7SqpRd/g0hmqb1b2mqR3NGfmoPaT6cW6jGR15ZajadwIekxVCiENvaQ3qj55h/OZ/pPxLUe7/mWXMxAl4IWsXestqKc3Yj198HBNnTsfUy2cBUKkpvvf07+G3q0bVYDDghjtvg8FgoAt64oUX4Krvfp2hl7viGzdRsC9ARa6edtVlFC0yQtWgR/SceOF0jJ+uo2tJSsLkWTNZRPLpUynlFaAin+qpTAwGA/MMqMiaETorAGEaqzEUxdQVDrmfNDaJqRONNB+fmMAgqgNg6FlACOIS4hnUUqIojAyRFQbtlRCibjg6GUkQmTb0H8+RIvICQ8em/6iN/K6so7UBwID1AYDECww6LSEEfCBI0cUBgPcHR2Ui0P+N8/qZOeL9QRpWBqgbvxAMMQ5J0O1l2AtU4BJNT0VREHR5KI1KREbfrhAMQeR45sM74HAx4x10eRikfJHjwftYdgWf1c60G3R7IQkCY+wCTjelgQMAr8XOjG/I44MQCNJQM0WWKfo4/R2LTR3zMCJzyOtXuVfDKKuKosAzYmHoCL0WuyoTbpf3BxBwaH0hhMA9bGZ09Frs4ANBygghBEPMoRghBK6hEVUmPA4+mxOcx6f7wOfhNpqZOXEOGCHxAnV0fDYnAg43RREWeR7OwRHIgkh1dA6NQAiG6Drz253q2IV1lEUR9t5BSIJI58A1aAQXZsQAVGPnNVlpX2RJgr1nQO1L+G/OwREEnR7KrhB0eeAaMqlrVVGgQDWIQjBE23UOjsBnc9A2Qh6fymsvyZAlCYqiwNzRC87rp/11DhrhNdvU9UEIQh4vbD2DtC+EEFjaexBwuikzhWvYBPeIBUSWocgyOJ8ftu5+iCGOypjauuG3u6jBdw2Z4BwcgSLLkAQBvD8AS3sPOK+Pypjbe+Cz2KmOrmEzHP3DkHgBkiBCCIZgautG0O1FfGIi/cD3mqyQJQmyKME9YoG9dzDcF1VmpLkDAYeLrlVzWzfcw2YQWVHXxYgF1q5+8P4gJF6AEOIwEnbYZUmGIkkwtXbRtSBxPDwjFlg6+xDy+KDIMkSOw3BjO3wWe/hZreMcGIYY4tRnkxWmtm4EnO6Y/e18+deUay6bicwNr0IQJBgMBoxLTcEHz9+HQ9nVGJOi2sebv3QFOEHEzGmTAABJiQn41Y9vRm2bBtr2pasuwqDJjtQwynpyUiK+eeNV8Pg1+/+FS2fA4tAOfceOScbVl85Ass62XHbhVMi6D+3xY5IwfWIqDf83GAyYNi4Zsg7pPCUxHikJOqR5AEnxcTDo0OjjDOo/fdE/RtLyJjMo94ZYOH1D9B9i/xZt/wHC1iFK1DOJ6RyRJKYOESX2ZwiJ8RsU3UWD+iyqhxK6vsgcj3id3yOFOL3ZhiJJdH+PFD2bEQCIQY5B4FcUBbw/gPE6Wx7y+hh/QAjvP5G/EUIQdHkYVPuQx8foJHK8alt07QScboa9IOT1M7ZRkSSEPD6MnTpJk3G4GV+E8wXU/SbcriLL8Nud1L9VZVxMX3h/QB2H8G8TQtSPH51f4Xe4GNsoBEMIub0ULZ8QAo/Jyth/v90JkeOpLRc5Hn6bk2E9chtZ+x9wuMH7A/S3JUGI6Ytr2ARR51cEnG4EXR6MnaL6zrIowjVsonYv8jsix9P+BV0e+O0uyhqjyDIc/cOMjm6jBZwvQPsf8vjgNdtou4qiqAe+okjruI1mBN1epIbHhfP64B42UR0JIbD1DDB98Zis8Dvc1Gfn/QHV/ogSFFlGXEICbD0D6rhQGVvYj1PnUQiGYO8bgiRoPq61ewAht5eyNnjNNtV+hnUUOR6Wzj5IHE/Xg7Wrj/FDPWYbXENqX2RRgshxsHT0gg8EqS9l7epT0/zCPqXXYg/7ImEZnoeprRshj5fOvbWrHx6zLTx2MoJ2Fx0XVQcRppZOBJxuqqO1ewBuo+pjyqIIn80Ba/cA9b9lUcRISyf8DheksI7W7n64wqw3siDCb3fC3NGLkNePhJRkyJIEY1M7vBa72l9JhnNgmPoisiAg4HDB3N6j+ta8AEWWMdzQBo/JCqIokHiBHuAJQdX+BxwumFq71b7wAmRRhLGxHW6jGYokQQhxsHX3w9bdj5DXz1B//kPlH77j/5zLJ4bcl9eSFT95iBx/azEROI4oikLacktI3bEzNDyH8weIqb2bCZGJhMzow2r4QJAJU1EUJSZ0SOT5mFCnGHCsqP8n5Nwh9/9oOPqGs93kstnppMvs/dQyf6/Ov6v8J4Xc/yvD9D4LSEvMmholbC/6t88VpifLckydmDC9qOdRQ/mjgF2EUIjpn6LEglRGh+1LghDTTvT7GHC52fA/SYpJrYlOvwl6vIwOsizHhPJFg8GEfH6m3dFC+ZxDI8y88cEQ004kxI75nRELo7fAcQwYTCQsX6+jx2JjUg9EnmfC6QghZLixjdmXfHYns/9FQuz0ZaS1iwkr9DvdNCSMEHVsOwrKGB3Nnb2MTkGPl3QVVTIy7XkljI7WngEyUNtEn0NeHxOmL8sy6SysYNIK7P1DpD2vhD5z/gCpTkun61dRFNJdUk2GGlppHcegkdQeOU2f+UCQVB04SXVUFIX0ltcy7bqMZlK85QDVkQ+GSM2hU2SktZPK9Fc1kKq0dCrjNllI/uodVEeB40jd0UzSUVBGZQZqm0jBmh3nQ+4/x/JJY7vvVBm569klZP2BPDWFiBNIRmE9OZFfS8PjnR4/aeoaIiNWF5XzBznSb2TTgJwePxNiL8sy8frZkORoYD1FUYgQFYYfHYIvy8o5Q+z/UXv03N5act1bp/9pIev/rvKfFHL/efkV5/IHRq0zio95rjqfJZQ/2t9VFOWcPoIkCDHtjgb+Ft3X6DrnSv+TZXlUHyH6d4QowLhoHyHaHxBCoRj7PxpgnF5HkedjUgT1ofKEqHZZ319JFGNSBM2dvYyOAZeb+W1ZkogpCojW0tXHjF3Q42XsdCTsW19svYNM2iPnDzD2VFFUIFr9GnIMGhm/gg8EmXD6iI3Vz4HLaGZSD4VQiDSfzqc6KopC+qsbmXFwmyzUnhKirq/641l0HhVFIYN1zUy7Xqud1B07Q59FnicNJ3OYsRtubGPsv8/uJGU7DtH3RhIE0nQqj/GvjC2dpPqgBornd7hI0aZ9FKBPEkXSklXI9NfU3k3Ort9N2w243KRk6wGatilLEmnLKSaV+0/+b4fcX/GNr+KOV5+G22hGYnIy5UMs2rCXOQ2rSctAoy6kpyOvFEfnLNTCah0uHJ2zgIZsEELQcCKbAWnzWmzY/9y7DJhaxZ5jNJQfUEOH0+cup8+yJCF/1XaGnm24oRVlOrowIRjCqQ9WMiesbTnFTLi812qnIGKAeipYuv0gDZGJhNMZi7TwYpHjULBaozsBVICPIR0FnddqZyjolDBQlZ7T1NjcwYSS84Egijdr4DWACgKmTxFwDZtQe1gDmZElCQVrd7G8vhV1TJhYwOWhgCYAKJiVz8qmK+hDs4RgiAGmAVSAGD0IoXNoBOU7NQo6WRSRu3wLc9vfXVJNQ4UBjRpOPy7Fm/fD1qPd2Aw3tKJi1xH6HPL6cPKdpUzqRM3BDCY0y9LVh5wlm7T+hzikz13GpCs0n85naN+cg0YcfX0B0/+sxRuZMLGuwgrk6Prrtdiw/y9v01tBRZZxdt0uhlKxv6oBh1/7mD4HnG4ceP5dSmsYWWN6yjxjUzu2Pfwy1THk9eHwq/No2BIJg6Mce2OhpnNnLzY98BwNu4oA9EVoXwAV6GTHI3+jz/a+IWx64DkaehgBOomA1wEqiNzqXzwKiVd1dA2bsPWhF2k4VGSc9v75TSrTUVCG5T/+A1xDavicx2zFzkdfQeH6PapM+H1d/fM/UZme0hqsuOMhGu7nszmw+6k5ODZnIR3bwg17sPh7v6E6DlQ3YuVPHqYUhQGnG/v+8ja2/uEFZmznf+OXFKBnqL4Fq372CN1zQh4vDr70Plbc/gfIokj3m/m33kvTCEZaOrH6zsdw6OUPAIQBH1+dh0XfuV89OQ7Px/xb7qGASOaOHqy9+3FsfuA5ABrg0Pxb7sFwQxul95l/yz04s3CDOoddfVh375NYc+djaiRHGJhp3tfuou9N48kczL/lXhx8Se2LrXcQG+77M5bf/pB6gx4GKfrwKz9H+U71vWk+nY/5t96L7Q+/BFkU4RgYxqbfPIulP3wQ/ZUNFDzwgxt+hqxFG+m8f3zLPdjy+xfgMVnhHBrBpgeew+Lv/QZN6XkUrOb9L/8Uh1+ZB0AFc5x/673Y/MBzGGnphMtoxpbf/xULv30fyrYfgiyKyF6yCe9dfzvSXngPIY8PHQVlWPCNX2Lj/c+gu6gKHpMV2x5+CfO/8UvkLtlEwZDe++Lt6nvTN4Suwgos+MYvsf5XT6PxRA48Ziu2P/I3fPz1e3DibQ206nz515UHf/5N/OQ7NyDI8TAYDEhJTsTk8WOx6VAB4sM3zSFOwLr9eWgJU9DJsoK0zAqs3a/Zmq4BC577aBf8QXW/kSQZ6w7k4WiuFgbc0mPE68s1kFxeELFo2yk066jtKpt6sD5NR6MaEjB/fwVE3a19aY8dlX0aVZyXE3G2Rwv3JoSg1xlAQNRuHzlRhocTmTohQbuBdQcFTEpNZG+0ZQlEH05PCBS3BVA0ORL0gLjNjIzUr4VhA4A43AXZraW5yX4PQm260HJFgbcsjwHFC/X3INip2TA5GIAjRwt1JoTAcbYAvFULnw8ODcOer9lpmRcwsGMf0xdrcQVcDVq7IasdXfs0MDhFltG4ZR8Er5YiYKptRo/O/ofcXpTq/ApCCGr2nWDSxMwdPYxfIQRDOPXhKuYWuelUPpPy5Rw0Iltn/yM2Sh8+31VYwVDbea12HNfZ0whgc78u7XGgponxVYNuDw6+9D6NPIj4UvpQ8pGWThzR2X/OH8CxOQuoPYrYAT1lnq1nADsefZXqKHIcpfGMlJbMAsZfcQ6NYNsfX6bh8xGAPj0tYOfZcmx7+CX67DGr4K6R1CxFlpG/egcy3ltB6/SW1WDtPU/QdAW/3Ym9f36TAsYpYRC5XY9rgIKDtc1YfeejsPUM0nFKe+E9SplHCEH5zsNY+dM/Ul/V2NyBtfc8SUFxIzb20MsfUpnqtHQs+f5vqY7m9m6s++VT1M7xgSCOvbkIG+7TAHrrj53Bou/cp9Hh9Qxgw6//jNMfqT5OBGx36Q8eoN8cTRl5WPSd+9F8qgCA+r2x6bd/wd5nVBDiiL2cf+u9cIWBFluzi7D4u79BcRho0TVswpbfPY+1dz9B09yyFm3AvJvvQn+lCibdkV+Kxd+9n453BPx4xe0PqVEaYdv30VfvpN8/XUWVWPy932BPGBDRa7Fhx6OvYPH3fgtLZ5/qW63egQ+/8nPqb/WW1WDx9x/A5gefhxjiVMDkJ2Zj4bd+je6iKrrWP7zx57QvfZX1WPrDB7H+V0/DNWxWwQP//Abm3/pL1B3OpL76Bzf8FPuefRuA+n4sve13WHv34xhuaFNBlv/yNubdfDcK1+9R/bFtaXj/yz/Bnj+/Cb/diaH6Fiz70e+x+hePoj23BEG3Bwf+Ohcf3fQLnP5wFV0r73/5J9j95OuwdfVjuLENy2//A/X9Qh4v0l58Dx/e+HMce30BRI5HxZ5jeO9LP8HOx17DQFUjjM0dWHHHQ1h++x9Qsondyz5rMZCIh/4fWq6++mp0d3fH/N3U1g1zezcuuel6TL38EvqBTsLhMvoy2t/+W8qcI03YVzmI7o9+joT4/7PnM+fL+fIvKdF7wWjPAP5uHUVREBedekII8zdFlpn0CVmSEJ+QwMgossz8TRIEJCRpIaOyKMIQH0/bJYRA4nmaYgSoxj9pTAojQwih7ZBwKkqKLhUl6PEideIERkbgeIwZP47KBJxujJs6mdYJuDxIHjuGtiuLIoIeH8ZPm0Jl3CMWTL54JiNjiDPQ35JFER6zDVMuuYjK2HoGMP2qy+j4hjxe8IEgJl00k46btasfF37xaipj7e7HhBnTMGaCGkYadHvgtdgx89qrqMxgTTOu+MZNzO8kJCdjyiUX0t8xd/TiiltvojLdRVW46rtfR0KiGpps7e6HEAhi1leupzK95XX40k9/QGW6Citx4fVXY+LMC1SZngG4Bkdw7W3fojItmYV48M0XR7Vj58s/Xj7JRyiu7USQE/CVay7BjGlaKtv/mo9w96piSArB6Re+9+/uyvlyvvzHl0/jI5xr/4j2EaKfgXP7CIosAwYDIxftI4g8j8TkZEZGkWWmTrSPIARDSByTouEhKQokjmdSe6N9BD4QRFxCPP0tRVHU9A9dirDP5sD46VpqpxAMQZIkpIbttKIo8FpsmHThDFrHOTSCiRdeQPUWgiFwPj8mzJhOZey9g7jg6supjMtoRvK4VNo/IRiCx2TF9KsuozLGpnbMuvGLVEeX0QyiKNT3EIIhWDp6cclXv0RlBqoacfFXrkNS2L9yGc0IOt24+IbrqExfZT2u/eG3qMxgTRMmXjSD+j0uoxm2ngFc8/1vUJnW7CLccNePER8fr8rUNiEhKRGzblT9CveIBQNVjbjvb8/8wz7C/9kvwBnXXom27GKs+tmfqBNbnZaOd6/9EYYb1dv2oFulvNKfjHbkl2Ljb/9CHXfO58exNxYyN8bteaXIWryRPgfdHhx7YyEFsQKAhhPZDC2Jx2xlfkdRFJTvOsLc7Fq6+lBzUKNekQQBBWt2Mie7vWU1DPVa0O1hbtJJmPIhAtLiDgoYlxSHrnwW5ExPUwKot+J6ULmg28NQ0hFCUHPoFJPjb+sZQG+ZNi4izzP9B9RTZeegdgvhsznQojvxVhQFVfuOMzf0xqZ2JlqA8weYE2RCCBpP5jAgLfb+IYbqThKEGB27iioZejmv1c5Q0ilh6iuR13Jah+pbmLkPeX3M6XvktDpCLwOoN8/6qA8hxKFgzU4mH641q5ABTRwtWqBw/W5KhQio0QL6sfNa7QztniLLKNtxiJnHwdpmVOhuvINuD059tJrqGHkvOgo0wKaR1i7kLtdu9Tl/AGcWrmcodBpP5jBUd9bufobOTwhxyF2xlQFJbMspZvrrHDTi8GsfI+hWdZQEAYUb9jBz0lVUydzqe0xWHH9rMQUHlCUJpdsPMjSBfRV12PPnNyiAo8/mQMb7KyiFniLLqNx7nGl3sE6llYycXgecbmR+vIZGnCiKgpqDGdjxp79RI2Bs7sC+v7xNKXRCXh+yl2xC+rvL6DjVH8/CxvufobR15vZupL34Hn1nOX8AuSu2YleYJpAQFXRz02//QnE6rN39OPzqPJxZsF4d22AIBWt3YfWdj0GR1Hy41uwibP3DC2gOAwja+4Zw7I2F2P/cOwDUG5OijXux/PY/wBsG8esoKMP2R/5Gaeucg0aceGcp1v/yKVWG51GyNQ0rf/pHCsjXVVSJnY+9SmkvXUYz0t9bjqU/fABiiIMkCCjbcQirfvEovRHpLavB7qfmUB09JitOfbQai797P1yDI+p+tOcY1t77JI0c6qusx75n38Kaux6DIsvwWmzInL8Wi7/3W/RV1EOWJFTtP4H1v3qa0vkN1DRh//PvYukPHwTvD8JncyBr0QYsu+13aDieDUWWUZ2Wjo33P4PdT71O5z3thffUvgyNwG93InvJJiz78R9QvHEfFFlG7eHT2PzAc9jyO/W2YLixDWkvvY8lP3gAg3UtCDjdyFm2GcvveBiZYQq9+mNnsOV3f8W6e54A5/XD2NyBQ698hGU/fBBtOcUIuDzIW7kNK3/2CA797UOcL//68tUvXoZF207hxYV71MMwScaibafwpXvngOPVG+0+ow0PvroWp4vV9U8Iwc4Txcxt+5DZiWc+2E5z5BVFwY7jRTiYpQEZ9RlteHeNFrUlSTI2pOXTm38AaO4eZsD2OEHChlPN4HW37fVDbjQMu+lzUJBRPaSjlyMERk8IIZ2MICnw/Z0beldQwKQxCYyfQRQZStQNPfE5mJt0wvmheGyMjGTUsIUAQLIMQvFqEQVKKAC+V7PthBAEGioYvBveNAyuX7NhCs/DXaZRvAKAu6oKglNrl7da4arUwEgVScLIiVOMjKuuCT6d/efdHgxmaFGUhBB0HzkFUReF6GjvxnCJ1q4QDKFhL+tXtGUWwNGn0fc5B41o1AHEReyafny7iioZP85rtTP2X5FllG4/SGlrAdWWN5/WfMqgW91D9P2vOZjBAOea2rpRrosW5ANBZC3awESTNmXkMZGWtt5Bxv6LPI/8Vdth04H4deSXMjTBLqMZJ9/V6IdlUUTRpn3o1gEI9pbVMPbfa7XjxNtLqK+qyDLKdx1BzSFt3gZrmxk7HXB5cOrDVdQ/VBQF1WnpTDSmsbkD+5/XImZDXh/OLFxPfbKIXda3a+7owYEX5tJoUj4QRO7yLShcv5vKtGQWYMejrzDjdPjVeRSUVQhxKFi7i6GEbs8rxZbf/5Xq6Bw04tgbC+lcizyPok37sFPXbldRJbb98WXqH7qMZpx4ZylOfbiKjm3p9oNYc/fjkMKRlr3ltdj52KuoD4N1e8xWnPpwFfaFb+hlSULFnmNYfeejFKhwoLoRe56eg/zwGvLZHMj8eA1W3/konY/qAyex9u7HaTTpYF0z9v3lbRwNR3D4HS5kLdqApT98UMUGUhTUHDqF9b96ikaTGJvaceCFudjyu7/SOcxZuhmLv/cbWDt6qb3c9JtnkRWO/Btp7cLBlz9QIyIkCSGPF3krt2HZj36H9txS1QdNz8WW3z1PI//M7d04/NrHWPSd+xB0esD5/ChYsxPL73gIFbuPghCC5tP52PbQi9jyu7/CYDDA0tWHo3MWYNF37oO1sw+cP4Cz63ZhZTgikhCCljNnsf2PL2PdvU9ACIRg6xnA8bcWY8n3f4vu4irwgSCKNu7F6jsfxbHXF4AQgracYux87FWsuOMhBJ1u2PuGcOKdpVj6wwfRcCwLQjCE4s37sebux7HvmbcgiyI68kux+4nZWHH7Q7B1qxR6J+cuw7If/Q7F/6Qb+v+zOfSRPGF93ikhKk2DPu9EEsWYnJfoZyEUIiEvS2UTTaUR9HhjqMCiZWLo8CQpJqdotBxjfX8/TV6SLEk0Z+eBDaXkewvyYvKbRst3OledUan5PkUe1bnqSGEqqP+fvuh1jJRzUq/I8rnHm+Nicrqj60TneI9K6RY996NQukW3E53TFfL5WUoXSYqpo89tJkTNVWIo3UbJA/dYbIyOQijErOfR8sB9NgeTyyZwHHGPxOaB63X02Z1MuyLPx+SBW7v7GR39TjdDkSIJAkN/oigKsfUNMuMQcLkZqjhJFMlAbRND6WbvH2J0Cnq8TF6VJIpkoKaJGTvHwDClSCFEncOuokqqoyxJZLCumdkvnEMjDFVMyOcnrdlFVMeIjLmjR5MZNpG2XDYPvC2nmObvybJMhhpamdx2l9FM6o6doTpy/gBpyy2hlG6yLJPhxjbScuYslXGPWEjVgZNURz4YIu15JbRdWZbJcFM7qdx3XJMxqTKRHL+ITNOpPEamcMMeqqPHbCXVaemU0o0Phkh7fikp23mYzoexpZPkr9lJc/MiMhFqGyEUIh0FZSR76SZK+RiRGW5qV2UsNlJ9MIOU7ThEZTrPlpOMD1fR922ktYsUrN1JWrOLCCFq/lz1wQySOX+tKsNxpPNsOTk5dxnFTjG1qTKR/kZkDr06jwgcx8h0FlYwMqc/XkMIUd+XmkOnyL7n3iFuk4XS/6W/t5xU7lWp+Ezt3aRg7U6y//l3z+fQf47lk8ZWFCUSCHLEZGP31L6o/HivP0hcUdR20TIOt4+hnFMUJUYmmh5PEMSYvPpoOrwgJ8bYRk6IohyTRsFeic69/jv52l96J5M8s7v6s+WBy9Lff1aU2L9JYsxzTLtiFIZLND2rLMe0E11HHs0X4aJ8j1BsTne0/Rc+RU63GOVXRNt2zh+Iyen+/6V0U5RYiuVoileB42Io3aLzwP0OV0xOd7T9j/aBAy43099ov1lRFOIYNDI6Bj1e5rdHywN3DBoZPy3k8zN2WpYkxgYToto+vd6cP0DtHiGaTdLPo3vEwvgVfCDI5IHLskyMzR3MHHjMVsZO88EQ6Smr0ex/mJI2QulKiGqTInaPkLBNKqxgcrpNbV2MTl6rnbTnl2oyYdrXiG2M2Aq9/ffZHKQxPZfqKHAc6S6ppn6QoqjUqi1ZhZqM3Unqj2fRNSTyPOkprabUtoqiUqtWp6VTHf0OF2k4kU39tohMxE5HfLjS7Qepjn6nm9Qfz6J+kCQIpKeshpTvPqrJ9AyQ4i0H6NgFXG7ScDKH+hWSIJDe8lqSt2o7kSWJypRsPUDxeyIyEfsviSLpragjZxauJ36nm37/lWw9QP2goNtDGtNzyZlFGyguRG9FHclcsI7Oia1PlYm0G/R4SWN6Ljn6xkLCB0MUZyhzwTo6bxGZiP2PyBz824fEMWhkZCLjYO8fIiXb0siBF98jkiiqMhl55NArH1FMgv6qBpK5YB3JnL/2fzuH3mu2YcUdD+Hku8soumJrdhGq9p6Ae0TNveIDQTQcz2ZOVy1dfRisbaG3qSLPw9jUAd6voZ16rXZKVQWoJ1muYTNzysx5fQytmqIoTD40AAaVMlJHT1Oi9jHEPCuyTNGiI0WKQkmWRZHm3buDIialJkLihag6LEosURSKxEl/S9c39Vli0FsJITHtRLdBFIW5fR+tjhz1O6PViX2Wmb4AKso++9tR2SKExPyNRPWNyEoMcq/+ZF1thsQ+6/4WofyK/h19yNVodWJKdOiWwRCtcizycDTq8Cf8jh6N2BAXx9TRszww7er+Fs2IYDAYEB/FghCfEM2akBAjY4iLY/qiZzeIyMTFseMWn5DA/E5iSjIz/nHx8YwOBoMBCclJTJ3EFC0MTe1rAuLi45jwtaTUMazMmBS1v+F24+LjEZ+UxCAPJ41NZcYyKRy6FtExLj5eraNbdynjx8b+Trzud+LikDJ+HLMOUyaMY9ZU4pgUZuzi4uIwZuJ45nf0TB2RMUhKHUPrxMXFqajEur6kTprAzE9iSjJSxo+jVeLi4jBu2mQ1pDBcb8ykCQwzRGJKsoqkq0tXGD99isqcEZYZO2USEsek0LFLTEnB2KmTwyDZ6lxOmDENcbpxGTt5IpLHjqH7S2JKCsZOmwJFkug8TZg5HfGJ2rikTp6IMRPGab+TnIzxM6bR/kdk9Gtq7JRJGDt5IogsIy4uDonJyZhw4QW0XwaDARMvmsGsl9TJEzF2ykQokoS4eDUUcdJFM+g7YDAYMOmiGeq8Ru1B58u/ptS29eOOpxZi0+ECAKr93ZNRhoNnKiGE7ZrZ7sGpokZYnWr0HSEEdW0D6B7U8re9/hBae0bA67B5Bk0OSmMHqDnzeoo6AHB4AvR3AEAUJQYZHwB8IZHZ8yWFpZwDAFFm93eZNUfhlB9W98ijICnw8xImpyYhpsQI/X27BwCIXsuExP4t2uZGPxMS8zc9XV6k3ZjuRdv/KLs9Wl9Gtf/R5Vz9H6UvMWM1yjseY5fP9TyaTFSJttujpYno92rg09n/6L8ZosLDqS2P8hH+3nOkHX1b0T6DIS7u77MvYRSfIdKm7rcSktn1HZ+UyPYtLi6GxSkxJZkZl4TkJGYc4uLiYvwIfVi6KpPM6GgwGGL8iuSxqcxzQlIS4hM1H8dgMGDMBNaWJ48fq/YtXCchKYnxcVSZcUy7lD1AJ6P3RSIsWkTnd6aMH8sgrCckJSFl4gQm9TB1yiTVP9fJ6McuPjGR8SsMBgNlHDDERWTGIWlMCu1ufGIixk2bQtMKIj6Dfi2kTBjP2PL4hASMnz41zL6lrsVx06cgPimJ1kkeP476RRFfcuLM6eG+qHM0fvpUxhdJGT8OY6eo9t8QF5a58AKmLxNmTFcZtHQy46ZPAVEUxCckID4hAZMunsms1UhaYIQdLGX8OEy4YCp9P+Pi4zFp1kwmHeIfLf9nP+gnz7oQj+5ahiu+cRN16K697VtIHJNMByh5bComz5pJaesAYNzUybD3DNAFHZ+YCK/ZxoR38/4gA4IiCSIGa5oYeg1r9wBzUBDy+BiubEJU/kl9ux6TFcYmLVyK8pfqXmRLRy/DX84HgjF86/2VDfQAwh0UMS6ewNTapbWrKAwfKACY23toKG6k3WhO+Z7SWkZH94iF4WhXc0YrGJnhxjYEnVrYeDS/PSEEnQWxHK0RADZAPVSJ5mHsK68Dpztk8ZitNJUCUMdOz9Ee6Yuehz7o9sRwv7ZmF0HWUeBYOnspGAyghlW1ZbHhf12FlQjodHQOjVAQEUA9YKk/lsXo2FdRz6wPr9WOtmytv4oso/FkLqPjcH0rA+oXdHtiUhFaThfAM6I5m+b2HnQXaSGDfCCI6v0nKWAcIQRtOSUMOKOtd5AJGRQ5DtUH0uG3ayGOXWcrmPXhGjahfOcRqqMsiqhOy2C4dntLa9Cq4371Wmwo33kYnFfjfq05mEEBKAE1LKzmoBaC53e4ULb9EFzDKliQoihhnk5NR2NjG8p2HKYh9yGPF2XbDlIdCSFoOJ6NpnQNgGqktQul2w7S0DjOH0DJ1jQ6j4QQNKXnomKXpqOlqw/Fm/ZR7lchGELZtoPMPLacKVR19KkHdfa+IRRt2Et1FDkOpdsOMkCR7bklKNt2kPLbOgeNOLt2F9VREgSUbT+Eil1H6WFl19lyFG/eT/cl94gFBWt2ojGsoyyKKN95GBU7j9B57C6uQuH6PVRHj9mK/JXbULn3hCojSSjfdRTl2w/RcMu+8lqcXbsLHeEQTZ/NgfxVO1Cx62iYwkdG5Z7jKNmSRnXsr2pA/srtdK36HS7krdiGil1H4Bo2QVEUVO49juKN+6iOg7XNyF22BRW7jkCRJDVEfcU2lG1XU0oURUH1gXQUrttDgYCG6luQu3QzKvccR8DhUkNSl29ByZYDGKhqUENS0zJQsGYnBSU0NrUje9FGVOw6Ckf/EEJeH/JWbEPRxn3oPFsBQghqD51C3sptKr9tiMNISyeyFqxH2Y7DMLV1g/P5kbdiGwrX70Hz6bM0DSd3+VZU7z8Jn80JU1s3zixYj9KtaRisawXnDyBvxTYUrNlJUxPOl39tufWGq7Dy9YfwlWsuBaA66Hf/4CYQQpAY/miYMXUCkpMSEAip+6XBYMDE8WPQP6KFQiclJqBrwAwxfDBtMBhgc/kwoKvjD/KUyx5Q962GjkHY3RoA24jNjeYund2TFFR02iDp7P+QKwSLVzvA5yUFQ26WWs0VFBgZSSHgdYfmhBDaV09I3T8mpiSA6DnmFQVEZA8XwPnYD2uRiwLOU6A4RxgRxW0F4XUXGwIH0TyokyHg+zqZj2TJaYNo1/HQSyICbVp6GgD4OzqieOjdCHRp4f5EUeAsr2JlunpZHnp/APZKzYYRQmAuqYSsSyv0DRrhaNd8PVkQ0KsLTweAoYp6BHQ89D6LDf06XnRFltGUnsscyA7Xt8KuS7cMuj1o1dkNEg71jaRqAaotH6zV0hX4QBD1Ufa/I6+UArsCkVRELZ1O5HnUHjpFw9EB1Q7o/UP3iIWGbgOqHag7ksnQw/ZX1qO3lOV+r9h1hOqoKAoajmfD2tWnjVN9C00Ji+hcufsoBYwlhKAxPY/xD02tXQwQIOcPoGLXUZoaRwhB8+kCRkdLVx/Kth+i4MZCiEP5riMY0VFNt+cUMzra+4dQujWN6ijyPCp2H2P47TsLylG24zA9gHUZzSjZvJ/y28uiiMo9x9CSqaVFdhdXoWz7Iaqjx2xF0cZ9dB5lSULVvhPUHkXGtnRrGg2N99udOLtuN/XZFUVB9f6TqNh1hOo4WNuM4k37qI4BlweF6/dQYDo1ZfAUynceoToON7SicN1u9JWr70DI48XZtbtQEfbjInasdGsaTUUYaelEwartaD2j+nGcz4/CdbtRufuoSlMc9q2KN+2nKQPm9m7kLt9KdeQDQRSu34OKXUfgHDDSFM7C9XvQFQb8tnT1IWfpZlTsOqrSxwZDOLtuN0q3HcRIS5c676fyVR8nDOhs6x2kMl6LHUKIQ+H6PSjZvB/94W+vlsyzyF+1nQIv2/uHkLVoIyp2HlHpdjkORRv2onjjPrTnqO95a1YhcpdvReWe4+B9ATgHjchatAFl2w7C2Niupk1s2IPCdbvpeLfnliBnySZU7jkOj8kK17AJWQvXo2TzAfSV10ESBBRt3IeC1TtQe+hUOOS+DNmLw75I3xDcIxacWbAeRRv2xnyvfdbyfxYUz2u1o2rfCVx4/Rdw7W3fQnxCAjh/AIokISl1DAMKoT+R+m8r1751Gj/78kysePCr/+6unC/ny39UGe29j/7buZ4/rQzA3pbEgOJEAeAQEguKFw2KI4si4qKiFc4FihPhhtW3Ew2KwweC6q2Brm+SIDJ1OJ8fKWGQPEDNU0weN5bqpCgKeJ8fY3TAOQGnm/ISA6pzFhcfT9tVFAV+uxMTLtA4nT0mKybMnE51FIIhCByPcTp+Y+fQCKZeejGVcRnNGD99Ch0HIcTBZ3diqg5sz9zZiwvDIHmR34lPSsC4qVPouNn7hnDhdRrY3lB9Cy6+4To6dl6LDbw/SMF2JEHAcH0rLg8D6UVkpl42i+rtszngHBzBZTffoM6HKKKjoBz3PPPoeVC8z6l8ko/Q2DmE0voufO2Ll+HWG64CIQRefwgEwPjUFMTrQGT/W32ELosPdywrxFt3fhFPfO/Kf3d3zpfz5T+qfF72P7rOqKB45/ARFFmOiYoYzUfQR6gpikJvjSMl2kcQOY4B1iUkFmw32kcQgiEkJCfR/hFCwPsDrI/g8TL+gMhxIAqhUQ2EEARdHsZH8NudGDt1MtVREgTwgRAF2yOEwGOyYtJFMxiZpHGpFLxO5aR3MnVsfYOYpgNLDzjdUAjB+DDQryxJsPcPY4YObM/c0YNpV15KQXGDbg+CHh+mXTaLzoexqQOX3HS9JtPZi3FTJ1MA4ZDXB3v/MC658YtUpqekGld+5+uID4+dtWcAIIQC/XE+PwbrWvCLx/7wvwuKN+GCaZg860LkLd9KF6+tux8r7niY3nBLgoBTH67CqQ9WUjljcwc2/uZZ5qYxe8kmBnDN2NSOrEUb6HOEEkIPitdXWY+mDO0GMAK2oC+tWYXMDbfXakf9ce3UkBCCyr3HmZNdS1cfBqo1ahhJENCgu00FVPA0r9WOkCCDlxRMTk3C2nufYNop2rSP+a2Qx4stYeqsSNn91BzmRrs9r5ShQAGANXc/zjxnzl9LQcIAwDEwjH1hYK5I2fTAX5gT4pqDGQwgjCQIWP/rpxmZw6/OiwF7O/kuS/e09t4nmPDVwvW7mTkYae1iQPGEYIgCpUVKY3ouA/znGBhmgP8kQRgV+M8xoN2seK125ncjADf6s7HB2uYYcEM9iF9k7n26k39TWzfTLh8IMmAwhKiUivpIBXvfEEq3aQBOIs8jc/5aiJymY1tOMTMO6sngOvocoSLR0w92l1SjZMsB+uyzOZD20vtUR0WWUbRxL9p11DwDNU1If285o/P+59+lN8aEEJTvOsL019jcgd1huhNA3dwOvfIR+irrqUzNwQycnLuM1rF09mLtvU9Q4L8IHZ4exK/hRDZ2PvYqM05r73mCRhRQOryP19I6LWfOYtmPfkefnUMj2PibZ2nUQYQWbfeTr9M6HfmlmPe1O+ne4DFZseUPL1DKv8jYrrjjIW1si6sw7+a7KG2N12rHjkdfweFX59GxLVi7C3Ovv0NNg4EKBDj/G/fS216/w4XdT83BxvufVWXCVD1zLvkWjcQZqGnCou/ej+wwwGeEsuXjr99NZUq3H8ScS79NozGGG1qx9LYHse8v6jsdoV9568rvg/f5QYhKoffWFd9D9YF0OofL73iIgu1E5vC1GV+HvW8IhBBUHziJt6/6PgXFMbV1Y+XP/ogPb/oFFEkC5w/gyOyP8eoFN6O7MHxzfvg03rnmNhx47l0672vuegxvX/V9+GxOSgn02oyvo3rvcRCiUgLNve7HWH/PkwBUwMF1v3wSr8/6JsztvRBCHE68sxSvzfg6ssN0eI0nc/Del+7Astt+B94fgK13EOt//TRmX/QNdBVWQOQ4pL+3HK/NvAUHw5RFTafy8cGNP8PHX78HHrMN9v4hbPzNs5h94a2oSUuHyPM49eEqvDbzFmx7SKNlOl/+deWGL8yC1enFsTz1Fs5gMKCothN3PLmQ7mNOjx9Pzd1K6wBAdlkzXl64lz57fEG8tGAPBcUDgDMlTdh7Srs1dLj9+GjjCfpMCMGRnGo0dmpRWkarC/tOazcxikKQVtLPgOINOINoNml+hiQraLVot7gA4AgKDCierBAEeB2YHSE01D9CaztpTCLEoJ9pR/ZYQCQtWo2EvCDOYaaO2MpGq0m9DZDtmk5KyAeu9ARTx5OxEwqn3dqH2urhr9JuNYkiY2TdfEbGnLYToX7NdocG+jG8dSNTp23OG3Q/BICRYydhzdbspRQIov752YxM/esfIGjUbrRNhWUQfdrNf8BshbmCvW3vPJHFtGGsboSzV3fb7vKgXQdeR4hKbSfr+9baxUS48YEgqvaz66PhRDbjf9n7hhj7L/I8BW2LlPa8UgzWadEMHpMVZTsO0ecI/Srn0+a6t7yWAXD2O1wxAM6l29Jg1kUqDDe0okRHLxfy+nB0zgLqYxJCULX/BFqztfVhbu+mwG6AapePvbkIrjA1HyEqWJ3er7D1DmLvs29pOoftst7HbDlzlrH/rmETNv/ueZryGqEA1PtXnWfLGfvvMavUo5Eb7ggdnr6/vWUqTW1kb/Dbndj15OsUPFpRFBRt3Mu0O1DThEXfuY9SLEdsbIT6mBCCsh2HsPzHv9fGtrENS374AI0OCHl9SHvpfRz461xtbPcdx3tfuoPSD4+0dlHwNwDUXq656zEqU3PoFN6+6vs0+tXS2YtVv/gTMt5fSefj+FuL8f4NP6M39PXHs/DONbfRCAhbzwDW3vsE1VEIqbZvziXfQtCt7ktNp/Lx3vW30/XhGBjGhvufwdLbVN8p8r302sxbqE/fmlWID278GQUUdA6NYPODz2HuF2+HyPHUt3pt5i1oDfuq7Xml+Oirv8D2MK2xy2jGlj+8gNcv/ia8ZhtkUUTO0s2YfdE3KKhc59lyzLv5Liz74e9gMBhUytk/vozXZt4CY32r6o+t2IrXL/4m0t9Rvy+6i6sw/xv34uOb70bI7YXXasfOx17FazNuQXNGvuqPrdmJ12d9E7uemE3XyoJv/Qpzr/0R3MMmSrv36gU3o2xrGqWLnnPpt7HhvmegiCL6Kuqw6Lv3452rf4DB2mb47U7seXoOXr3gZoaW+R8qo+TV/0eVTwIK4PwBwgdDMcBoEbA8fdGDZxASCwbzSX/7Ty9GV5BcNjudLMvu+Hd35Xz5Hy3nAlr6NHVGk4kGZxztOQbAMQpEMRqsUZblTwW0GA1uFL3HRIMmCaEQ0+5ooInRYIdCKMS0Mxq4kc/mYHQUOI4BC1IUhQHsicjoQR4/CdwwWkYPmiRwHFNHURRi7uhhxtNndzIgRCLPUzA7KtPZy+jtszsZsCCR50lvRR0d74iMvl2/w8WAEIk8T7pLqunYRWRGWrsYmfa8khiZCMhTRKanrIaRaTiZQ+dREgTSXVJN+xuRiYAFRWTqjmYSX3jsIjLdJdVUxtLVRyr2Hj8Pivc5lk8aW7c3QERRIiGO3QcEQYypK40CPBdd/i/6CJnNJnLZ7HSS02o+d+Xz5Xz5HMpnsf+fBcAxxkcYxe+P/lu0j/BpAJxjvjkEgWlHUZQYHyEaMFsShBj7Hw2IGHR7mP5KohjjR0QDIgc9XqZdSRSJx2xl6owGbqi3/6OBG9r7hxhfKejxxoIbtnUxMo6BYcZfCXl9DLhxBEBYP2+OgWHG/oe8PjJQ28TIDNQ0Mf6VY9DI2P+Qz0/BbPUyel/JMWikYIERmZasQgbceKCmiWnXMWhkQAhDPj9pziygwNURmZ7SakamOi2dSOF5jMhEwBgjMo3puf/boHjxiQnY9cRsrPzZI/TUcLCuGTsffZVSxUVuEet0OYy2ngFkLdqg3TSGaTGYHOOeAYaWTJYk1B4+zYDgmTt6mHxnkeOY00pAPeX0WrS89ZDHy1CZEULQU1rD3DorsozCDXuYduqPZ9FTTkA9oWw4kQ1XUD1dn5yapNKm6NrpLqlm+icEQyjdfpBpt3LvcUopFtGpPSp/rGBtbNSB/ibX73ChOi2dqVOyNY2hhhusbUZvuXYKLksSijbuZWTqjmYyp9XOQSMzB4B6I6/XsauoEsamdvrMB4LMaTUAVOw+ipBXu+EwtXUz0Rij6diSWcBQuDgHjQwWgshxzGk2IQSDtc3MDb3Xameo7mRRZKj6APVmk9OBJAZcHiZKQVEUZtwA9cbRrcuh5/wBDERhFnQVVTK3Bc6hETZyIcQxWAiEEPRV1sOvA3X0WmwxkSL6U35AXd96Wka/w8XkusmShKaMPCZaw9zezeTQhTzeGGrBtpxiuIe1WxVbzwA6dJEAnD+Aqr3HKfZEROcRHZ2Pc9DI5NAJwRCq959k8vl6y2qY3Hz3iAXlO4/QMC2R51F3JBO23iEqM1DTxNA9ei02FG7YS4EsIxE1+jkZbmxD5R4tT9DvcKFkSxqlLJIlCc2nC5h3b6S1C2fX7aYgLAGXB+U7DsMSnkdFltGWXYQ6XW6+uaMHeSu3QwjvUyGPF5V7jtObgAhmB3ND0jOAs2t30ZxFzudHzYF0NIfnWlEUdBVWIG/ldgqQae8bQuH6PTSHnvMHUHPwFM2FjOxrucu2UOwJ56ARJZv301wxIRhC/dEzOLt2F70t6KuoQ/7K7XR/cRnNKN12kObmCyEODSdykLtsC4RgSJ2P6kacXbsL/eGIDo/JivKdh1G6Vd3rRI5DU3oecpdtgWfEqobJ17WgaMNemifoMVtRsfso8lduhyyIEHkeTafykb9yG4xNHTS0vnjTflTtU2/ZIilfOUu3IOT2QhIEtGSeRcGanegurgIhBMbGNpRsOUCjNc6Xf20RJRk/fmIBZi/T1vvJgjo8+d42eoPtD3JYsCUD1S1aLnB5Qzd2ndTexWCIx+bDBQwIXlVzL8obtL3aFwjhSI5G4RVpZ8is4ZLY3X6UNWj7MCEE5V02iDqgNrufh9Gt7ZcKIRjxatFWAMBLMsw+9m/ukMDYH0mWIckK3GEfYdKYRMgCC66rhLwsTZ0QAgmwwH6yuYd9tg9D8eto9AQOYm8jU4drqQQRtd8SzMPgB7QcbqIo8BSxt+C+ukqIDs1XEhx2uMtYX8R84gSIzq55Gprga9f2fJnnMXzoGCMzcjwTgo4a1tfbD3MBa/9bt7C+yGB+KVy63HDO5UFr2kmmTu0OLYcbAExN7YxvEnC6mag+RZYZfwxQozH1vgnn8zP2nxDCRPkB6j6q9wWFEBfjU/ZV1DH+l8dsZfwVSRCYG3BAtVF6Cj2/w8XYf0WW0ZpdxKwxc0cPLLpxCnl9jG+lKAra80rB6XS09w0x9p8PBGPok7tLqpmxcw2bGNsochxqDmZQfJnIOA3Xa+PrMVsZ+y8JAuqPnWEiIocbWtF5VvOD/HYnyndqFICyJKH5VD6DsTTS2kXzqAHVLpdsTaM+TsQu95Zr0RmWzl6m3ZDXh/JdR+k8qphXZUxuvr1vCGfX7abfNpw/gKp9JzDS3KmNU3EVjZIDwlg8a3ZSXAYhGELtwQx0hX2ciM9TvHEfw89etFHDCRI5DvXHstB4UqMAjGDkRIC3PSYrSrYcoPMo8jwaTmSjbMdhKjNY24y8Fdto5ILXakfZ9kNoD+NeSYIQzpHfRcEthxvbULBmJ30H/HYnKnYfRe0h1ceRRREtZwqRs3QzxRAbaelE4fo96A1jZQWcblSF8XoMBgNkSUJbTjHyVmyl9Nqmtm4Ub9pPMZYCLg+q959E/optEDme+kkFq3dgOOyzWzp7Ubo1DRW71AiJkMeL2oMZyFmyGX67U43sOVuBs2t3oT1P9YGt3f0o235IpVwmBCGvD/VHMpG3fCusXf1QZBldRZUo2rCHwcr6R0rCuav8Z5aEpCQ8unMpBmubaV7HpV/9Mn788uOYcqmaSxkXH49vPPQrCj4FANOvugw33PkjBsnyi7d/lwlXn3rFJQyCZnxCAq74xk0Mkua0Ky5hPvISU1Jw4fVfYPo47cpLmXZSJozHpIu1PA+DwYDpV18WgxQ69bKLmXYmzJjGoGsmpY7BhBnTYIqE06UmYsqlFzH5OGOnTEJSqpYTE5+UiMmzLmTanXjRBUjQ5dZEkBsZHa6YxTyPmz5FQ9OEihQaQZGMlMmzZjJ5PWMmjmfGNy4+ns4R7cvM6Ux/k8amYsKMaUydKZddHKOjvi/xiQmj6DiDmbeU8WOhSOfScSqSx2n5QwkpyYiPQlpN1uUOASoqub7oc4cBdZNLmTCeqZOUOoZBfTUYwPwuURQmRymiI4PoSggzBqrMWEaGIq/q6+j6SwhB0pgUpi9EIUxfFFlR0UPDuWGEEBji4xkUWEWSVORV3XPKhHF0fasfburcRoosSipCuk4mcUwKM96KLDM6yYKI1HCOVUQmLj4eibrxlgSRor6rzwJSJoyje0UEXVXfrsQLDAqsxPFIGpOCxPB4q0wRMjN2Qoij+V6RNhKSEul4K4oS018hEGT6InI84uK0vhBCIAZDGDtlEnWghEBQxQYJ90XkeBBCMCY8doQQCIEQxk6dRPcczh9EQnISksaOoX1TJInmsJGwkUmZOB5x4feV9wcRl5BA51EWBEiCiHHTJlMZzutD8rhUOt5CIIi4OAPti8TzEML9j6DcBt1eJI5JUZFioTqvRFEwbpqKhi+JIoRACKmTJtDc+KDLg4SkRDqPfBgjJdIXWRTB+dQ8vsh4B5xuxMXH0/Hm/UHIooixUychLj4OiiQh6PYiKXUMfbcCTg9FzAUA3heAxPEYM2kCEpOTVJ5ctxeJKclUx4DDDaIoKpo/AM4XgBAMIWX8WCSljoEiywg43SoC8NRJAIsldr78C8q0yeNxYtWLMOrQ5+/+4Vcxc9pEJIVZGsalpuBPv/wuFB07yq03XImJ47U9KnVMMn78zS9h7Bhtr7vxmktgc2kfKuPHjsHN11/O/P71V13MfABNnTgWwkVT6bPBYMDVM8YjXmf/J41JRFAXTh9nMGBiCuumxRkMSI5n72ISR0ElB1TQXACYmJoYi1welwAYdH+LiwfiWTtnSI6yJUkpMCTo7E98PAyprF2LGzcRiNP6HJcyBkSXG2yIi0PC1AsYmYQJkxCXrO3fcckpSJg8mamTPGMGDLrc4MSJE2DQ+RmG+HikXDgzSmYa4pK1OgljxyJ5Ktvu+EtZf2vM1MlI0vsVKckYdyHb3wkXz6Q2ihAS4w/ExccxOcij2f/ElGQm1znaHo1my+MTE1lfhBAk62XCfYlGrNfb3NHsf0JyEuOzgbD2Xw7b9ohtpO3qbK4iyYyORJaRPHYMg6JOCGH6okgSY6cVWUZichKDExNtc6N9BqKoKOJ6/1EWpSj7L6oYMBH7H2Zn0o+vGLb/tA1BREJyEhLCPg4hBIooUhsAqAxUeqYYSVBxb5LHannjEi9g7GRdbnmIQ8r4sZQpRhYEde71fkXYfuqfE8ekUJsrCYI6Jzod+UAIqZMnUpsrBEOIT0qifVEkSR27KZqPw/v8SBk/lqKzC0FOZdAJ90WRJIgcrzLShAvn8yN5bCq1uUJQPdiK9FeRZfCBIFInT6TjzXn9SEhO0nyGYAiyJGHc1EkUT4jz+pEyYTz1KUMeH+Li46mOQjAEWRCo/VcUBSGPT+1LWMeg2wsYDBgbblcIhiByPFKnTEJ8QoIq4/ao715Y51A4lWBsuF0hGAIfCCJl4ngkpCRTBrP4xES67gIuDxRZUX0Gg0GV8QeQPH4sksepTEh+mwNx8fHUxwm6PJAEUe1LYgKEEAfO60di6hgk/rOg7P7hO/7PuXxSGAIfCJL095aTwo17aViKY2CYdBVV0rCUCN9mdMipz+6MDauNCr2NDs1VFCUmpOfThA5Fl2h+++jQW0JITOhtwOVmQm9kSSJBt4ekN4yQy2ank4IOa0y7nD8QExoUXSf6WeT5mNCg6L6EvL6Y8KJortRomdF0jP7tgMvNjK8kijEhSNHtcv5AzLx9Fh2j6wQ9Xmb+ZVmOCXWKluGDoRg+++g6n6Z8XuFon6Xdc4W9ExIb1hbz/BlC4xVFiflbTNgbx8WExsWExgdjQ+Oi24nmCo4JjRPFWD7hc4TGybIc+06Ew7L0v6NvV5blmNA4l9HM6MgHgsw7oCgK5Y+PFOewiXknhFCICWGLhI7ri8dsZfor8jxTR1EUMtzYxsyj12onjkEjfZYEgQzWNTPtDje1M+Ppd7iYEDZJFElXcRUjY2rrYkLj/E43ExonSxJpyylm1kd0yH3Q4yVtOcWMTHteCTMH1p4BJuQ+5PWR2sOnGQ7izrPlzDjY+gYpjy4h6hxW7j1G51GWZdJVXMW06xgYJhV7jp0Puf8cyyeNrdHiJG+uPERO5NfSv7X2GElxbQcRxTC/syCSIbODONxaCKcsy8xzpF5EJlKin0fbHz+Lj+ANsXsfJ8oMz7yiKDHc9JI8ug34+FQbuWx2OnH4eaJE+y+yFLWHykSRo/weIYrrXRRieee5KN72ILuHKqJAZD7Kv/KznOxSwM+0q0gSkfxsO6KH3XelUIjIUfafd7nY56h9WBYEIkTt8ZwzSmYUHycU1U4wxo/j/r99nIgf9/9bPq80t88jNW40v/lcPkOEP1xfzhUaT8joPkL070TXifYRoudQluVzhs/zgWBMyl30vEb7A0IoxNh/RVFifASPxcboKPJ8zJo6V8qdJAgxdSKc8/q+RYfcW7v7mTrmjh5mnoJuD2P/ZUliUu4IUW2sfhxCXh8Tli/LMpNyR4hqY/X+CucPUL57QtRx6i6pZnw9x6CRGFs66TMfCDIpd4qikN6KOsa/chnNjJ0WQiHScCKbrlVFUUh/dSOTIug2WUhzZoEmw3Gk7mgmCXq8VGagtolp12O2ksq9x6iOIs+ThhPZdA4URSFDDa2kMSPv3xdy7/f7z13pcy5JqWNw60O/gr13kJ4CjZs+FY0ncyiQBAAM1rYw4ToekxV5y7cyt4Y1aekY0dHJuYxmVOzSQmQURUHZ9oM0lBVQQ1U7z2oAN7IkofaQRr8FqCkAdh11GQCceGcpA1jSkV/GhBzJkoSjs1nAmML1e2Dp1EKbTG3dKNq4Txdyn4jDr85jbsEbT2Qz4UQhr48BLAOArIXr4TFrYe79lQ2o3s+Glh16+QPmuXzXUQzWaaHjrmETcqOA9E68vYQJs27LKWHCtSVBwJEoHc+u3U3pQQCVzqRkSxpT5/ArHzFhbXVHMtFTrIU5BlweZOgAEAEg8+O1TChZb1ktanWgd4QQHIzWccdhhlrNOWBE7vKtTJ1jbyxkgOdaswoZ4DmR53FszgJG5+iQ9Y78UibM3WO2MqHwiiyjJiqdoa+ynkkP8TtcMSHr5Ts1SjdADWXS0wKGvD4m7JoQguq0dBqSBKjhdPpwbiEYQvbijcyNU+PJHBrqDKgUIYXrtXQRkeeRtWAdPQEFVIA+fciay2imoC2Aeuuau2wLE3qohiVpYZFeiw2H/vYR1VGRZRSu3432XC3cr6+yHhm69e53uJD20gc0XUFRFJRsTWPAGgfrmrHn6TeojkG3B4dfnUdDDwkhqNh9lAHSG2npxPZH/oZQmJqP8/lxbM4CSgsYGdv9OuBIc0cPtj38EgXM5ANBnHh7Cc6GUz8IIag7monNDzxHwwptPQPY9seXaUpDBKzm2BuLaLtNGXlY/8un4Bmx0vnY/sjfKJBOBKxm+8MaSFvLmbNYe88TVEfn0Ah2PPoqzsxXQRMlQUDWwvVY/6un6Ty255Vi7d2P07A8l9GMnY/PxoG/vkfnMHvJJqz+xaOU1qirsAJr7noMReF0Io/Zil1PzMaWB5+HLEmQJQl5K7dh5U8foWu1u7gKa+9+HBnvrVDn3WrH7qfmYMN9f4bHZKVgNSvueIjuvb3ltVhz52PY8/QbAFQwxz1/fhNr73kSxqZ2ulaW/eh3OLtmF10ra+5+HNsf+Rs4rw9+hwv7nn0La+56HB15pVAUBcWb92PZbb9D+lx1TQ3UNGHt3Y9j28Mvw947iIDTjQPPv4vVP/8TatIyKNDUkh88gAPPv4v/tfKf4CNcdMFk3P7N6zFiddO/TZk4FoezqxEXp3FAZxY3oq1XC6Fo7jZiT4aWOiSIElbuzYY3oNm0uvYBnCnVpQ5xArYc0Sg7AaC0vgvtfVp0oDfA4UwZG3Z9ttUCUdKl3BGCHVWDTJ1mixeOgLafh0QZwx6Wcs7u55m9WZRkiLIMd1CAwQBMSEmAxLMyit8F6ELuwQcAr42pIw+w4fSyqRvEraOcC/khtLKh8cHKbCi63+IHusC119NnoihwnGDD3N1ns8AbNV+JNxlhP8P6IoObNjCgeM7iErirdYC2gSB6V21gZPo27URoRJeu2NCKwcOsTa1+ewHz3HUoHbZabW4DZiuqV7A+TsEHK8DrgecKytCWzvpxJ2d/zMgUb9gLi852mzt6UaizawGnm7X/isLQnQIqYLOego7z+WNC1qPTQ63d/Uy7Qohj7B4QTjPUpc85h0aY35YEAfmrtjM+ZkdBGQ11BsKUbbp0UUWWcXbtLvh1Ye59FXVMCqzf4cLpj1YzOpduTWP8r6H6FsavCHm8OPbGIupjkjDAsJ4yb6S1i+7VgBqyfuLtJRQwLjJOej/I0tWHvc++RX1MIcQh4/0VDPVxY3ouA7Jt7x/CridmIxD240SeR+bHaxkq3tasQuzTAf+5hk3Y/dQbNEVQFkVkL97I+JgdBWXY+vsXqI4ekxV7nn4DrWfUsPwIuNvhVz6iMt3FVdhw/zPUj/Na7dj77NsoDYPXRcB2Nz/4HN0r+irqsPG+P9O0PL/DhQPPv0v96AjY7rpfPkXTFQZqmrDhvmeofxhweZD24vvU5kZs3+qf/wkjLepaHW5oxcb7n0H+qh0AVN/q0MsfYOP9z9Jow4rdR7HqZ4/Q7zVjcwc23v8Mjs5ZqM6714fDr87DunufhHPIRMEDV/70j5SmztTWjY2/eRY7/vQqnfejr8/H6l88ioGaZgqyvPz2PyBnifpOm9u7sfH+Z7Hl9y8g4HCBDwRx/M1FWPnTP6LldIHqjx3JxIrbH8KR1z6ma2XTb/+CzQ88D2tnH4RgCCffWYoVdzxM6Z3rj2dh+e0PYe8zb0Hiedh6BrDpgeew4b5n0FNaQ324ZT/6PXJ0IJX/SPlMtHXvv/8+3nlHdVCLi4vx3e9+95/SmdHKJ1HSSIIAa/cALrj6MiY853+prM7rwuKsThS9dhsumZJ6boHz5Xw5X/7nC/kM1Dyj/S2GdifqmZBYaj5JFCktTOQ5PoqaL5pmhw+FkDxmDCNDFIWpE/L6MEYX7hn0eJGqo9CRRBFCMMT8zWdzYPz0qczzmEkTaP9kSYLf7sTEmVq4rb1/GNMu11J0/HYnDPFxGDt5EpXR0+EQQjDS0okf/PLO/ynauv8EH8HtC8LlDeCyC6fGUEb9r5Snd1WjvNeJhnd/8u/uyvlyvpwv/0fKZ/ERRpM5l4+gKAoIIZTSDRjFR4ii6lUUBYokMX+L9hG4QBDJqWNofxRFUVPixmkpFtE+AufzIz4pkfoViqIg6HSrIfPh4jFbGX+A8wcgCwLGTtHSAFxDJiZt2t47iMmXXUx15PwBBJ0emnasKAos7T343j0//9fS1rndbtx///04ePAg3nnnHRw9ehSrV68+t+DnUBKSktBTUo1F37mfnqg5B41Y/+unKVAHCVM56AHY/A4Xjr25KOamUQ8A4rc7URE+8dG3o79ZdxnN6C5hQXBKtqYxVCXuEUvMrfihVz5i2mnNKmROQmVJwr6/vM3I5CzdzICajbR2IXf5FiY/bu+zbzGnpzUHM5jIhJDHi8OvsSfGJ99dyoD29ZbVxADn7Xl6DvNctGkfM1bOoRGG+gMA0l56n7mhbz6dz9wiS4KA/VG3VlmLNjBge8amduSv3sHU2fvMm8wNfdX+EwwIS8DlwdHX2Zv/428tZoBQuourUK6LviCEYM+f32BkCtfvZqhh7P1DyPyYpZU48MJc5oa+KSOPOSkXeZ7SkERK5vy1TMTGUH1LDCDfnj+/wazNij3HmNN1Y1M7A0TD+fxojqLQqT18mrmht3T1MeB6QohjKHQAdY70WBPRoISSIMRQ6HQUlDGAPKNR6BSs3cUAL/aW1TD99dudMRQ6JVtZCp3B2mam3aDbgxPvLGVAcSr3Hmco9IzNHTizcD0zTifnLqM6Rt5p/Xtu7uhhojX4QBCnPlpNx46EqYb0lJa2ngHseXoOBTcSOQ5ZizeiRhet05JZgLQX36PPzkEj9j77FqXQEXkeuSu2ImeZdgvUnluCzQ9qN/QuoxkHXphLozxkUUTB2l1Mf7sKK7Dhvj9THT0mKw698hFdYxEwyg33/ZnK9JTWYNMDf6G34l6rHUdfn09PohVZRsnWNCz54QMU3Kivsh5b/vACysNz4rc7cezNRdj0G41Cr3znYSz94QP0NmmgpgnbH3mZ3rYHnG6cfHcpFn7r11BkGYqioGLPMSz78e8pWM1QfQt2PvYqdj36Kp33jA9W4sOv/Bx+m1ONfjhwEit+8jCNbhhubMOuJ1/HittVmsCQx4tTH63GRzf9AkN1LXTeV/38ERx9Xb2ZG2npxJ4/v4F5N98NMcSB8/mROX8t5n3tLjSezKURE2vuegw7HnkZgHoTsPfZt/De9XfAY7KB8wdwZuF6zLv5LhRv3EdP6Nfd+yRW/ewR/K+U/yQfYcLYFKzYlYU/v7+d/q26pQ/3PLcMYhgUT5JkLNlxGnkV2s1554AZy3dp9kqWFaw7kAuHW7Pb7X0mnCnRbnFFUWJu9QGgvmMQnQNm5m/vbc6Cy6sD1+tx4FS9FhmlEIIt5f2MTKPZC7vuhj4oyhhwBZk6Nh8XdUMvQZRkuIMiJqUmqrm8ITZqQvE5QCSRPhPOD+Jm+yv1sqCs8nA7FJdWh4T8EBoLmDqB0gz2hr6vHaEWzVciigL74e2MjDPnJPgRzTZyI8OwpR9h6vSvXsHc0DvOnoWrQrONUjCIrsXLGZnuVRvA6aIQXXVNGNjL3k5X/Y31RTp3H4a1WgOj85ssqJzPruH8N+ZD0PlxPTlFaD3C+nHHn2fpfAuWbYZV58eZ2rqRu3wLU2c0P64tDCQGaLeU+nLy3aVMpGXLmbPMDb1r2MRQ88qiyNgnQI2Cs/dr4z8qNe+2NMb/GqhuZED7Ai5PjG9VvusI438Zm9pZumefnxmDyA2qHuzY3NHD+KVCMITT89Yw/lfjyRwGlNreN8RST3McshZtYPyv1qxCpr+uYRMOvzqPvkeyKCJv5TYGQLDzbDnjV3hMVhx4YS6NtJQlCYXrdzMUuj2lNUh76X367LXaceiVj6iPqcgySrYcYPyg/qoGbPvjy5RiOeB049gbCykVtaIoKN91hPErhupbsO3hlyigc9Dtwcl3l1LqYxKmGtxw35+pjsamdmz/09/ot0LI60PG+yvozX/EXq782R9pFIKprRu7nnwdxZv3A1A/UDM/XoON9z9DZeqPncGqnz9CgfMsnb3Y+8ybOP7mIjqHWYs2YNF37oMiiiCEoDE9F2vuegx14bVp7e7Hvr+8ja1/eFGVCXHIWboZH998F1xDqo/TklmAdb98EjmLN9F5T3vxPSz9/m9hMBggchxyV2zF/FvvRU94Hluzi7Dhvj/jwPNzAai0ewdf/gAffuXn4P1BiDyP/NU7sPBbv6IguO15pdj4279gw69V38k5NILDr87De1+8HY4BIyRBwNl1u7D4u/fT2/aOgjJsfvA5LP7+b6FIElxGM47M/hjvf+kn6C2rgSyKKNywB0u+/1sc+tuH+KeUc8Xkd3Z2kvLycuZvhYWFpKOjg+zbt4/k5uZ+isj+z14ieQXRNAqREp2rwvkDMbk1o9FMRJfonJ3RcoHOlVPkd7iY35JlmVIlRUp0PgvnD9AcjE+q47Xamf5JgkC8Vjt5+UA9uWpOxqj0VUG3Jyb3N7qOe8TC6CCEQjG5PtEyfoeLyU2K4BT8PZmQzx9D4xVdx2OxxegYnVM0mo7R+U3n0pEPnltHn93J6PhJ+c368ml11OchiTx/Th0DLndMnte/jNJllDy2c1K6RGNRCEJMftm58tYkUYx5Z6PHNuT1xeQjRteJwX/w+dn3U5Ji6rhN7Hrh/AFmj5ElKWaOXEYzs6dw/gCzXmRZjslJcxnNzHvPB4LE1jfIyBhbOhkd3SMW5l3jA0Emd0yWZWJs7mDG022yML/NB0Okr7I+RsZjsdG/ecxWJh+eD4ZI59lyqmOkb5auPkams7CCPguhEOkoKKPvmqIoxNjSSQZqNAoaj8VGGtNz6XhHZPT5ZcaWTtKWq+XDea12UnPoFNVRCKl9i1DbKIpCRlq7SM2hUzEykXmLyETy7BVFIaa2LlK85QBdqxGZoYZWVYbjSOfZclK57zgjU7B2J80/jMhE2o3I5K3a/l+dQ/+f4iP0G20x/6coCnF7WTvoC8Tup+eithsNC+RcmDqj/W3EFoW/wUvEE2R/2xlg99SgIDE58rKiEF5kf1schXZPURTyk6VnyT2rw+s8OvddYil+FVkmihSFZ8Kze7MicESRosYmyPovsi8qb53niBxi2xHd7L4rej1E0dsJSSKC28XU4e3s/Ip+P5GCbLuchbXTnM3OYAdIHB+TVx+M8l84l5uIIdbH8UfV8Y2wNoD3BwgX5cd5Rslv1tsJSRRjaMdifByP99x+nMnCrMVP46uOiofzKXLdo9v5Z1HFRstE14n2EfhgKAa3Jjq3PfrbQAiFYvzz6Jz0aHwtIRRi2lEUJcYX9NkcLG4NxzH2VFGUmO8Xn93JtCtwHIOHo4QpT/U6+h0uxv6LPM/kpEdkonFr9BS0Is+TgZomqqOiKMTa3c/o5He6qd0jRJ3T3vJaqmNERm///U43g4cTkYn4t0qYLldv/wMuN2k5c5auO0kUSW9FHe2voijE1jvI5MMHXG7ScDKH+noRmUi7EZm6o5lUx6DbQxrTc2nOvySKpK+ynsHZsfUNkvJdR6g/G5EZqm9hZKoOnGRkSral0Xc4ItOaXcTIFKzdSXWMyET8tqDHSxrTc0nl3n8Ozs45b+j/9re/xeTDfe9730MwGMRtt92GH/3oR/+ck4VzlGNvLELIo+XiKoqCzPlrcWbBenpq6LXaUbH7KKVKANSTLn3OMefzo6+injnNtvUOMnm+Qohj8okBwGu2MafDAJibUwDwmG3gfBoNmSyKcA6w7dh7B5lTzqDLA7+dpYrR55ID6smh/sZbCIbgNprhDgqYlJoIg8FAc1UjxWdzqoiP4aLIMuy9bG6eY2CY3gACQMjrh8/C5tBFt+sxWcHrdBQ5np6WfaKOTvc5dXQPmxnsAz4QZOjZRuuL1+pgdJQlKQazwNE/xMwb5/Ux6+OTdBR0+ZJiiIvR0dYzwKyhgMPF5MOPpqNrcITV0R9kqPpG64vP6mDWpiyK6Iuisustq2Vo6rxmG9MOCaN96kv0s8TzTBuEEPA6Sj1ARU1nQq7DCKj6ol8bAJj3AVBvZ6LbjdCs6PsWoUgDwmimXnYPCro8bJg2xzM6EUKYcQNUNFOiQ7NWUdL9jEwE8Vzrvx8ir92OKbJMqe8iRZ8jGOk/r1s/JIx4Ht1/RdJuYkReAKcfB0Lgs9qZvoS8PoghbbxlUaSn5pHitdiZdSkEQoyOiiTBZ2X7G3C4KCUNoO5/eh2JosBj1vYFg8GAkNvLYIpIggi/TaPoIkTti/7d4/0Bdk+SZHjN7H7jt7vorQQAiMEQ/HatXUWW4RmxaPuLwYCAy8OsIYnnmXYJIfCabVRHQ1wcQl4/bddgMEAWJbiNZkoTaDAY4Lc5KD1OXFwcOH+Qjp3BYIAiK3AbLfS9McTFIeBwIRAeu7i4OHWvHmb3jv+28p/iI7ywYA+z9v1BDq8u2Y+DWRp+SGuPEftPl9MbekVRkF/ZBrNDW+8WhwfNPZrdJoSgpWcEvKCjTPMFYXGw/siwhX0XRVFCRSNL+zZk9ULS0dT5eZFSy9Hf97F7alCUIensKSEAr2sDAESFfVbCVJCuoIDJ4Rt6ElUHsghAl3FJZEB3Yw8AhIvav/kQIAk6EQkkwO6zis/F/BbhQ1CC7B4vOVjbLrkdUHS0eorAQ3Ky+xRvYqkiJI8Hkk/7baIoCI2wdTjjCBSdjyP5/eBtrP0P9A6wMlY7JJ2NknkBgah32NM/xNykc24Pgrp9CgCcPf2szJCJoboTAkF4jX/fx/F/Gj+un/XjfDYH4/MCsb6qua2b2VdlUVTR1nUl2kfQ3/pH+qLXB1B9BKaNQJBZC4qi0D2VykT5CBLHM/aIEBLjIwRdHoZBSg6nVOllgtH23+uHrLO5RJYZ2wioN+F6mysEOcbHIYoS02603ydxPKMjIQQBh5vti9vL+DiyKMXo6Lc5GB15f4AiygOq/YzQwupl9OOtIqlr7RJFgc/mYHQMON2MjhLPM/ZfibL/gOoX6f04JZyeptfZZ3VottFggBAIRq1lJcb/DThcdB7VG3ae+XYgRPXP9TqG3F76bWgwGCAJAjwmK6Ojz2qnOhoMBnA6+6/2X4bbaNbsh8GAgMNF/U5D2JYz/goBPCNWSGHKYkNcHIIuDx07Q1wcRI6HO+od95pt1HcyxMWB8/rgjfLJPms55wd9R0cHfvzjH8f83e1249lnn/2ndOLTlOH6VuSt2Eaf4+Li8OOXHsflt36F5mRMuGAaLrj6coa+atqVlzKLNXncWIgcH0XrYWD4wOPi4xjnFFA3Sf1mAAD9VSxgjKN/mFl8vC/AgHsBwHBjOyRdfzwmK+WABtSPUn0YMwBYu/qZj5OAywNrVz9cQQGTUtU8ksHaZsbAuIZGmMUncjwTxgQAptZuZuPx25wxH8TROtp7B5kNjPcHYI7Scai+lTEO7hELE84tiyIDrAeoITl6HYMuL2zdrKEdrGlmDgpcgyNMyoAY4hgucqqjzhD5rA7mkIUQgoHqJkbG1jMQo2PMPNa3MmHtnhELBSMD1BD1IR0vqqpjH7NpB5xuBogGAAaqmxin1DFgZA4ghGAIxjAXaaSMtHQyxsxntcM5qK0pt9HMPMuiiL6Kelafxnambz6bg5lXRZbRdbac6ZuxuYNZYwGnmwnBUxQFXUWVTN9Mbd2MziGvD50FWqgqIQTdxdXMe2Tt6oOxUQPJ4QNBtJwpZELue0qqmUMXe98QA2YjhDi0ZJ5ldOwprWVAilxDI2jLKqQ6SoKAltMFjI59FfXM++kymtF8uoB+hMqiiJbMs4zTNVDdyABUei02NKXnUoOiyDKaT+XDqAPmHKxtRltWEf0g9tudaDieTfcKRZbRfLqAmcfh+la0ZJ6lRjPgdKPu6Bnq3CmKgpbMsyzffTgEMqJj0O1B3eFMDNW10rFtyTyLtuxiquNISycaT2TT0L6Q14faQ6fQFQ7bJ4Sg9cxZtJ4ppPNobu9B/ZFM+n5y/gBq0tLRll0ERZZBCEFbdjFaThdQHS2dvag9fBr9YR35QBA1aWoIasjjAyEE7TklaDqZC2sYNNTWM4CatAwNPDAYQs2BdLRmFaqOACFozy1Bw7EsDIX3IFvvIKr2nUB7bgmEEBdOSTmJ5tMFdB7b80pRf/QMesJpVvb+IVTuOYb23BL47S6IHIfqA+loysiDKZxK0Xm2ArWHMxmwxv/G8p/gI4Q4AacKG5BZrO3l41JT8Npjd+LqSzWq2C9eeRGmT5mAhDBFZ1xcHC6ZOZXy0gPApPGp8Ac0x9lgMEAQRMj6j1QATm+AqWO2u5k+BTgBrT3sB2bbgBUhXvv4cvoFmNzsh0i/k/3g8XISeB1wnqQoCAmsLyJICrM3E0IgKwrcQRGTwz6CnnMeAIgkAPqPfFkERPYDLZqXnoR8IALHyBAv+4EsO83hwwK1KAEvZJ9ba0NRwBv7GRnRaoIS1H1EBwPgzcNMnWBPN+WsBgDeZoXg0DnlgoBAF2unA339kHX2X3C6ERxiL1lc9ay/5R8YBqdrVwoG4epg27U3d0DWfXQGzDb4dPzwsiTBFOXjOHoGGB8n5PbC1s1+wEf7cc5B4zn9OHNbrB/n6Gf9uGgfx943xPg4prZu5mMr6PYwvlTExurXmLWrTz0EDRfOH0C/LuWUEILe8jqmb47+YebQQghxdK+OlL7Kesb/dg2NMP6iJAhozy1hPvoHqpsYv85rtqG7SAuVlyUJ7TklzPgP1rUwAIM+mwOtmWepjhFOef3F0nBDG/ordWkGTjdaThdQHRVFQVtOCXOZM9LcwegY8njRlJEHX1hH1Y4VM/6iqa0bLZlnqY6cz4+G49lwDmigfu15pYyPY+3qQ/Pps/SDkg8E0XAsi/pxhBB05JehLauI6mjrGUBTei48YR2FEIf6o2cYv7+rsBJt2cVUR8fAMOqPZcEa9s9FnkfdkUx06Xyc7uJqtJwppAfgzkEjag+fpn6cJAioO5KJ9pwS+q3QU1KNpox8Oo8uoxk1aenoK1fXlCyKqD+SifacYnpo3ltWi4YTOTC1qT6Ox2RFzYF0tOeUqHugJKHuSCZaMs/StdpXUY/6Y1nUj/NabKjaexxtOSUqza0kof7oGTSfyqfz2F9Zj9pDp+mailwet+cUw2e1Q5Fl1B89g6b0XBgb1fdzoLoRNWlq6rMsivDbnajcfQxtWUVwDBihyDIajmWh4Xg21fEfLecExfvqV7+KurrRf+zaa69FR0fHqP/3zypXX301urq68OKELyMuPg4f9RcjdZLKo9hZUIbxM6bjwi9eHQPG8L9QfrSkAFNSk3DomW//u7tyvpwv58vfKeQzgswA+Lt1RgOiI4SwwDOyTJlAANW50QPVEUKgSBLDQyyLYsyzIT6eaTcavE4IcQwvsSxJYV5hrQ7nDzDANJzPT/ngI30VQhwLXuP2IHWSxg8c8vqQNCaF9k9RFARdHozTceV6rXZMuGAa87sghP6Woijwmm2YdJH2secaNmHSxTPp+PKBIPhAkLZDCIG9bwjTr7yUkRk7ZZLGyRvi4LXYMO3yS6iMqbUL37/3F/+1oHj/CT7CqdxifPmXb+Dm6y9H6e63VY5lQURhTQeuuWwmLrto2rkb+i8rQUHC9e+cwZ++fTnm3vOlf3d3zpfz5Xz5O+Wz2P9P41ecC5gOOLePoMgyYDAwctE+wqcBr4v2EYRgCIljUhjWMSEYQvJYDeQ72kcQQhzi4uNou2oEh5fxEQJON8ZOmUSfRY6DLEq0HUIIfDYH4yN4LTaMmzaFjoMkCAh5fBQ4lxAC19AIplyqAd75bA4kjkmh/oosivCYrEwdS2cvLvjCFVRHv8MFRZbpb8uSBFt3P757188+f1C86dOno7KyctT/G6NDFfw8S8jjBe8PgPcHkbtMBdAwGAwYN20KshaupwMV8nix64nZzA1gd3EVSrdp9GdCiEP2kk3MSWN/VQOG6luYOnpAMEANWdKDbADAmrsfZ56zFm9kqOxcwybsfeZNps6W3/+VCfOpO5KJkq1a/2RJwrpfPcXIHJ2zAEbdaelwQyuOvbkoDHijLuq19z7BnOwWbdpHATQiY7PlDy8w7e5+ag4T8tKeV4qcKAq6NXc9xjyfWbCOAQlxDAzHgPhteuAvzK14zcEMhiZFFkWs//XTjMzhV+fFAKGdfHcpU2ftPU8wN/Rn1+1i5ing8mDbH19mZHY9MZuhrWvNLkLeSi3SgxCCtfc8wcjogdAA9QbvwAtzmTobf/sXJjS4av8JBmBN5HlsCIOERMrBlz9gAO36KuuR8f4Kps6aux9n1mb+6h0MHZ7f7sSOR19hZLb/6W/MaXvz6XwGbG80HdPfW87cpls6exmAtaDbw4DMkTBYjb5vIy2dzHvD+QMM2A4JA/QFdOFblq4+tGZp9E5CiEOhjuoGUAEGI4BxgLrG9OA1Is/jzIJ1TIREW04xA4rjMpqZ91UWReQs3cxEoHQVVTJ7g9diQ9qL7zEn9Pmrd6BDF0HQV1HHAF36HS7seXoODamP0Lzo2x2oacKux1+jzwGXB/v+8jZDh1e24xBOvqOt9+HGNqz86R/pDX3I60PaS+9TsB0SBgLcrlvvI61dWPaj39F0Ic4fwOHXPqY0e5E5XPy931AZc0cPVv70j+goUPctPhDEsTcWYvdTc6hM/bEzmHv9HTTEztrdj9V3PkppJYUQh5Nzl2HlTx6m7Tam5+Lda26jN+f2viGsvecJnHh7CQDVwGZ8sBLvXX8HDctrySzA3C/ejtYz6vqIgJxue0il2VMpgdZgzqxv0Zv/1uwivHf97SgOA5+6hk3Y+Nu/YMn3fgtANcpnFq7H7AtvpVRI7XmleP/LP8GJtxarMkYzNj/4HN770k/A+fx0rcy+8FYK0Nd5thwf3PgzOt4ekxVbH3oRb1z6bTiHRlQaoeVbMPvCW1AUpljqKqrER1/9BZb96Pf4by7/CT7CsFm97arvGERGobqvJSclguNF7DypRaT0GW343Wtracg9IQT7TpczoHhWpxebDxfQZ0IIjubWMKB4FocHRTXsQcXa/bnILtNue21OL56cy9KdPr8qCy6fZjdKumw4XK3tSYQQrC7uZWRqht2w+bWovqAgo9fBhilbvCE21UaUYPWqN/+TU5NUULwgGyoseywsKF7IC+Jkb8WlDvb2VOpvguzQRbiF/OCrWIC1QF4aC4rX3YRgvTYHRFFg28naPUf6fvDD/ZqMcRCWA9uZOr0fzwXRpfDYMk/DWXRW0ycYRPs7LMBdx4cLwJm0W2RnZQ16N7DtVv7xOea5fe02WEu09RwYsaD0b3OZOtlP/I0Bxes6kYXmnRpwqyJJOPgAG52S885iWHR+nKmxDZlvL2bqbPn1U4wfV7J5Pxr0fpzXhy2//ysjs/upOcwtckf+5+THHTrFgNPaegcZ8GCR5xmfE1CB5/T+l2vYxNhpWRRjgJi7iioxrIvI81psqNx7nD4rsoyz63YxkX99lfWMX+F3uBiQ2QjYboQqFlBB5PR2OuTx4uicBfQ9ithYJqKtpZMBgY7Y2AgoYcTG6n16S2cvAy4tBEM48fYSertOwgCqJ99dRuvYegex4b4/05QGkVMp9CIUtIDq5+ntv2NgGOt+9RSNyJMEAZkfr2F8zLacYiz5/m+pjhHbFwEqlEURWYs3YmcYiBZQbd9HX70TwbCPE7F9EQq6CIXe0h8+SGW6S6ox72t30ig4r9WOnY+9SmmwIxR6c794OyRe3dt6y2vx8dfvRn2Y1tBvd2LXk69jfRiITpFlFG7YgzmzvknXe39VA+Z/45f0uzDij330tTtVGUVByZYDmHPJt9EbvgUfrG3Gou/ch7QXVEDBiD/29lU/QMjjU2n3th/EnEu+jZo0leJ6qL4Fi7/3G6z/lfrdEnR7cOCFuZh94a2wh9Nvy3cdwZxLv03BDY1N7Vjyg99i4bfvUw8HvD4cfPkDvDbzFnSdraDr643LvoODL7HU2Z+5nCvJvri4mFxxxRUkLy+P+XtbWxu59dZbzyX+D5errrqKOAaN5MyiDeStq74fA2I1GhDN/0KRZYVc8Xo6eSWt/tyVz5fz5Xz5t5ZPA5j1rwQ3jJaJATeMAioSeT4W3DAKqCgalEjkeQYAUVEUEnCxgFR+p5vRUeT5WBAiCwuGFQ0+KvI8A+qjKAoDMBT5Hf1vizzPgBBGAIX0OvodLgaASuR5BoQwIqMHN/Q7XMTc0cPI9FbU/VeD4v0n+Ahl9V1k9tID5MFX1xC7iwXH/F/1EZqG3eSy2elkR2nfv7sr58v5cr6co3xWHyG6fC7ghpIUC24Y5SNEgx3LkhQLbhzlI4R8/nOCG0cDF4Z8fua3ZEkaFVxar2PI52fsvyxJxDk0wsg4h0YYPyjk8xP3iIWR0dv2iIzeXwn5/AwIsSxJZKihldHRMWgkzmETIzNU3/KvAcX7zne+gw0bNuDhhx/GTTfdhMcffxx/+tOf8IMf/ABz587955wqnKNMueQi/PAvf4RjwIiEZC18o2L3UWx7+CV62iQEQ8j4YCUcA9op82BdM6V6AtQTqIo9x9ibxtYuhjINAEq3H2ToNkxt3TG39tE39k0ZeRjR5eT47U7mpA4ACtbsjDlZ1N8AypLEnCwCQPWBkwxIn71/CEUHTkEhwOSx6njkLN3MnOx25Jcy9HJ8IBhDkVay5QAD1mVs7mAoxUbTsfFkDnOT7rXamVNbAMhftZ25ve4tr2VAWWRRjKFrqdp3HC5dPpatd5Ch8wOA7CWbmBv69twSJp+Z8/ljqNWKNu1jaNOMTe1oOaOd6hNCkLV4IyNTfzyLuUn3mK3MyWhER5HXbk16SmsYGkNJEJC7gr2dqdh9lImIsHb3o+5oJlMna/FGZm22ZhUyt+AhjxdFm/axOm7cS2nTAPU0UX8KPpqOdUcymUgW94iFOQUHgNwVW5lb8O7iKob+RuR5JtpB5Hnm1h9Qb6f1+BQ+m4OJNpEliVn/gLoO9Wsh4PIwuWKKLKPlzFkGxM/c0cPc6oe8PmaeFUUJ5ztruXm23kFmzvhAEDUHM+gzIQRdRZUMZaRzaISh3RFCHCr3Hqc3GYQQ9JbXMv11Gc3M+hF5HjUHM+g+RQjBQE0TmnT7i9diw9m1uyj4iyQIqD92htLAAGqkjj7yxWdzoGD1DvpOy6KIxvRceuMdGducZdq7F3C6Ubh+Nywd6s2FLEloPp2Pyr0araG5vRunPlxN8/mCbg+KN++nNzyKLKM1uwj5K7dTGUtnL05/tJqu95DHi9JtB1F/TKPd6cgvRfrcZVRHW88AzsxfR2/SOZ8fFbuOoHjTfirTebYcx95YSIGUVHqijWjLUW9ROH8AlXuPI3P+OirTXVyF428ugr1XvQl1DAwjd9kWVO9Xox34QBDVB07i2BuLIAsqhU5vWQ1OvruM0pA6h0aQt3I7CsJUmkIwhJqDGTj86jxKoddXUYeM91fQ9eEymlGweiel6vtvLf8JPsI3v3I1fvmjr6G524ipk9SwSllW8N66Y5i3SaOQMtncmLPiICQdHs7pokbUtev2Ql8Qx/NZ4NHC6g54fGxu+9KdmcxenVXajMZO7bbd4wsyN/0AsCunFT4dCF6n2YeqfhZMKqeTBaAacAXh5bW9TpAU2AMscJ4nJDB9kWQZTr9qgyeFb+hl3a05AChBD5NXT4QQSIDFDpJHuthn2xAUn5ORkfpYnB2+rQJE1PonmocgDOjysRUF3uIzjIy/rhyiQ7ONosMGT0UhU8eWcZTJofc2NcDfod3kyjwP02GWks50Ih2C2639Tk8fbPlsu9E39uacQnh1OfOcw4WevSyFXuuWvZB0fpylphHDRZqPo8gyalZvY2UOZcCjw0tyDxjRfCiDqVO4nPXjuvLLMBjlxxWO4sfpI/RGWjoZnxf4jH7c6h2MH9dXUcf6caP4qlX7jjN4Sfa+ISZqL+j2MPY/sj/ri7W7H07dOHH+ABMxSQhBR0EZ4385BoaZdoVgiKH7I4Sgp7SGwVxyj1gY+y/yPOqOZjI39APVjQx+ktdqZ8ZWEgTUHc1kALuHG1qZdv12J+NbyZKExvRcxv8aae1i7H/A5UHRpn0UJ0iRZbRmFaK/sp7WsXT2MnMW8vpQsuUAxVxQFAXteaVoPl1A69h6BpC7fCuNauZ8fpTtOERxGRRFQVdhBcp3af6KY2AYZxasp98tfCCIij3HKC4AIQTdJdXI0/n0zqERZC/eCEc4H14IhlB94CRqw/4VtZfvaVSULqMZOcu20O8WkeNQc+gUzq7bzczHibcWU5wAj9mK/FXbqY6ROTz90WoYDAYQQjBY24z0d5fRyIWIb1W+8widw4YT2Tj6+gKIHA9CCIYbWnHqg5V0bXqtdhSu30MjAWRRRFNGHo7Mng93GDvL2NyBzHlrUHckk8578aZ9OPH2EhBZhiyKaD6dj+NvLqY+zkhLJ87MX4eijaxP/1lLwrmrAHfccQd6e3uRnp6OhoYGjB8/HrNnz8YXv/jFf0onPk1JTEnG9KsuxUhzB6785tcAAN946Fe45rZv0cWZlDoGP3j2YYyZOJ7KXXLTlzD1cu1li09MxI13/5jJMZl53VUMwAYAXHj9F5AyQcvbGDdtMqLLFd+4iXmeduWlTL3kcam4+IZrmTqzbroeCSlaTumki2ZQlEQAiE9IwGU338DIzLj2SqRO1vJDxk6eiORLZgENw5iUquawXHbLjUwOzJRLL2bAARNTkjHrK+x8XfTla5A0VguJHH/BVMQnsksiRserLsO4cE4JAIyZMA4XXv8Fps4lX/0SEvU6XjyTMVLxiYm4NFrH665i5m3slIm44AuXM3Uuv+VGJodn8qUXMbm2iWNScPGNrI4X33AtzW+N6Kg/FDIYDLji1q8wMhdcfTmTjztmwnjMvO4qps6sm65ncoMmXTyD+f/4xERc+rUvM3+LXlNjp07GBV+4gqlzxa1fYdbm1MtnMTJJqWNw8Zev+bs6TpgxHUm6HKRRdfzC5UjV5RiNmTgeM669kqlz6de+zOo4ayYz/glJSYyO8YmJmHLpRUwbUy69CAlJWp5VyvixjH5x8fFMTjIATJw5HfE6maTUFEy+5EJNn7g4XHD15TDo+jJ++lQG6TcxJRnTdO0aDAZMveIS5p1InTyR6Ut8YgJmXHMFk4M2edaFzDuSMn4splym5UfFJ8RjxjVXIC5Be/cmzJwOokOhThmXyqzluPh4TLvyUmbtjps2GXHxmj6JY1LUNRfuhyEuDlMuvRhjJk1g+j/9qssYnWdcdxVd34a4OEyeNZNx9MdMZNdyfGICpl99OV1jBoMBEy+8AAm6vPfkcWNx4fVXUx3jEhIw7YpLMHbqJE3nC6bigmu0tZw0NhUzv3g1klJTqMxU3bgB6vq/6MvXUh0TUpJxwTVX0L0uLj4eky6eyayF1MkTcdGXr6X7VMQujA/no8XFxWHiTBVXRa/zhV+8Gsnj1fFOSE7C1MtnaTmKcXEYf8E0XHzDtTDEqU5A8rixmHHNFRg3bQodpymXXKjNUTjl6+IbrkNCSjIIIUgam4rpV1+O8Reo+2N8QjwmXfz/2PvKMDuOK+333js8QtuSLDPHMYScxMlmNxvcwCbZwIbtsOPYjpllZsuy0GJmZuYZjTQzGmbmucx8m7u+H3emu0/fsaQ4lpPsp3oeP0pNqurWqa6uc7rOOe87CZfddhPQoV+w/V8s/ww2wi3XX4Yeuw8cLyI/Lwc2mxUv3PsDeAL6he7kCePw6N3f0kDxAOCbX7wVnEH/jxtdgK99ns7787dfh2xDHwD43K3XkvPjmssvwdhR+lmRn5eD22+8kvS5+aqLkJ+r69iLR+UgP0cf12Kx4JrxNE1hTF4W8gxng81qQb5pLrlZVnquWiyIcGlDefyQjWCxUd1uycoFjLm0tiwAebTNKGr3WApGp/sNl6wcWMZQfALbRZcCNv2dtY4aA5any2SxWpF7BdV72RMnw1qg6zlrQSFyL6XnRf61N8BisHFyJ0wkMlmzs1F4A7VFCq+/DjZD2keOQecNl3GforZIwVWXI/ciXe7sUYUYe/MNpM3Ft94Mm8HGKbx0IhSDHWe12TDp01T/X3Tjtcgz2Dh548fgYpP+v+IOaseNv+oyYi9m5+XicrMdd/vHkDtK1/ejJlxEdAlwbnbcpR+nMl75qVuIrTT2skmEmcWWlYWrP/sJ0mckO26SQS/kFhZg7OSJWt1isRA9DQCjJ1xE0N2zc3Mw/kpqV0y4/mqS410wfizR7bac7Az9f9FVlxE7KW90IcZfcSmRZ9LHrid9xkyeCJvhXcspyMcl1+rvtNVmw8QbroHNYCeNmnAxcg0539n5eUT/W6xWXHLtldQWvGgsVFnf79m5Obj05ut1G8diwbjLLyUy5o0ZhYk36OPasrMx8UYKCj528kRIvH4pkzu6EJd+/AbNxrFlZ+GS667SdK7FYsGoCRcTez2nIB+Xfvx6bb2tNisuvvpyYheNungcWbuc/DxM+th1yB2ycSw2K8ZdMZkAgheMH4vJt96oyZidl4uJN1yNwmHbe8gWMV7i5Y0Zhcm33qTtS1t2dtpGHq3bL6MnXqLJaJS5YMh2smVnY/xVl0EyXMildfnHtHcvp7AAE2+8Vtfl2dkYd8WlxMYsvGgsLr/tJmTnp/X/sM2ZN3pYZhvGTJ6o2ziMoWDcGEz++PUovGisJvPF11yRtqXoHecHK3+3j/88l+EwhKqNu9mCH9/LShav1/6/tqOnWP2uw1pohSQIzNHUTng7hRSXwfNu5tNmjJEQCMYyuT1FjssI9zf3MYeCqqpKQjZG6sPFExl8meY2I3G0lzb0s6uf3svWnR4Ysc9IPPTmNuawFCHFZYS3mPtkcLTL8jnx0JufQYaMHl8GR7uZo9XcJxmOnJWH3lwfiYc+Q0Z/kITeKLKcwT2a8Rxj8bPKaN5T58JDnwhRGVVVzWhj/h0hmcoIbTa3ifkCREZZkjJCmzP2VDSWEQ6VIaPL9N7w/FnTZM4l1GwkDuh/WDi6iSNXEoSMcc3hZ+Z9KkvSWcPRUtEYkXHEcDTTXuZicbp3FSVj/c17mU8kyd59vz1mXF8hxWWEuRv5bhlL72WjTCLHZYS5G0PYh+dmHFcSBOZs7iB97PUtRMaYL0DC3GRRZH2VNBXJ0dRO1iERDGscs4yln0f78VKy3q7WLiJTIhRhnSUVpE/L4RJyzno6ethArc61m4pEWcPuI/+nQ+7/0WV4bVftOslu+t5TrLY1vRdUVWWbD1WwsjqdqzkSS7LmbgeTDbzt0XiKJVImbmwTD70gSswfoue702uyB6IJljSNY27jCVGdzIkyi3H0zAmbeOk5ifLQq6rKRPnsPPSry/rY1U/vZY329BlxVh56dSQeenpGmXnoVVVlaoqeSUoimtHHzOeNFAkAAQAASURBVEMvR8O0HovQcSWJSaY2YpDaA/JIPPQ+Mw+9n8go8zwTI6Yz02S/CKEIk4089IrCOBO/fdLEQy8mkkww6f+4WZd7/Uwx2XEJk41j5q7nIjEmmOy4yAg2zvmw40a0VT8iO+5DSUcz1UdscxZ7YKS/jRSObh7HbCOYdb2iKBltzGvAJ5Km91Md0UYgY6Q4Mq6qqhk2gtkeEHk+Q/+bbQTzN4gkCBn24jDPu/F3jPaKLEks0G8nbbxdfUTGRChCfluRZeZu6yJ9PJ29ZD1TkWhGmLuR754xxnzd/WQfcrE4sze06n0UhXWdqiLP0d83SPQ/n0iyrlNVWl1VVdZdWk2+34KDTqL/hWSKNe0/rsmoqirrKa8h6xByuFl7UdlHE3L/z1J83QOIur0aJQAAXPuFTyPq8mo301k5OXC3dhF+xIQ/iN5yPVxHVVXUbjtAuaYTSRyfRcOjTy5aT+hCHI3taNh1hLTZ/9ocUq/feRgOw/yibh9OLd1I2hybuYyA4vWW12rhokA6HGcYxGq4VK7bScJzvF39qDyQ9vgM374ffHMeuVVrPXySUCFwsTiK5tAQsJOL15MQJEd9Cxr3HD2zjDsOwWWg14q6fShduom0OfLuYgKm0nOqCh0GgDVZFHFoKCR2uFSs3anRYAFpirfqTXtJmwNvzCUh9y0HT6DPEIKUDEdR9N5K0qdk4ToCyjJoCm0eScbabQdI+HbY4UaZKXXiyLRF5Oaz80QFoe2QBAGH31lI+pxevR3Bfj0dxNPeQ0K8h+fCDB7VlgPFJHUiGYqgeN5q0ufE/DUk5K6/qgHN+4u1OmMMBwxALgBQs2U/oaUL290oX0lD7g6/s5CEtXUWn0aXgQpG5HgcMYXyl6/cQmgY3S1dqDWE3MV8Afo+Kgrqd9Kryf6qBpICkwxH0WwIc1NVFZXrdpLbUkdjGxmXi8UJkB5jDNWb9hA+VXdbN9nvQjKFY7NXkJC7+p2HyJnj6+5H+QodxEfkeByetpicOU37jqPNkPIQ6LfjkGEvSIKAI+8uhr9XD89tPVyCCsN8ww43dj77jhaOJosijs1aTmTsKCrDEUMoZcTlxbYn3kDMm97viiyj6L2VGsgMkE6b2PbEm1o95vVj25NvapR5acChtShZqAMV9pbXYMN9z2t8tnF/ENufeks7t1RFwcnF67HXAOrTX9WAdfdO0WjfkqEIdjwzFRVDoXyqqqJsxRZsuO85LXVisLYZa+95VpMxFYlixzNTtT2mqirKV23Fmnt0ME9HQyvW/Olp1A3JyEVj2DllGrY+9jqA9DOsWLsDq3//pBbm5mzuwOo/PoXieenQVS4Wx84p07Du3ufARWNgjKFqwy6s/O3jaBsCWnK1dmH1H57UgAv5eAK7X5iOtfc8A393f3p/bd6L5b9+RJPR096N1X94Chvup2BTF8r5KXtO1GPc6AI0daXfK4vFgi984gY4/frZWJifi9LaTlituv7vGvCgc8CQ4sMJ2H+KhpG39rqw/Wg1+dsbi/eQs3q/KXTfH4ph0RYa+rzyWCciBoC7Nk8MFX0G6rURQu4HwxzihpB7QVYRSNKIwhgvmULuVYSG2owb4qFXBJoywFJRwEhlJ3BAgobcqy4K/Kf67WBxA2eykILUW0/aiG2nCbWd5B6EOKCfoUxVESuhei9RdxqST38GUtCH2OkTpI1v1yYCihdrqEWyTU9HU7gU3FspwJpn9x6IPgO1alcP/MeKSZue+UtI3XvoOGKtuty8P4ieVVT/ty1cDcnAn+6rrIOzWLdxVFlGzQwa5t6xZS8iBjsu3DuIlk27SZuT78ynIfdHT2LQYMfxsThOmFL5SpdsoLZqQysadptsVRP4bv0OqteiHr+W2jRcjs1YekY7TpGks9pxvq5+LbVpuJjtuNZDJVpqE5DWy0bwOiGZIsDAw3rZSEft7xkgulHieVRtoGvbfKCIpK6GBp1E/8uiiJIFa8l71H68jKS5RVxelBn0vyLLKJ63mvC2d52sRIshzD3mC+DIu/oeUxUFpxav19LcgHQ6Q5nB/koEw9jz0kxNxmFwt64SHaxxsLYZh6bqdkUyHMXuF6ZrvOeMMVSs2a6FuQNpO2nr469rMnLRGPa8OENLXU3rvt04bkifc7V0YtODL2ky8okk9r4yW5ORDQEB7poyTevj6ejBxgdegHcIFFdIprDv1TmajckYQ92Og1j/l+c0Gb1dfdhw//OajGKKw/7X3yPfQ417jmLNH59G2JE+K/y9g1h//wuajSnxPA6+NR8bH3xJk7FpfxFW/+FJ7TkG+u3YcP8LWoqgJAg4PHUB1t87RbOjWw6dwKrfPo7mofS50KATG+5/HjuffQdAeq8cfmch1vzxKS0lo+3oKay4+1GULU/vj7DDjfX3P4/19z0PWRQhiyKOvLsYq373hCZjR1EZlv/6YRwyffN90HJW2rp/dLnhhhvQ3d2NQ1MXYMczU3HFJz+O5+vTudVmCoT/n8qOOgce3dSADfd8AV+8/uKzd7hQLpQL5UL5P1rYOdD5nI2+h41A+acoCmyGEFhZkpBloOphjEGRJErNw/PIyTNQ83Acbrn99v+ztHX/6DJsI/zyqfnYW1yPu77/b1jwwu/AGAMvSMjPyzn7IP8Hy6t7WrG8tA/Nr3wLo3LPKbvyQrlQLpQL5f9k+TBsBLM9MNLfzDaCLEmwmih/M2yEVAq3fOIT55+27p+lDOdO+XsGNA+3o6EVS3/5IKGZOvzuYgKKFxp0ktvK4Zsh4z0GH09kUHbsfG4aAeboLa/JAFwzU6SVLFybAYa1c8o7pM2GB14gHvqm/UUaFRWQvvFbbaC4AoCDb88nwBzO5g6U7ykGAIwvTG+c1X94ktzsVq7fRUDBuGgMmx56mYy7/WmdbgNIe+/MgGsrf0tlLJ63mnjFQ4NOjYpquKy/7zkC/Ne45yjxRMuiiDX3PEP67H/9PQJE52ho1egftLn87nFys3t6zXYC/pYMRbD5kVdIn61PvEE89J0nTqN0GY0oMMt4fM4K4hX39w5iz8szSZt19z5LPPT1uw5rYBhA+tZvmPpruOx9ZRaJtBisbc4AB1z5u8fJ3ixbuQUdRfqteNwfxNbHXyd9tjz2GvHQtx8vI2ApjDGs/N3jpM/RmUsJ5Yyvux/7TJEKa+55hnjo67YfJLQ0Isdj3V+mkD67X5yBQL/uee6vasiImjCvd/rmWY9uiHn92PbUW1qdTyQJJc3wO2z00Hu7+ghwjsjxqNpAQf4a9x6jgD39dnJDLwlCxlxbj5wkeyHscJOoG0WScGT6EgJK2FFcTsaNenw48OY8vY8s4/icFeSd7imrwckh6jUgfau/+dFXNe+1qigoWbiW7Pf+qgZC7ZgIhrHp4Zc1QMHhW30jMOdgbTPW/OlprZ6KRLH1iTc0sEPGGE6v3kao+RyNbVj0v/dp5xYXi2PHM29r68uG6FeM55arpROLf3q/FunCxxPY9fy7OPjWPK1P9ea9mP1fd2vnlqe9G0t/+aC2dkIyhT0vzyQUenXbD+Ld//ipRlvj7erD8rsewfEhr9UwMOqsb/xa61O/6zCm/+fP0DMEcOPvGcDK3z6mnYcix+PAm/Pw2ie+DXHII9W49xhmfu2XOD3kUQj02bH6D09i/hBVqcTzOPj2fLz0sa/B35P2SDUfKMKsb/wa+15Or12g34419zyD1z/5XVwo57/YrFYIkoySmg7NWNtZVIsX5+mRL4kUj+ff20ZA8apb+lDZpANfCqKE/ScpuGdd2wDmrKOUXH94YSk5q1ftOokT1brX0x+K4anp1Ov5+uYGhA0e+prBMA616pRjjDFsaXCSPu3+OMKc7pHnJQXuKE/aBJM89dDLCkJJAdk2CwpzbCPT1sUClLaOT4BFPKSN3EvBARVnJ9Swx9AnCamF4kPwlfvBRF3/iwMd4Nt1u4gxFeHdNMosemI/RI9ut4luB0IHKRCda+kc4qEPl55AtMYA0sZx6J9LPdEDixZB8Ok2TrSxCc6tdNzmp18k9cF1WxCuqdfqnNuLtjdnkTZ1z74OyRCV5Txagr5tuo2jyjKK/0p1Y/X0RQgZAFYDbV2omkltnD33PkPsuKZNe9B1WLfj+Fgcux95mfTZN2UqYgaw3Z5TVSg16BIg01Ytnr+GeMXfz44zeugb9x5D9WY9alKRJKJLgDTlr9G77mhsy7DjVv3+iTPbceFoBk3wtiffJHZcV0kFsePCTg+RR5EkYo8Bac+58dsg5vUToGtVUXBq6UbyHvVV1JFxE8EwodlTVRWnlm4kYLuDtc3kmyMViZIIPTZEcWak5nM2tRP9z8cT2DnlHc3+YoyhauNuAlrtae8melpIprDr+Xc1at5hfWm0V7xdfVh377MESHzvK7MI3XbD7iPErgj02bHi7kc1sF2JT+tLYwRk84Eiov+DAw6s+v0Tmo0pCQIOvbOQUP61HjmJuf/9e03GsMONNX96WgPDlkURR2csJXuso6gMs//rbk3GiMuL9fc9p4E+K5KE43NWYObXdarYrpIKvPed32ogiVGPDxseeAEb7n8+3WcoyuLNO74HLpI+I7tPVWHe9/6g0eHGfAFseuhlvPft3wLQ7bHXP/UdOIci/3rLazD/f/6EHU+/DSBtq29+9FW8dvu3oEiSFsn4xmf+Gw1D4MB9lfVY+ON7sfQXlIryA5e/O2j/PJfhvIKND77EnrnyC2zhT/5CcirM+S0j5dacC22NOc/EXJdFMSN/JSN/NZ4g+TUj0jSZcptEns/InTG3SUVjGdQOU/c0squf3svcEW7EPkIylZGj84FkHIEywrzmGeOaZeS4jJxic59UJJohozk/yDwun0hm5DebxzWvvyQIGdgCGTLG4hkynu05CikuI0/qo5LRXP8gMp7LXj1XGUnOoiSdEw1JhoymNudSPkhu/kh5eH9rbr6iKJm5eKY8O7N8iqKclSpOSHF0vyhKJlWcaW1FLjOHzozRYc6hE1IcGUdRlLPm0IkcR/AfRqKKi/kCZFyR40ienaqqzNPRQ9Y75guQ3xY5jrnbu0kfd1sXOU9ivgDz9w6SPv3VjaSPq7WL5NDFfAGSQyfyPOs6WanJOPw7xhy6mC9AcuhEnmedJRXaezPcZ7CumfRp3Hf8Qg79eSzDa/vtv0xjV3z9Efb0jE3MF9T3vCRlvq/mcjYbQZJkFkvQdy8UNenKFM8EU+59OEbP4XDC9M7LCkuJdH5JQc5oo5hyaY059YylaWyNRVVV9vvlFeyO147ofzPJrSpyRo5uRp69JJjqYuY45jx73pQPLUlMFU3nX4quncKlyLiqqjLZ1EaOU12p8BxTTONKsaipbsIhkSQmJekzEU3no5RIMsV0fgsm3Wiuy7zAJJONw4XCtE80TvSEqiiMj1CZUiZ9KiRTTDLZcUmzfRg26VxRPLv+/7DsuHOwVTNsHNPv8Ilkpq1qGvdcbJxzKR8kN/9s9oCqqn9zbr6qqme1EWRRJOOqqpppI5ixeUQxQ/+bbQQzNo/Z7ldVNWP9k+EIxVwSRWJHjIS7kwxHaA69KBL8BFVVmb9vkMiYikRJbr4sSczb1ZfRx/jsU5EoweaRJYnZ61tI3rq/b5CMm4pECTaPLEmsr7KeyGjOoU9FoqynvCajj3Gt/H2DRP+nojHWeuSkJuNwH6O94u8bZB3F5f9/5dDf+JU7UTB+LEKDTlw6hDg6UN2I4rmrSM5r84FiQsUW9wfJjSGQzoccvuEB0rc6Aya6LWdjG7mdjPtD8Bk8yADQa/DGA4Cvqw+JgO4plThey9scLgPVjYRuK+L0krweNkTnYCzulk5wUd0DyEXjcLnSt5XDKPfmPsEBJ6FIUySJeBqBdM68kZYk7g/Bb6LvM+YlAYCvs4/cRvKJJJyNVMb+qgYqo8uHkOFmlDGWMa6zuVPL0QWAVDhKcrwBoPd0Hbk9DfY7NE8dkL7RM8s4WGuS0Rc8q4zejl4kDR5vPp7Qcow1GSvryU16xOnRKDqGZew7Tcd1NLaTXOtkKELyqIZlNJZA7yDJj5MEAXYDVR8A2GubiSc95g1oucvvJ6OnvYfkffGxOFwtlKKov7Ke3KSHHW6E7LqHW1VV9Jv2naOBvjfJYPicZIz79LxMiedhr28lbdqOniIUesEBB8E5UBUFqQj1QBmfIZD2LBvz7lRVRdxw6w8AMY+fhGEJyZR2awukn2vESb1YEadHo14bnv9wHvtwH+PeAIC4L0CiWCRBIGvLGIOvq4/MJRkMk0gMRZJIxAeQzllUJP3dS4WjGq0KkL6NHqZvGS6hAYdGAwek94IR60FVlHS+peHdC9ndiBmeGR9PwGN4zqqqwtXcQdY74vIhbJBRSKYI5oiqqvC0dZPnGPMG4O/WZRRTHOx1Ldq7l16nfnLWxf0huA17Q+L49Hme0KkFA72DRMZEIAx7XYsmoywIcLV0ITFEXcoYQ2jACa9h7VKhKAZrmjSGFFkU4Wnv0WRkjCFsd8Nh2ssXyvkpX7j9elx7+SVIcgImXJRGNN5VVItdRYYcZEHCzuO1UAwsFL0OH1z+CBnrVG0nYgn9/QzFkujop+/96Qb6HvXYffCF9L3LCxLq2uk53GqPQJT13w4lRXhj1NvuiFJ6ubggQzLMV2UAJymkjSArRDcyxhBOSRrGDmMMTJFIH0gCeaehSIBIf5slI7TOJ0gbpshQoz7SRgm6CB2emopDidHcfNFJbSnJ54LK6XpD5ZKQDB57AOB6O8k5Kwb8kIKGc1ZRkOyiejrZ0w3VEEknRyLg7XbSJtpAbYbUgB2iwYaUUynE2zpJm0hDC1RDhBjv9SM5SOcbqKon9XB7F0SDjSNEYgh1UBvHU1VPnmNs0ImEyY5z1zaRPu76FkgGGyfpDyHY1U/a9I9kx/k/BDvOpMtd52LHmeYS7Hdk2KqDZhunroVERMb9oQzdZ6STBdKUuUaMKJHjyToxxjJsBCNVNZDWy0Y7CQCxx4b7GKMFFUki+h8A0XtAel2MOleR5Yw2xm8UIK2Xjd8XqqIQvAIgbfcbGbuERJLYK6qqwtPeQ+yKsNNDbBwxxRH7kTEGV0sX2ZdRj5/IKPECsSsYY/C092R8Q4UN3zqyIBC7gjEGX/cAksGI1iYZDJPvLlkU4ahv1dabMYZAn13DDQDSa+tq6dJkVGV5aF/qkdGhQRfZP1wkBntdi3a+KJIET1s3sQ/DDg/crQY6y1gC9vpW7ftCkWX4OvsQGtQju6Mub9quGCpCIglnU4f2jaoqCvzdAxrWwN9b/mU+6C+79SY4G9txhYGW7OrPfgI3/ued2oOzWCy4/PaPEaqNwovHk/xGABDiCcIbqSoK+TAE0i+tkU5OTHFkowEg4F9A2sAzcm5Lgpjx8kdcXmJwC/EEOTCYqma82HF/iBj/YopDMMYjP9uGvOx0KkJo0EU+vpKhCNnAiiQjOpKMhg9B3jSXkWRMBEIQUwYFKYjkYwxIX1IYFS8XiYEzzEWVZRIiBqTBC43Gv8jx5PACgPCgk37ghCIQk/q6KJKMuDfzA8142PLxZMaHnzEMG0iHVRkvAc5VRsF4QEsSom767BP+EJFRSKYyFIrxwBuWUTDKKEoE2A1IAxMa9xQfSxAZGWOZMgbonpJ4IWPtwg76oZoKRzNkNH4sAkDMFyRKU0hy5CP0fWU0vDeyKGW8N1GXl1Dm8DG6V2PeAFIGI0yRJPKBCaQ/do1zS/iD5L1XZBnOxjaiuPzd/eQyLRkME0WgKgocDW3krPB19RPDIBWOkg9MVVVhr2vRPjABINBrJ+89H4vDUd9KPlwHa5uJzP7eQfgMH7t8PIHB2mZNRjbEb280lgJ9dria9I9oIZlCX0W9JmP6d1rIBURwwAlnYzukIUNBTHHoO12nfewC6TBD48duaNAJe12rJqPE8+gprSb70F7bDFdTu7bHIg43BmqatOcoCQK6T1aR9bbXtcDZ1KHt3chQqOXwfpFFEV0llXC36pdT9vpWOBratDM/4vKip6wGoSEZFUlCd0kF3K1d2nO017disKYJ8SGjN+bxo+tkpXY5rEgSOk+chqulSzPMHPWt6K9s0GSMef3oGhr3Qjn/5aZrJ+N0Yw9uv1Gnf/rv//gkbrpGp6bKy83GLddfTkDxLr14LKymXEpfKAbB8E6neBHBSIK0cXhD1MiNp8glgCQrhDIPAPxxgXycc5KCGG/ggmcMUZ5+eAuyClnVf0dlDLLhXAYA1fD/p8cBwikR4wt024eZ+jBVAZhq/AOgyqSN+QMfkkA+1qEqYGawPS5OxmUiR0DyGFOhxiN0/sk4mKx/iDBJgpKIkzZSiOoEJZkgH+tMliGHqa6RImHy4a1wHKQYHZd3e0x9IlB4w6WFJEMMUP3Pe3yEmlSMxQlInqoo4DxUN3KBMBSD/pd5Abz5g9Kkp/lwFKJBT6iSjIRJTyd8AUKZJ8ST4CJ030VM4yaDYaL/FTHzIzTq8hKnBReJEV2oKkqGTRn3BSBxBjsuxY1oxxnfm1Q4SnShLEpEZwGZ9rgQTxDHHXB2WzXY7yAyc9EYSatljMHVTC9uQgNOYkvx8QT5wGSMwd3SST6iQ4MucpEgJFMaz/twH2cTde6EHW6ic0WOh72uhdiuzqYO4kyLOD3EWSIJAgZrmoiMruYOYqNF3T446lu19ZdFEf2VDURGV3MHuSiIefxpG2do7yqyjL6KevKx627pJBc3cV8Ag7Utmm5UZBm95bXEaeFu7YazqUO7NEoEQuirqNdsYlVR0FNWA5/hcsrT1g1nY7tmEydDEfSW12r7RVVV9JRWw9XcocnobuuGvbZZu7RIhqPoPlWlXeirqoqeshq4Wjo1+9zT0YuB6ibtnUhFoug+WQnfkP5njKGntBrOxnbtO8vb2Ye+inrNjuOiMXQWn4arpROqLA/1qYG9rkV7jt7OPvSW1yJgupz6oOVfBhTP09GDl2/+OnIK8vH7tTPx6R99G1G3D7acbMIZfi6FjQCGYP7bSG3OZZyPqty9rAI9vgTKnv36Bx7jg6zDB127f6Vx/5nmMlL5Zxr3QvnnK+frnQBA/pYBIKMohEOZMQamquRviiwT/mBFkmA7C8icJAjIzs0lfWCxkHHEFEc4hoVkCrmFOjezIstQRIm04WJx5I/ROZO5aAx5Y0brN/uKAj6eQMG4sVqbRCCkcdMPj2HLztbAWVVVRcIfxJhJE7Q2YacHn/vPf78AineeyrCNsPHAafxmymJceslYHFj4BG69/nL0uwK4ZNwojCr428Bzz9f5/lGWT716GJ+/5iIs/s1nP/AYH5U++mfSuf9Mczmf45rLh/GsL9gH//zlfO1Dsz0w0t/MNoKqKLBYrWScs9kIqqqCqSppY7YRzIDpqqpCFkTyN7ONICRTyM7L1ebHGAMfTxAbIRWJEntA5HiAMc2uGI76MNoIMV8AoydcrMko8TzEFI/Ci8ZpfSIu74diI/zLeOht2dm45Lqr8NNZL+LTP/o2ACA7PxfHDTRTAFC9aQ+5dUtFogRUDADKV20lgBl8PIHldz1C2mx44AUyTtfJShw2UEQBwIL/uYfUj0xfQsC9hmkLjGXZrx4ioHh1Ow4S0CpFlrHgR38mfXY8OxXOZj2UzNHQir4uO8YZbt8X/PAecpt6cskGAszBRWMZMq7/yxRyE9p+vCwDpM0s46GpCwjwX3DAgc0PUyC65b9+mITa1GzZh4q1O7S6LIpY/L/3kT7bn34bnnZ9Mw/WNWOvCYhu4Y/+TJ51ycK1hM4kGYpg9R+eJH3W/vlZclvaeuQkiueuOqOMB96cR1IY/L2D2PLYa6TNkp//lXjxqzbuJjQpkiBgyc//Svpse+INAvzXX9VAQEKA9HM0ylg0dxUBN4z7gxlANGv++BS5uW0+UIQTC3QAR8YYFvyQyrjv1dkkPcHb2YttT7xB2iz+6f0klL9i7Q7UGEBxRI7Hkp8/QPpsfuQVEirWW15DAOEAYN4QsNhwOTZ7uQZYAqQ9m2bQxBW/eQwpg9ehcc9RlCzSqdVUVcX8//kT6bP7xRkE+M/d1o3tT+tge8lQhJwNqqqievNesv72+hY4GvSQaS4aIwCPjKUB4YwRP67WLgLixyeShGqQMYaarfvhMnhuvZ29BGxnGKzGGFpWv+swGdffM4D9b8zV6hLPY+8rs0gKT9P+IgKKE+i3Y70ByFASBBx4cx4BxWk9XEIAksION5b98kEtlFIWRRyetojQHHYUlRHgpYjLi+W/flgD/lEkCUdnLsUeA7VdV0kFZnz1l9oNfdTjw8rfPo76IcCYYdq9Vb/VAR27S6vx9uf/R/PIx3wBrPr9Ezg2RDuapt1bg+n/+XOtT19FHaZ+4UfaO50IhLDmnme0c2sYrOaVW/9LO7f6qxow9Ys/Rs3m9LNOhiJY95cpmD90VgwDDr5w/X9qN/0DNU2Y9m8/1iiKkuEoNjzwAt6643u4UM5/CUYSuPP267DqjT/j1uvTXnpRkrFql362yLKCueuPZITcN3TQ0NWnpm9Cj13XjVXNvXhrKaVR/fEj75GzYuHm4zhcpp83/nAcD0ylNGrPbahHxEA5Vz0Yxv5WA8gcY9hsAsVr85lA8WQFLlNYfjBBQfEEUUaUkzQPPWMMcpJ6bZWo1wSKFwcLUy+n2kOp+mR7K9SQITWIT0JqpNR8QvkuMMEQUdjfCrFNpztlTEV051LSJ3ZsJ0S3rjdEjwOhvRRQ0LVwGgXFO3EE8epyXR4uhYGZb5M+A/PnQPDpXuRYQwNcG+m4zY9REGL7qnUIV+th4bzHi7aX3yJtGh55DpLBjnMfOAb7pp1aXZVllP7+YdKn/o1ZCBtC90MtHah6fRZpc+Cuv1JQvJWb0btfDyXno3Hs/RO1cfY/9CLiBk9534lynH6PUhSv+TG1KY9PW4i+Uv3Zhgad2PrQS6TN8l89SO24rfsJtaoiSSPacUaw18G6ZgKwBgzZqoZokZJF60i4fDIczQDxW3PPM8SOazt6CsdNNMzzf0D1/4E35xGgXH/vYAbY3uKfPUDsuOpNe1Cxbqfep2eA6H+R4zNodpv2FxH7KzjgICB/kiBk0Fe3HT1FvPZhp4fYyIok4eiMpSZq5NPEFox6fARsbxhs10j521NWQ8ADY74ANj/yinZWDIO7GekI+yrriZ5OBMNYd++zmozDQIDGcQdrm7H6909o9WQ4ig1/fRH9QwDaw5SzRrvC0dCK977zOy1KmIvGsPmRVzSaQ8bSlLPG7xZncwdmff1Xmo3JxxPY+sQbGrUdY2nwwHf/46daH3dbN+b8193oKEqfFXwiie1Pv0XAdmu27sdrt39LiyT2dPTgvW//RqMoFFMcdj43DXO+9RutT92Og3j541/X9ru3qw9zv/s77BkCxRVTHHa/MB2vf+LbUKQ0rWjD7iN4+ePf0Ow4f88A5n//j1hj+m75oOVfxkOvqioeHfcJ3Prt/8Qf188mtzP/P5Z/n3ocV11UgPX3fOEfPZUL5UK5UC6Ucyrn4vk/280/Y5n0cuabf/MtP2MMqiyTm/6RPP8Wq5Xc0Eu8cMZb/WH02uwhChrGGPhYHPljx2htkuEoPvm5Oy546M9TGbYROvrduP1Hz+GVB36EZ//0/X/0tP6hJZIS8alXj+DeL1+HZ7/78bN3uFAulAvlQvknKB8kWmAkujmLxULbnMVGUFUVYIy0MdsIEs9run54TEWWSZsRPf/5edr8VEWBmOKQN3qU1ubDshH+ZTz0qVAE133x05BSnAbmERxwYPeLM8jNdPOBooz8m/1vzCW3nq1HThIvs5BMabQHw6Vk4VpyI+hsatfoFIaLmcqsbvtBQkUR9wdRPH8NaXP43cXk1rOnrIbc5imynOG1LV+1lXg9/T0DCEZTJD9u32tziIwth06Q20k+nsDRGfRWvGjuKnKz6G1sQ4fBqw8AVW/PJfWB3YcQMQC5pLx+dKzaTNrUzVkG2XDr6SivQX+x4SZdknD47fmkT9mKzSQiwtfdj8r1u0ibfa9SSprmA0XoN4AZctEYjg3RV2kyvreS5FoN1lFKEQCE+gNI39J6DPQyYacn44b10NQF5Pa0q6SCeHslQdAouobLqaUbNUoxIH0LWLVxN2mz95VZZD837j2GgRodBCcZjmbcTB+bvZx4rweqG8mNN2MsY+2qNuwiYJEhu4tEigDAwbfmESC6jqIyEoEi8TwOTV1A+pxcvJ68f67WLkJ1MyyjsTTsPkI86YlgOIM+7uiMpYQarq+ijlC4qKqaQbtXsXYHua0O9NuJFxxInw3GPLW2o6fQfUr3Jvl7B0k+mZjiyBoA6XUxvtOhQScB9ZF4ntDjAGlPs3G/R1xetBtuyWVRRNXG3QSUqK+iDvZ6HWAl6vGhZut+ra5IEqo37SH5+4O1zWg/VqrV4/4gocdRZBl12w8SgEFHQyvZl4lgGMdmL9dkVBUF9bsOk/3uaukkzywZjqJ43mpt7VRVRdO+44Si093Wjb0vz9Rye7lojFB/qqqKloPFKDLsd29nL3a/MF07t7hYHKeWbkTdjrTXhDGG1iMnseu5aVofX3c/9r48U4ty4uMJlC7fjJKF67Q+7cdKsfGvL2q5kP7eQex/bQ7ahs5mPpFE+aqt2Dt0+84YQ0dxOTY88CLCjvQ7Hei348Cb81CxdieAtF6pWLsDG02UqBfK+SlWiwWXTxwPbyCG1FAe7+mGbizeQs+JtXvLiIdeECW8s3wfGWvFjhI4vLpu7Oh3Y9NB+t6/tojqp70n6lHb2q/VI3EOi3acJm3WnupDjNPPm25/AjV2PceYMYayfgog54xySAj6OSAqKkIpkbSJcyLRG4F4WjeNM3joFZ5iAKjJCMmHZ2IKLEF/W3FT/AfFb4caDxn6cJD7KUib1F4BJhlyxX12SHb9fGGMIVlOvZypxtOQwwbw11AA8SpKhxc6sA3MYOMkW+qR6tLtLYXn4du9lfTxH9gDKaKvb6q/D6GTJaTN4HKqT/3Hi5EwGNZiMATHRjpu39LVkA25yuGaBvhP6OchUxS0z1xI+2zciaQheireb0fvZrqH6qbNJ3ac/fgpeCr1aEExnkDte9TGqV20Fqmz2HEn3qC6sXn7AXhb9KjPmNuH00so1V3Ru4tIPnbPqSp0GCLpFEnCwTeofVi2YjOJEPN29RGPN5C244we+uYDRSQikovFcXSmyVY123G1mXac2R6v3ryXRMGFnZ4MWuaDb88/ox0ni+LIdpwBk6C/qoHYJjFfgNgziiyTSFIgHflnpNBLBMM0WlBRULfjILG/nM0dZNxkOIq6HXqksaqqaNx7jNhfnvZuov+5aAylyzdrZwVjDC0Hi0m0gK+7n9hsfCKJk4vXa1GIjDG0HT1FxvX3DpIoRCGZQtmKzZqNOawvjXZFcMCBA2/qNqaY4nB69TZ0n6zU+nSfqiL2btjhxoE352nYRxLPo3L9LtQa7KDe8hrsfv5d7WM+7PTg0NQFmh0tCQKqN+0hkbp9lfXY8uirGq5B1O3D4XcXo3l/WnfIooiaLfuw+0V9jw1UN2Lr468j0Jv+Not6fDg6Y6kWuSCLIuq2H8T6+57Xzq3BumZsf+ot9AxFx8R8ARyfswIHTVGsH7iwj7AMDg6yr3/96+ymm25it912G/vTn/7EBBNVg7kMQ/lLgsBe+9R3WMBEjWSm0VBkOYMywkhhxBhjIbuLUCMpisIGaptIG3tDK6GVSIQihMJgpHF9PQOE+ksSBOZobCNtBmqaCGVE1ONjIbvrjOO627oIPUUsGmdXP72XTdne+L59goNOQtP0fjIaaRpSoQgL9VIZvbV03Gh3HxMMNC8yL7BQSwdp46trJhQ0cbePRR26jKqqsgHTfJ3NHURGLp4g9ISMMdZXWU/q/r5BIqMsSYQyYlhG43OMB0KEMoIxxvqrGkjd09lLqFZEnmeOpnbap7qRPMeIy0toO1RVzXgmzpZOsl+5WJx5OnoyxjXLaKQHUWQ5U8b6FkKLEvcHWaDffsZxM2TkOELjMVKfsNPDIm7vGds4mzsItUoqGiO0I+8no5H6Y5h2xFgGapsIvUnMF8igScuQsaOH0LEIKY65WrvO2CfkcJOzQZYksi9HovdLRWNk/WVJIm1UVSWUKYyln72RekWWpAyquJDDTfYYF4tn7AXzcw7ZXXSPxROEKkaR5Yz3KmR3kXG5eILsS0WW03vM8B6FHG6y/nwiyQZq9PNFURRmb2gl6xB2esge4xNJ1llSock43Mc4btjpYT1l1aRP27FSbe0URWGOxjZyzkZcXta0/7hWF5Ip1nasVFuH4T6dJ06TPtVb9mkyDvcZfu8VRWGOpnZWt/OQ3sftZVUbd2tn0HCfjuJy8junlm68QFt3DuWD2AeM6TZCY6edffveaSyZMtF8mepmajnGGKtp6SP1pi474wV9v0fjKdbZ7zljnz6nnwXCBppGSWZNPW7Sps0ZJZRzUU5k3jidnztGbZo4LzHJSAWmqowzUd0JJmq+6v4gu/rpvWxDha7PFYnSZKkiz1TVQIslS0wVTRR0SXrWqakYU0UDLZYiMyVKzzY56Cb6X0nFmRKjVJmim9oZos/FFAP9ncJzTHDT853r7yLnoRjwMSlioM5SZJbsoWdbqq+XUNtJ8TjjHCZ6zTZqo6XsdiZGdRtHEUQWa+8kbaLNbURG3hdgKRd91qE6am9FO3uYZDjzpWSKRTq6SRufyd6K210sabBxVEVhXpNu9DW1M/ksdpzTbB9297NU2GDHiSJzmWxVu9lWdftY2EFlNNtxrtauTDuuncqYYasOOM7JVjXq2EQwTKjKGMu047xdfYSy9f3sOGMx23EjtTHbcUKKI7pRUZSz0hELKY7of0VRCA0sY2mqWKPNI6Q4Mo6iKES3M5a2i4zrL3Jchl3q6+4nzzXuDxL9L3Ic83X3kz6ejh7yrRD3BwkFrcjzhAZ2uI9xvnF/kNhfIs+znvIaTcbhPkabJh4Isd6KOtKnu7RaW19VVZmns5fo/3ggxFoOl2gySoLAesqqtfkO9+k6Wan1SQTDrGH3EY3yb7jP8LiqqjJvVx9r2K3TgCZCEVa/67BmE8uiyHrKqjX9P9ynfNVW7Zt0uM+wHTT8OzVb938oNsJHGreelZWFN954A3feeSdUVcWvf/1rzJkzB0888cTZ++bkYNQlF2HxT+7DY8UbkVtYgJjXD1/3AK7/tzu025hEIIT8cWNI2ET+2NFkrOy8XFiz9P/farWS8AetjyFcIzs3h4RejjRuTkEeCem0ZmUhd1RhRh9jGEhWbg6Z60jj5o0qhNWmB1OkpPTtmtFDf8X1l5I+4y+9CLDY0lQ0qSCsyQCuHO0D2vYAfBTgIriciwCuJCAmASmFPDGBPJEDikRA5gFFxARZBE7KafRbVcVoEwquFcA4ADhoA6w2wGLDJdYsWMpyAFs2YMtBYVYOYMsDsvOA7AJYsvNwZVY+cGwUkFMI5IzC5Ox8oK8VyBsL5I5Bbs4oTLq0AJAFICsdznL1rdeS375o0nhYbPoWtmVlYdJlF5E2F180loTiZOfmgJmf47gxpJ5TkE+fo9WKvNH0ORaMG0OfY14uYPCQWCwWFGSMm4esnLPvD/NcjH1gsZBwXgDIHVVI9pAtJxvZKpUxYy75dC4WqxV5Y0Z4BwwlOy+XvBMjjltI186WlUXCj0aUMT8Ptoy50Db5Y0aT52hksnjfcQvyYcvW94fVZkXuqDPPJQ2Kov+OLSsLoQEnJlx/dXpuFgtS4RjyRo/S1jxv9CjiHbNlZZHzxGKxZAB35o4qJJ4YW1aWBpIyXEZPoHs5b/QogmlgtdkwZtIlpM2YSyeQfZg3qpCsm9Vmw/grLyN9xk6eSFB680YVgl06gfS5+NorYTHssbGTJxJ6otzCAlx0lT6u1WrFJdddRX57zKUTyNrmFhZgwvVXa++R1WrFxBuuIUwQYydPhGqIUsgtLMCkm67VnqvVasWEG64hbBFjLp2AS667SqvnFOTj0puvR/bQe2+1WjHxxmsIvcyYSydg0o3XaDLmFOTjsltv1JCVrVYrJt10LYnmGDNpAiZ97Dpt3JyCfFx2200aqrPVasWkj12XwRxyoYxc/h77AABuvf4y1LUP4MG31mLpK3+AxWJB54AHkqxoOfWMMfhCMVw2YRzdm6PyyVhjCvPJ+Z6TnYWCfHrmmPsU5OUgJ1t/R7JsVhTm55I2o/OzYDxBs61WmK2wvCxqD2RZLbAYelmADFR+cz2SSu9TI85OBliZxZoeTeKBVABI+IBkEJASaRuBjwLJAKCIaRtBTAJCHFAEQBaH/hVgkQWAqQBTAFWBVZGGxh6eL0v/jjUrbSNYbchiFiAnf8hGyEUWLEBuIZBdkLYRbLnIgg0YfcmQjVCILEGBJdUO5I4G8sbAqliB/HGAMhqwZcFitcFWQM93a0E+LFZ9PS1ZWbDmUd2YZbL9bPn5sBp0mMVmRZZJT2eNHkV0oTUvBxaRrm+OSU9n5efDatJz2aZxc019bHm5RDfCYkGeWc8VFsBqCB22ZWcR8E8g08bJNul/WCwE/AsA8seOInsmOy+X6CwAKDDNJbcgj+hcW5YNeWexcbLz84g+t5yLjZOdlWmPj2THGcBVR7LjzHMx23EjtcktpHYFkGaiGnfZJO134r4gWc+MueXnkbW0Wq0oGD+WtCm8aBw9g/LzYDN9t5hthMKLx5Moluy8PBQamlgsFoy9bBIZt/Di8UTnZuflpe0IQ5/xV0yGxXBeFl48HjYDhkR2bi7R/xaLBRdddRlUQyRUockGys7NxSXXXUVYyi6+5grCeFB40Thim2Tn5mLijddoe9diseCSa67Q2GgAYNTF44ldkZWTg4k3XUd+55JrryTnf+FF4zDxxmu0EPysnBxMuvkGzWM/3MfIklQ4fiwuvfl67V2zZWdj8i03ahESw30S/qC2doXjx2LyLTembemh37nsto+R9/fvKR9pyP3kyZNx5513pn/YasVnP/tZ9Pf3n1NfkeNx+39/Fb9Z/o72gTB64iUQkymyOc3UWgBwctF6ErraU1aDwVo9dJWPJ3B69XbSp3rTXhKO7m6joSsASIgJALQfLSU0EjGPn4SCAED5qm2E2s5e10J4ORVZxslFNPSpZfcRRAx0D76h/z0hRwA8zUD7fsj7XgY7/AKw/c/Aqu8D874ATLsOeO0SYPrHgIVfgmXtj4BNdwG7HgAOPwfLyWmwnJ4P1K4C2vYC9kog2AUkvOkPels2lNyxwOjLgPHXAhNugjLxNqiXfgKY/Elg8ifBJn8C8sTbgAk3p9uMvQJK/kVg2XlpBc9HgYgD8LYA/aeAtt1A7WpYKhcBJ6cDx14FDjwFy+4HYdnyW2DND4GlX4Nl/udhmXUb8PpE4I3JwPSPA4u+DLbiu8Cmu4E9D4Ptewbq8XeAxs1A9zEovacRL9kFGMIIXXv2QzIAlvlaOtF/koZOmp9j66ESwlUf9fgJiCIAlC7bRMBUBqoaNAAQYAgIxRTe1bDrCAmzDvQOaiE97zeXrhMVcDbpoXFcJEbAUwCgasNuEo7mbOpAV0mlVmeMjSijkfIs6vahzpRScmrJBvIB2VdRhwFDioPI8QQYBQDqdxwivKe+7n4C5DKSjB1F5XAZQB9ToUhGukXF2h0krcDR0Ibuk3povKqqKDEAAQJA84FiLRwKSNPwNeyiYXonF28gH2m95bUYrNHD2tKhYzRMv3bbAUId2HniNERDyH3E5SV7QZFlDehtuPSUVhOaupjXj5aD+jqpioKKtTuJ0u+rqCOcpolACJXr9RA2VVVRsWY7oQkcqGkiKT3JcJSEmqmqisp1O0mKiaOhlQA8ctEYjk5fosnIGEPNpj3oKdPPLWdzB4oM4/LxBI5MW6Ttd8YYarfsQ8Puo1obd1s39r06Wzub+UQSR95drMnIGEPd9oM4tVTfY97OXux5cYb20SwkUzjy7mINVJExhoZdhzWQHCC9B3e/MB3eIdBNMcXhyPSlRMamvcew+8UZmgL39w5i13Pvomco/ULkeBydvgTHZ+vhf837i7DruXc1ULxAvx27nnsX9UPh/xLP49jMZdj9IgWFulBGLn+PfQAAvQ4/Xnngx3j5/h9pNsHVky9GMKwbnhaLBYPuILEZeEHCip00vHv70WpCOdc16MURA+AdkAbBM5biqna0dBvoHmMcdp6ivOj76l0kfN4eSaHTp8+PMYZGD6VV9ScFpAy885LCEBfoxXpKlMmlYjgpAGC4xBoHnLVgzTugnpwJHJwCbPk9sPzbwHufAd66HHhjEjDzVliWfBWW9f8LbPkdsOdh4MiLsJTNASoWAnVrgM5DgLMGCPYAqWDaWWDLAWz5wNgrhmyEm8FGXwVceptuI1x0E9jYtP2A8deAjZ4MVbWl+yoSwIXAgr2AuxHoPQG0bIelbhWsdcuBkneAoy8B+59A1rGngU2/Blb/AFj8FdiWfRm2uZ8AXrsYePMKsBm3wrrym8CqH6Rl3Pc4pG2PQy2ZDTRvA/pKIDQdR7yyCDCEfHt2UH0aqaoGN2hIswqF4TtCU6bcu/ZCSelnfqylA5E6HWRWlWUMrKUpbN5jJ5AyhKOnXG44D1L937VyEznzfZV1CDbpaQVSPInO9XS+3TsPIGWgEAt19mLQkOIIADWLqG7sLy5H0JByl/QF0bKN2qp1q7cRveasbcKgITRekSScNqUiNu87rtGBAmmquCZTulnJgrUk5L77ZBUcDbqMXDSG06u3kT7VG/dQe7y1SwM5Gy4ZNs7hEo1mDEjbcbVbqY1Ttnxzhh1nDP+XBAGlJhkbdh0hutvfM4CWA8WkzYn5a3TgOVVF8z56Vjga20gaLReLE8DbYd1nDLl3tXYRIGM+kUT1pr2kT/2OQ4R+0NvZi5ZD+rhiikPJwrUk5L5xz1FCq+vvGUClIU1C4nkUz1utUdABadvKaGMG+u0omrNS7yMIKJ63RtONANB25CSxo0N2Fw4aQu5lUUTxvNVExo7jZVpqHJAOn9/36hzN/lIkCScWrCXr33niNPa/NkeTMer2Yd+rs7W0wuFvrNMGgMfuU1XY/cIMjb4v5vVj3yuz0HWiQu+zeD2OTF+i9ekpq8HOZ9/RaHXj/iD2vDwLNVvS75GqKDi1dCP2vDRLk7Gvog47npmKvop6AGkbbu/Ls3DClJr9Qcs/DBSP4zh87nOfw7vvvotvf/vb2t/nzJmDOXP0fJ9oNAq/P/3w3v3yz/D5X/0AX/7LXR/5fP9hRZGAQBcQ6AAC3UCwCwlnG6RAL8ZbEpntrdnA6MnA6EuBUROBwkuAgkuG/r0YyBuX9oLnjQXyxqRvu7ML0jfnH1VRVUDmADEFiImh2/9E+vZfiAF8bOjfdCQB+Ej6Xy6c/i8VAoQzeb0sQMFFwKhJ6TUYdSkwelJ6XUYN/TvmsvS/WZme3gvlQrlQLpSRCvuAtFI33njjBVC8v6G8n30AvL+NwAsSbvvhFCx55Q/46uf/PwKCE5OAv33ITugCgl0IDrYhLz6AQouQ2T4rHxgzOa3/CidQGyF/fNrrPWwn5I4Bckel+1g/Qv+PqgBSSo8MEBOAMGwjxNP6nx+yEYbtAz4yZB+E0xcOUvL9x7fY0rKPmjhkE0washOG/7ssvUajJn20ttGFcqFcKP/SZST9D5wZ+PdDsxH+7qD9D1BkWWY//vGP2UMPPXTWtsN5BaqqsmOzl7ODb8/X8hGS4Qg79M5C0t7Z0sl2vzSD/G3pLx8k+Tflq7eRXIhUNMZW//Ep0mfLY6+RHJGuk5Xs2OzlpM2in95P6sdmL2ddp6q0enDQyTY/+ipps/pPT5P8muCpk8x3aCgvk48ztaeEydseYWzbnxmb/yXGXrmYsZfG6P+9cjGLTfsUO/z8V9jg2r8yVjaPsdY9bPuh/UyJ+RgbykfZVWNnJzv0nNxIgmdPLj5B5vLErO3M5ddz5E5UtbP5G4+SNr94ch6pz1x9kJXX63kw/U4/e3rGJtLmTy8tY/GknmO041g127C/XKsLosR++/wy0ufNNSdY56CeR9UyGGZz99GcrinbDHnrssjKmtpYe1MFY70nGGvaysSyBax/2xTGdj3I2LqfM7boK0yadjNTzWto/O+d65k6907G1v+SsX1PMHZqFpMOv8OU5n2MRZ2MKQoTfG7m27aGzKXqr88w2ZBHVb15L6vatEerixzHlt/9KOmz49mpzNPZq69ddSM7+PZ80mbR/95H6iWL1rGWwyVaPeYLsPX3P0/arL//eZJ/1XrkJCtZtE6rq6rKFv+M7tWDb88nOc+ezl62Y8o7pM3yux7RcooYY6xq0x5WvWWfVhdSHFvx28dIn+1Pv0UwCnor6tjhdxeTNua5nFiwhrUfL9XqUY+PbXzwJdJm7b3PskRI36vNB4pY6XJ93ymKwpb+8kHSZ/8bc0kuvqu1i+1+cTpps+zXD5P8t8r1O0meNJ9IslW/f4L02fL46yTPu6esmh2dufSMMhbNXUVytgdqmwgmRzIcYY379LxvVVXZ6bU7yLnlaGxj3aV6PnkqGmNlK7eQPpUbdpG8OldrF6vddkCrc/EEO/DWPNKness+1nu6Vvubp6OHHX9vpVYXkim26/l3GReLa33qdh4i4/q6+9mOZ6fqfVIc2/PyTOZs0XNPG/ceY0dn6e+9v2+QrfjtY9p5LnIc2/faHJL/3nywmG15/HWtHhxwsCW/+KuWFygJAjvw1jxWPH+11qb1yEm28Cd/0eohu4stv/tR7WyWRZEdemch2/rkm1qb9uOl7N0v/1TLaww7PWzFbx9j5au2an2OTF9Cxu0oLmfvfOknmowRl5et+v0TbNcL6T0mSxI7OmsZe+Mz/30hh/5vKH+LfcAYtREee2cd23hAf8+6B71s5c4S0n7zoQq25bCeP8nxIvvdc/SMem7OVtY9qOOFVDf3smkr9pM2v3yKnt2LtxSx4xV6Hqk/kmRTltHfnrqvlYWTei5qkyvKTnTrOeiqqrJDHRSnpC+YZFFu6IxKBJjYdoDFD73B2Ka7GZvzGcZeGkt12uuXMs/Uz7K9z3+DJfY8y1jFYqZ2HGRSfwVjXISxIR0qR31MNeTVq1ycqWGK5yP3Udwa2dnJlLDX0CfJxNZS0kaoPshUQz68ONjBhE79fFFVhcUOUH0aO7WfiV79TBW9ThY5uoO08a6dx1RZPw+jFSdYvL5Cn1sqyZzLZusdJJ65l01jYmsxY93HGGvYxPjtz7HE/F8wtuM+xtb8mLEFX2LSS5MZe3ncyPbBy+OZ+s5NjHv1FsY2/Yaxg1MYK5vH7C//hkndpYwl/IypKvMdP8Fcu3TdqMoyq3/4GTL/jhnzWaxNPw+jrR2sfTrdQ+X3PM5UAwZUz4YdzHGoSKvzkSg79TDV/6XPvskShjxp56lK1rhwNWmz7zf0Xaqau4I5ymu0emTAwY49+xZps+vPTzPBgEHTtvswa1i/U6vLosg2/5baOIdemsG8bXrOvKOuhR19ay5ps+pXD5Lc8PLlm1nLgWKtnghF2Np7nyV9Nvz1RYIx0368lJ1YQPeQWecefncx0Wv+3kG2/Zm3SZsVv32M5MPXbjvAqjbu1uoiz2fYcTufm0ZwgfqrG9nBqQtImyU/f4DkqZ9csoHYcfFA6Kx2nDGne3j+RjwZkeNY5YZdZIzmA0UkBz044GB1Ow5qdUkQ2LHZy8nc2o6eIuOGHG6ytrIoskPTFpE8+84Tp1nNVv08jLi9mt5jLK37js1eTvCeuk5VEf0f9frZur9M0XLzFVlmxfNXs/pdh7U2PeU1RP/H/UG27i9TNBtTURRWsng9sVf6qxrIXkgEw2z9Ay9oNqaiKOzU0o1k3IGaJjb7v+7SMH+S4Qjb+NBL7NTSjVqfspVbiP6317ewOd/+jYb3kIpE2eZHX9XsIFVV2ek129lbn/+BJqOjsY29993fad8KqWiMbX3iDbb4Z/d/KDbCR+6hZ4zhd7/7HRhjWLVqVWZel6kYaet2vzAd35nyQEZOrrmYqQVEjif5NsMhnkbKAnMbc50xBlkQzjiuLIqwZmWR3Iz3HZcxINwH1ncKGDwNi7se8Lelc9GAdL7ZJR8DJt0KNulWWCbcDFxyIzDuamysceGZ7U3Ydt+/4Y6r03kpgqwiN0v/XUlRYUE6j2+4cKKM/BxdZk4QkW/IXWKMQZRk5BpyqzheRH6e3kYQJeRkZ5HnZm5jriuKClVVkW3IO8roI0jIzzXkdAEQJAW5hpxEXlKQZ6jLigqrxQKrVZ+LpKjINsisqgxWMIALAXEPWNwNxFywxD1A3AXEXGAxJyxRZ/qG31ys2cCYy8DGXgnL+GuA8VcD466CUjAZtkk3Dd3gW6EqCpiqkvzxs+0p4Ox7VRIEZOXkkPU+27jnMheJ55GVm3vmcVMcycUz03qN1CZjLqoKRZIIrYe5jyQIsGVn0/fGPK55LrIMMEZlNI9rkpGNQEM2koywWOjZcJ5k/KgK+xBoYNgHpYpTFPI3WRSRZchrNO/vkZ6RmQZGEgRYLBZtHMYY+HiC5Cwmw1EUGnISJUGAIslaPidjDIlACKMnXKy1GcZfGZ6vJAgQEikN/4AxhojTg/FXTCZ9svJytXElQUDCH9LaMMbg6+7Hl77zzQse+nMof6t9AOg2gi8Uw7LtJXj6D98943t2TvrIVAfSofl5ue+vGyVJhtVqhe0MOtesw1TGoKiM6CxZVZFltaYj2bzNUPtLYXVWpcPdw/36hLILgIm3pG2EibfAMuFjaRth9GV4flcL1lYMovP17yBnyC7IOAdUleTFMsYAxujfVIXkoDNVASwWWAw58kyRCZYNUyRYbPo6MaYCqkrbyBIsWdnvWwcAJkmwGM53VRJhzc4hfWC1kfmqogBrTu771pmqgikyGUcVhDSmUtIPJDxQQ3ZYOD8sQ7YCYi6wqBOWmHNkr392AdiYy4GxV8Jy0TXAuKuAcVdDKZwM26SPpaMeLBYovABbHsVUUDgeNqNtaq4P2ZRGGWWOR5bR7jTVmaqmKToN52xGH0GELSeb7AeJ4zU8kJHq56IbJV7Q8oOBYbtZJH8z95FFEVab7W+zKxQFqqIQXfKh2BVD6XdnsitEjkd2nm5XnIv+PycZTfWPsnwYNoK5DpzdRlBkOW1TGve32UYw2ciKLIOpKmljthH4RBK5hQXafBVZhiyIpI3ZRuBi8TROwdCzV2QZfCxBsI2iHh/GXjqR9LFYrZr+V2QZcV9Qw1MA0mj+46+8TJORi8UhC6JmeyiyjNCAE1/81tf/9Wjr7r//fiQSCaxYseKclPVwsVqtUGUZa/74lBbCIKa4DEqsRCBEcjsBoHHPUZJf5mruQMBARSUJAslfAYDO4nJCRRG2u0j+KgA0mmgzBmuaSP6wnEwi1aTnHCPqRHbDKrBt9wAzbwXmfBqWPQ8CjUO51p++C/j+bJz+5k5gihu4vwz4yRKcyP02/BO/BFx8PWDLgjOYDrUfX6AfOnuKaih9X5cdfQ49z1cQJRwppfQyxZXtSKQM+UPuIBo77aTN3pJ6Uq9p7YfTp+foRuMpnKztJG0OljZBlvU8sI5+NzoG9HVRFBUHTjWSPuX1XQhG9BQCbzCKiga6uXcfryH1hvYB9Dl1GTlexCHTuAdLG5EUpHQ44aW3YaDw06jO/Q/gK08D358N/HoL9nxmPfDMADDFBTxQhb7vrEX8v2YAX34SuO0nUMdcDiXUBzSsB4reAHbcC9u6HwAzbgbenAzM/TwsG38B65EpQMUioPMwWKALtjBdS6m/A0pSlzHl8SFkoCEBMveUs7Gd5CGJKS4Dy6H9WCmhlwkOOElOGpB+B4ylv6oRMUMeeDIUIXRtANBy8ATBnvB29sHTrudaq4qCZlPuWPfJSpLrHnX7MFBN952Zws3Z2E7y7oRkKiM/ru3oKUIvE+x3EGyBkcbtq6hH3JBbmAxF0FtG91DzgWKSs+hp74Gvq1+rK5JEctuBNLWN8WyIurwk736kuTjqWxE24CfwiSSaTPgJ9TsPEcyCsMNN3mmR4wmVJmOMUOoB6fx9I4WeJAiEHocxBncbfa9iXj9ZJ1kU4TG1cTa2EXC6RCBEcgAVScJgDX3O7tYucBE9HzgZihB6PEWW0VNKn4e3owfRIUoaAEhFooSaUlUUdJVUEqAcX3c/eWZcLE6oBVVVRW9ZDQHOC/TZYa9v1ep8PIGWQyUahZ6qqug7XUfzQQccGt0MkH6GLYdKtDxTVVUxUN0Et5Eqye5C22Gan32hvH/5oPYBAEy8aAxOVLVhxmqdEs3lC+NIOX032/pc6BrU95gkyTho0o2l9V0Ix/SPN5cvjJrWPtJmz4l6Uq/vGMSgR6eMTPESSlvcpE11fxiCIR8+mBThig2da4yB+doQLZoNbPgl8M61wKL/gPXQM2Bte9Mh4nf+BeqPliD15wrgWQdwzzHgB3Mg3PEnsOu+ks5lt1oRSUkozLGRj3kjlRyQppxjqgHkTJHSaXDGNjE/rScjgKDrGiZLUENURsU7QOnw4mGoUf18YUyFNNBO+kiufqhJ/UxVUgmIjh7Shmurp+ehxwnJr9sVqiQh2VJP+iRbm0iuuxQKgOulZ1ukshywZaVD7C/7NJLW6yFe/T3ga88DP5wP+X/XI/LZ94ApTuDpfuAvpYje/gLUb00FvvQwcNO3oVrzwVwNQPVy4OjLwNbfw7bq2+ln+PZVwMJ/h7z8x1B2PwlUrwB6iyH0NiJSR+frPXqCyBjv6EGy33DO8gK8Bno8APCeqoBkyG9OujwINrSSNgOmXH1/fTOShnNWiMbhPFVJ2vQfPQnFkMMd6bMjYDjbGGPoMdOxldcgZThnk74gHAY8GQDoOFBEZPS2dCFktMd5AZ0GejwA6DpOqWHDdhcc9VRGs40zUN1EKNxSkWimjXPoBMHQ8XUPUBtHVTP0dE9pNQE6jXsD6K9sIG2a9h0nMjqbOqgdx/GZdtzxMpLP7+8dJPnkAAjtKwCCyQSk6e94A1idIstE/wNpKkFjSUWiRP+rigJvB333vJ29kA22CReLI2jQ/6qqZjwPf+8gwfPhE0mSqz+sY40ghMEBBwGrFVMcsR8ZY+ivbCD2btjhJs9M5Hh0lVQSJ8FgTRPiPv1sjri8sJuohduPlmq2IGMMjvpWYuNEPT6C2yQJAtqPlYKLxrU+zqZ2ggcV8wXQatD/siii60SFZuMwxuBu6UTvaR234e8pHynKfWlpKRYuXIhbbrkFd9xxBwDgq1/9KmbOnHmWnunyuV/+Dy69WUcrzCnIx8e++kXSRh26nSR/k9Mey2EEY6YyKJLexmKxQBGljD7GjcYYg2L4SAWgISAPF2XodwyDwBpoAI4eBLqOAN4mWAAwazZw+R3AJ38B7vIvQpz8WYwdm/YCKSpDrNVLcrslWSGHQ4TLRLAVJZncoDGVQTYhkgoSna95XMYYJJOMgmhaS5URDl8GQDKtt6woUI3jApAMRozFAvDimeeijjD/4TaajEO/dab5m8dVFJXMP91mqJ5TCEy4CRF+IgrH5WP06PSNqygpcMcFXDs2G4g6gMgAOH8v8uIOWCL9aa+JoxqWLh34LI1EbAXGXpm+iLnoemSJuYB8J3D57cC4q8BUBlWia6eY6sM30UYZFdNzzNy7cgYarbmNIskZz9783ki8QDwDiiQRNE7z3PRx9TpTFIK6CoB8jL3fXMwymt81deiWVqurasbaKZIMphrGVVVyQTEsoxGtWJFkguaujtBHESXy24ppLu8ro3ku5udomD9jDDFvAGMnT9TmkwxFyFpKvIBkMIwJBkT3mMeP3EL9lj8ZjBDUWFkUEfP4cdktN2p/i7p9BIE2GYpoSmq4T9Ttw8SbrtP+FnF6yN5IhiJIBCMGWSSE7S5yux1xeshcUuEo4l6/djanjQ8nQeEP291kLuk+AW2tVEVBsM9OPElhuxvJQJj0ibh8GHf5pVoff3c/mUvI7kYiENJQeblIDGGHBxdfc0W6j6rC19WvgeYAQMThRsIf1PYmF40j2O/QPEmqqsLT0UsuEi6U9y9/r32Q4gTMfPrXuP5K3YNy2cTxyDahxjMGSIpRH1kgmPWRZNKNwIi6xVhG1I0mXSOrKowhkarIIa+vBPCcALoOwxIZxMUAkF0IXPUF4Jp/R3TyF5B35aeRm5s/9DsqVEklud3mOMswJ2JsgcnjDVOjkermgZhqqpvbsDT4rbGoimlsNvS3dLFYrOSDf/h3mPG3mJqhN5g6ZJNp5zUjbSyWIa+9uY9xLioDMz03ZjqHmUJtPzAGVZHTP5A/HsgfD3GsF/jsl4Ehbx7f2weV5zH6xmuAiB0s3I/Yyf0Ye0Vh2j4IDyA7WAOr7xQw5G/KBZBjyQZqrxuyEa5DvocDevPSAIKjL03/tml+mXWZPFumqJl62aSPVLOtOoL+VwSR6EZVkqlNrCgj2NpUF7IR7HFZEKmnV6b6f8S5mH47w9ZGpu2kSFRPM5bZRs7Q/xKVcYT5K5JEbdUR1sEsoyJJBAgQjGXOV6S/bbbjzN8giiwj4Q/hIoO+jPuCBKGei8aJnlMVBTG3DxNvuEabX8zjJ5EBXCxB9Jyqqoi4vJr+HO5jtMn4WBxxf5D0CdtdmHDDNaSPEVhPSCQR8wbSz8hmA2MMoQEnsUWibh+5PBESybQtcuM12poE+uxk3WIePxL+oPatICRTCNndGlsBYwyB3kHqlPGknRqKrCAb6YuE4IBTYxFK97GTucQ8/rQtMrQOEscj0GsnFwmBngEkg+H0mWK1IubxI+L0YNQQO4HEC/B1DxDGoL+n/MNA8c61DIfTAcD6+57DNXd+Cv/2u58CGHpJFIWEYwCZIRuKJJEQGkWWYbXZyAt3tj4j/c3cJ314MFgGTwMtO4DWXUBy6IZw/LXATd+CdN3XkH3tv6c/HjH0kioqsgxGhyjJyDGEA0qSTMIDn97WiE1VdvS8+V3YhsLNzX1kWYHVaqHhRqY25rqqqlBVdta5ZGXRtTvbuIqiwmIBmYtZJnN9pL+NJKPNZqVhY2cZV1VVMAYSFnkuczn72jGoXARZ0QEg3AeEeqEGemAN9wGhnjRzgLHYcoCLrgO7+HpYLrkJuPhG4JKbwC65AZZ8/UBjqgpYQEIcVUkitDrmfXkuoc7nsr/NdVVVAcZICJV5XHP9nMZV0mGcZwq7ynjXPiQZzX0+iIzDlyFnGvdcQstGmgtT1TPK+M9UziVM7x8a/n+WZ2ROmTrXFA1VVUm4JR9PENpCLhrD7Xd85kLI/XkqwzYCYwzf/+tMPP2H/8Z/3PExAOmorZzsLHLef1j66Jz0hqxqXnJgKCVMFYGeY0DzdrCOA7AMh3FP/iRw439Buf4bsF1xR5rSDemwfDMt3dneo/+ek/YK7XvoP865z7ApeMawfFUdCrk3tskMy6f19IcMGScjTF8hF6kj/W2kPrBS/Z8Zyi/DYjoHYHDujNRGleUMGinz38w6mA3pDXIZbGqjihKsUhQI9QKhtI3AAl2wDNsIvAnoN7sQ7OLrgUtuHLIRbgAuuQnqmKtgLRxnGFeE1WSHMpMOy5iLqQ6kw/ttZ9CfjKUvUIzrcDbdPuK4pvpIOvestvY56tyz2fkfhv4/l/meTxvHmpWVcXlgfgb/LOWczpwPI/zfZA+M9DezjXAuz0gSBKLrVUWBIstnTLcQkinkFOg0qKqqQkxxhM7xw7IRPvqEzr+jfOE3P8ZFV12u1a1ZWRl0UK7WLux/7T3yt2W/foR42ao27EbDLr0fF4tj3b1TSJ9tT75Jwlm6T1Wh6L1VpM3SXzyoV3ztYNvuA6bfDKz8LlC1BOq4q+D+4gvAX2uAh+qA70zFs6fGIibrL9vu4jpsOHBaq8uygt89v8T4M3hjyR609OihnwO+KHKsTPuYB4DfPreYeAfW7y8nYe3ReAoPvEFpPZ6cvhFuf0Srn6rtwqItNLzormcWkfrcDUdxukEPbxlwBfDc7K2kzb2vrECS08Nz9pyow4YDegisJMn4/QtLSZ9XFu5Ce58eulfXPoB3VlAalbufXURuOVfvLsXBU3o4TjCSwINvUXqWx6ZtgDeoK8oT1R1YvJXK+GuTjLPWHkZVs0530uvw4cW5lNbwz6+sQMog465Trdhd7QIu+xRw648gfvFRvGy5H/jDAeCJTuBZB+q+vxuJHywBvvoccMsPoWYXpGl6Ts0Edt0PLPsGLFOvAabdCKz8HrD3Mch7noNSuQGIewHGIIbC6Jo6ncxl419fJLejbUdPZVCtkL0K4PC0xRgwhEh7u/qw+wU67orfPEZCwKs37iHvm5jisOaPT5M+O6dMI2FKvadrcWzW8jPO5cSCteg6ob8DUY8Pmx95lbTZcP8LSBpuR5v3F+H0Kp3aRlVVLP/1I6TPwbcXwF6vp8m427qx5+VZpM3K3zxGPOVV63eR0D0hmcKaPz1D+ux4ZioJY+spq8k4G5b98iEq4/w1GgUakA752vr4G6TNununkFvjpr3HCH2MqihYcfejWl2RpIwww47ickQ9ephh1O0jtHWKLKNsBaVT6i6txqAh9SPmCxBKF1VRUDx/DQnl66uoI6GIiUAIh6fp75Gqqji5eD0J7x+obsTJxTolZzIUwdbHX9e8EKqqomzFZrQaaA4H65qxx0D7lopEsemhl7VQSsYYTq/eRigiHY1tWP37J7U6F41hy2OvaWFtjDFUrNtJ9ruzuQML/uceLXyejyew7Yk3tBBHxhiqNu7Git88pvVxt3Vj3vf+oIX784kktj31Fg6+vUDrU7NlH2Z+7Ve4UM5/sVgsuOd/v4KLx+mXKYyxjLSx7ceqseWw/i5yvIg/vkTPqBfmbUe3ISy/uqWPhPIDwK+eWUjqy3aU4Nhp/bzxx3i8uql+eCJAfyk6Ft4FNu0GYOOvgNadSE6+Ez3/9jbweAdwbwnwtedRIt+gfcwDgD3CEZo6UVYQSNLw+RgnEK9hOCliXD79GFNS9INRjfmpR1tIAlF68aw6aLqC6u0lYfhMSEHuoDSwUv0xMFEPHVY8vZD79JBkxlSkiugZlKo6Ctmv2ziS3434yX2kTXDLUuKRT9SVI9Wkp8CoPAfvWvpMvJtXQArq8011tiJwcBdp0z/jTVL3792FeJNuOwl+PwYXLSBteqZNg5zQz8NQaRm8B3RKLqYoaH3uJdKnb9EyJNxR4MrPA5/8OeKX/S963J8H/lwEPD0APNmLjvD/gP1gHvAfjwM3fgNSOAy07AaK3wK2/TGdgjHtamDW7cDa/wUOPQfHK3dBqD+YRvoH4CuvQedSSn1c8qfHSL1l4Wp4K/TU1PigE5WvUP1f9NALEA1nfs+eI+g0UNspkoSD9zxJ+px64z0EDeHanoZWlE1fTNps/+2jxHNet3Izegwh9lw4ij0Pvkj67Hv8dcQNKYI9RWWoXEZtnHV3PUzqxTOXYtAQ7h/oHcTe56aRNmv/+BQJc6/dup9QTUuCgJW/fZz02fPiDBK2PlDdiCPvUhmX/eph8j6eWroR7QYZE8EwNj1I98emB18i1HxtR04SWmDGGJb9isp45N3FJNXNbMelIlG0Hy8jY1Rv3mtKB2gn+p+LxUlo/7DuM1Iju1q70HxA1/98Ioljs5eTPjVb98PZpKfWeDt7UbZcf+/FFIe9L8/UKN0YY6jfeYhQOfu6+7H3lVl6H47HnpdnEhuzce8xnDLYFYE+O9b++VlNRonnse+1Oeg8oZ9TzQeKsPv5d7V6cMCBpb98SEsRlAQBB96cR+jMWw+XYKVB/4fsLiz95UNwNafTCGRRxKGpC7DvNZ2Bpf1YKWZ/8y7Nxgw7PVj+64c1KkdFknD43cVYbbKjP2j5l/LQV67fhU/+zzfPCor3kRUxmfbE164G7EOb5bJPA7f+GLj1h2lwlPNQfr6oHN4Yj+Inv3pexr9QPsLCWNp7H+gcoh3qTP/n7wRiNPcJeeOACTcDEz4GTPx4+n9PvCVNvfM35pteKBfKhXJ+ykgehgu0deevDNsIsqxg/f7TuOt7X/yHgE+OWBL+NPZK7Wog2A1YrMB1XwFu/RFw8/fS9Krnodzy4kF87eaJmPurz5yX8S+Uj7CoChC167SEgY70v/4OIBWgbUddmrYPJtycthGG7YT8cf+QqV8oF8qFklnOl43wT6L1zq0wxnDwrflaXVUU1GylXlx/7yBKFq0jf9s55R3ioW/ad5yAJvGJJPa/Tr36R2cuJZ6uQGMrurcOAfDFXMDhF8CmfwzY9UD6A+zO+1D2X3vR8YPdwJceAsZdBbc/gjnraATB64t2EyC6kuoO7D+p317LsoLn39tG+izdVky8Bd5oCqIBIAwAnpuzlXjo956oxykDWF0sweHNJRRQY8bqg/CF9FyZmpY+bDlMgVGemUVv0tfvL0dDhw5g4vKFM2R8bdEu4r0urmrDIQPokCjJeHEe9Xgv3lKEXoe+3h39bqzcScGkpszeQjz0u4vqUF6vvwCReApvL6MgidNXHYDfIGNVcy+2HakmbZ6dvYXU1+4tQ1OX/jHt8IYwdz0Fq3tlwU5wvJ6Xdux0C44avDOCKOGVBTtJnwWbjmHQrXvSW3ucWL2nLJ0rd+2Xgc/9EW9GfwrcvQN4rAV41omW7++C5xuzgS89Alz1RbCEF6x2NXDwGWDND4HpN4FNvRZs+XeAfU8AVcugNO+F0q+DbDDGMLCYei7KVm6BywBwExp0ongejeDY/eIM4qFvPVxCgFyGb0uN5ficFQgbgCGdTe2oWLuDtNn+9FukXrNlHwE+i/uDxNsLAPvfmAsuqj/H7tJqNBgABFVVxY5n3iZ9SpdtgrdTj7QY8Wx4bhrx0DcfKEJHkX6jLSRT5IYYGDobDGA79voWVK6nXp9tT1EZqzftIRERMa8fR2fQKJV9r80hXvCukgoCrqcqCnZOeYf0OblkA3zd/Vrd29WHkwZvdTIUQW+5DjynqipZNwBwNLSSdUpFosT7PnzbbgSicTZ3kHG5WBwVhmiC4dt2YySDu62bRBTwiSSK3ltJgGga9x4je8Hb2YtSw62+kEzh2OzlWkQKYwzNB4rIOvm6+3HwbV1PiCkORXNXwdHYpvVpPVyCU4YolkCfHTunvKPJKHI8ShauRYsB9Kn9WCn2vTpb79Of7jO8/hLP4+SSDcQL0VFcjg33P48L5fyXrCwb2vtc2Go43+NJDgdOUmCpY6dbiCedF87xrN5NQazMemPH8TpUNg957rwtEDbfA2X6zcCRFwFFBL72PHZ+7QhiP90MfOY3QMFFGAin0OLRzzXGGGqd1JPujfNIiQbsDEVFJEVzopO8qHmkBFlBSlQwNo+GmssczdNUE2EwRT/7mJACiwdpG08XrQedUBM6JgQTecj9FFBQ6qwiAHyK3w7ZaQBTU1Xw1fQM4lsroYT1M1WOBJCqo8Bo0aM7SO59qr0BXI8O/qoKPEIHqe0UOroHckT3evIDvYiWFZM27nXLSD18sgipHn2+UjgEz3ZqBznWrIac1POBo/X1CJXq+4MpCvrmU53r2r4TqUHds5gasMO5herGznffI95r3/EShGsbgfHXADd+E9Jtv0FX363A7/cDT/UAT/XBMf5BSF95A7jzPmDix6G6W4DKRcDeR4Dl3wKmXg3x5SuANT8GDj8P1K+Hc80chBvq9bl4fGhZsJLMpXbqXEgGIDrXqQoMHtHBoxVJQsXrs0ifxqXrETOc+aHOXjSvphGcJ16cRjzEnXuPwnFajxbgwlGUTqNrVzp9MVIG77WjqgEt2w+QNoeem0rqdet2wNOiA5RF7C6UzqORdIdemQnJ4KHvPFaKdgNAtiQI2PcijVw4MW81QoN6NImrtQvlq6iMO555m8hYt+Mgeg0yJkMRoqMA4ODb84kXvPd0Leq2G6I+GMuwccx2XHDAkWnHvTA9w45rM0QL+HsG4DFEVYgcjxZDlByQBg80Rg8G+uxE/0s8nwHY136slID2hgadRE/LoohTSzcS+6urpAJ9FbrtGnZ6ULZSP2cVSULpsk3E/uourSZ2RdTtI/ajIssoW7mFRCH0nq4l0Q8xrx/7XpujyajIMk6v2U7soP6qBvKdGPMFsP+NufC0p79BVEVB5fpdxK4YqGnCpodf1mRMBEI4+PZ8zY5WFQXVm/YQu+LvKuyfvBi5+RLBEOFPZIxl1EWOIzzYjKW5mI0l6vGxRDCs1RVFYe422sbb1Uf4qcV4giWaTjK2436NG15d8g3GGjYzJqZ5LD0RjiUFnSdVlhXW0e8m47b1usicg5E48wQipE1rj5PUex0+xvH6XD772mH2s/knz9jHE4iwUFTnEFVVlbX1Uo7Zjn434QONxlPM4Q2RNuZxB91BwjEvihLrGvCcsU8gHGfeYPSMbboHvUwQ9bVLpnjW7/SfsY/bH2HhWFKrK0rmerf3uYiMkViSOc8iY7/Tz5Ipnf9TECXWY/eesY8/FGM+g4yqqma06RrwEBlTnMD6TDJ2OMKkHkoKZE+pqsqSiRhjzjrG6tYzdvgFpq75CVNn3JLJoTvjVsbW/YyxIy8z/vh8xrxtjA3x+Pr7Bgn/qsjzzNfdT37b1dpF9mrU6yc8qcNtjMXX3a9xbjKW5jA38qKO1Cfs9LBUNKbVFUVh7vZu0sbd3k2eYzIcYRE3fSbmcQP9diYkU1pdEgTC/T5Sn6jXT/hWR2pjPhu4eIKF7K4z9gk53FRGWWaejh4qYxtd70QwTLh3RxrX3zfIRM7wHEc4/4xctsNtjEVRlIy/DfOxDxchmWKyJJE+w7z02nxDkYw+xvVXFCVjbaMeH5FZSKbIOIqisJCDvtMRt5fMV0imWMTlJX2MPMGMpTnijeMKyRTZ74qiMEdTO1MMHNARt5c8VyHFMXtDa0Yf43ONuL1ElwgpjnWXVl/goT+PxchDH4zEM/5/s43gC0Yzzmqzbuwa8DDRcFYnRtBHLd0OUnd6QyzecoSxNT9J2wcvjWWJlT9Pc6APnV0DwSSZT0qUdY75oRJJ0TovyUxW9D6qqjJRVkgbyVD3Rjl29dN72bSD7XQdDBzujDGmSgKZi6rITJUE2oZL0LqQotz1qsKUBH3vlViQjiukmJqiz0UO03NNjgbpuJLI5DBdb9FHn5EcjzI5SccVPA5T3clURX+n5VSSiUE6LmenOkHw+5icMtgVksQ4Jx03NUB1pRiNMiFIdWOip5f2sTuYYtCNMsexlJ2OG++iOoH3+ZkYoXs13kXHjff0E+56MRZnqb4OxgbKGatazti+J5k072uMTb2O2Afqy+MYm3MHY5t+w5Rjb7Jk8QrGQv2MDT27sEkHc8EQS3rp2gVNdnOkd5BJnK5vJI5nkT6qj/wmHRZ3eRkXpjL6Tb8d6OpjikH/cNEYi5r0gtc0l/CgkwkGPSZLEvN30rXzmOfiD7K4L0D+5jbr3J4BolPPxcaJuLwax/mwjGYbx9PRQ2ycVCRK9NpI4wYHHERXy6I4oh1nLDFfgNhxqqoSm42xTBtBEgSi/1VVzbARzPaAJAjExlRVNcNGSIQiRGZJEDLWyWwDJYJhMq4kCKSNqqos0G/PsKWMvy0JArGTVFXNsOsSoQixPSRBYM7mDtLH191P5psIRYhdJwkC66us12Qc/h2jXZEIRVh/deOHYiN8pCj3f28pX7kNoyZchC/c/WPtb77ufoy//FINhCCNZGlGATchfCoqLFYTCqgJ+TRbUfSQiEAXso69iuy23en6x/4b+NJDaBavwu036AiTXDKBfFshMMQ7qwyBzBmLbBwXQ2BqGW1M6J2Kqt32McYQ4SSMzh191j6qLfO3M9qoDMPRiYxlziUTyXckmdQz1s+lj4YQnP3+bcxzSa+v3sZisUA0I4eaZUSaSeBM47KhsbVxkUa6P9P8je2H55Kxdqb1VRnLQNznk3EA47R6PBoHCvNQMLynFBV9nhhuvf5T6Xx9AO39Xtx05QTYpDjg7wDnbAS8rcgPdQCDp4HOg8gFgBMAbLnAxJtx8aRbgUm3A5M/AUy6DVk5o3DxpDFkLmOyzeBHKoyzZSOi0ZoQeBWFoLuP2MaMjDtiH5m+N4qqIZK/37iZjAHqCMi4ZlRkFcyUvjAi4q55XUzvlrmPGTk53efMKL2MsYx1GJHBwwgQrLIMGb0dvbjiEx/X6qlwDLbsFEZdkg73tVgsGQAyNhO4ly2bciFbrdaMNtm5FCjIlpNN1sVqtSLL1CY7P48816zcnIw+Zm7enIJ8MpesvFzYDNEDVqsVuaNoWlbu6EKyLll5ucgycCNbrVbkjxlFnmve6FEQEroXLjsvl8zFarUif+xosnb5Y0ZDMkQnZeflIm+0Dn5zoZy/YrFY8PL8Hfjld76IL37qBu3vTV0O3H7jFToo0QhZhiPqFjPzhvnsML6b/aW4+MBzyPXWpc/YO34P9Qt/hVuZhBsu1XW1OoRHruG0j5DwmIE9bwaef59+wyWcSp9p40dAuT9rYlbGwOYfZyPN8MxjsBF++6zo+aCo9wBBytfGYCaJ1BHGVRmNRT3buCa0f4vFkonKPwQ8p51dI8x/JBnNZ7O5bp4LU1VKLcgYrQ/1MbI4gTEwWyFw5U1ppgQAydYOjL3lY+kUEF8rhI5yZKf6YQl1Al2HYW3diQIAKAKQOwaYdCvysy8Hi30JlsmfTIfuqwwWs4xK5lyInlOUzGdi1o0qZTRgqprRh4kSTStUR9gvZv1p1rnmuY70tyHQZNLGPF+TLZKer3kumXaQ8TVJy3xm/a+q7Kx2hdmGUBWFoumP0Mds41gsFng7enH57TdrfwsOODHhuqs0cD2zfWCxWDJthBx63lizssCYRPqYbYSsnGyylrbsbFizTH0MoLTAkM1gpX2MIIsWiwW5owrJuDkFeQSV35adjez8XNInb3QhsStyCvKIfWjLziZ2hcViQd6YUWRt8kYVEMT6rJyc9LhDc7FYLCgYP5aMmzeqIMPG+aDlXyrk/s67f4TrvkhzwnpOVZHwi5jHT7gCAaBu+0EScu9sbIO3Qw8xFVMcmkzgUs4TZeDtncDeR4F5dwLteyHd/kvggSrgl+uBq76AHcUmjsiWPsKLHomnMjhw956oJyH37X1uwv0uywq2H6Uh4SdrOuAaAq/jJAWSwpAw0RxsPVxJPg4bOuzo6NdB5hIpHvtLKFfm4bJmwrXb6/ATMDgA2HyIhuCfbuzBgCEU0R+O43gF5Z/cU1xHQu7bet1o6tJllCQZO45RGU9Ut5Hwf7s3hLJ6Gu639UgVOazq2gbQNaCnIkQTHAHJA4BDpU2IJXVjv2fQm8EnbE4zKKvvgt2jh3d5gjGUVFPe3N1FteAF/aVs63Wh2RCmL4gSdhfVkT5FFW0IRPTnNugO4nQj5fvcesS0d9sH0Gs37O8kh8MmzuSjVV2IJXkgbyxw5efRd/XPUHPbFOD3+4Cn+8EebYX9v1cDX38J+Pj3AFkAGjbBcuhZYOV/A1OvBmZ/Eth0F1D0FtC+D4gMIlBcDNVwGeZq7iQ8ohIvoGG3CZStqBxxv752IbsbveW1pE31JpoWMVDdBH+PHprFxRJoMfHbN+8vIiH3vs5e2Ov0sFlVVVG7habf9JRWI+zQ34GY148OA0AMMHQ2GA5XR0Mb4REXU1yGjO3HSpEwyBjsd6T5VA2lasNuUu+rbCDhZ6lIjIC/AWkQPOMHpKe9B4NGGRUFNSYZu09WImJIcYi6fegsPk3a1G49QM4/e30L4W31dvYiYODIFZIpMgZjDC2HSkhooq+7n/C4ixxPgEaBNKhPzABkFOizo7OoXKtLPI/KdTuJ0dJ+rJTMLTjgQL0h7FASBJxevZ3Q6nQWlRMe17DDjbLlepieLIo4vWob4QHuOnGa7LGIy4sTC9ZqIfeKJOH06m1kj3WfrCQghVG3Dyfmr0FkiFN2OEzPuMd6SqtRPJeGeV4o5688+Kv/wo1XTyJ/21NcR+hXW3tcaO3RAW8FUcaeYvr+nqhqhz+sn9UObxjlDfSs3nyoAszbCqz/ObDyu7AF2uH5+D3Ao83A92chXnAVSjt8pE+tPYKkIXw+lDLw0CP9rg1GONInLsgQDbpdURk4k/EvGKg/w0Ph+GPzacg9E0089EKSfkDKYvpvxjYxOn+WDAOCgateEqEGKRe24usHDGB7ajwEFtb1NFNVyP0tpI/s7oOaNFBlJaKQ7CYe+vY68gEmehyQfPpvqwKPVCt9jqn2BigpPY1JCnjB9XaSNtEKmtqX6uqA6NPPVDkWRbyB6rBIRTlUQ9ojbx9EqkdP/2OKgmBxMf2dujqIQd12Evx+ROupTeY7fIzIGG/vRKpvQKsrqRT8xTQVIVBSDslgD6bsTkQb6fq6dg2doaMmANf9J/zCJxH/+KPAPceBZx3gf3EE7ovvAf7zaeCa/wBiLuT2bIVl36PA0q8Bb12OrBVfBtv6B+DULKD7GNSIGwN7aeqE62QFOANAb9Ljg/s0XbvunTRU3t/YikiPLqOUSKHPxG/ff/wUeAMobqRvEO4aan+3mtJvnRX1iAzoofGpYAS9x+jate0+TPSat7ULXgOPuCwIaDHptd6TFYi7db0WdXjQX0rt2fot+0jIvb2mCX4DkB4fS6B1/3E6/wPFGigbAPi6+kiaHmMsw3bqKa0mvO1xf4iA7wFpG8cYcu9s6tCA3IC0Hm7YRZ9jx/EyxLw6PkNPWQ0EQ/pF1O3DoIHHXZFlNO+jYNN9p+sQcervfczrR4dB/6uKgtqt+4n91V9ZT+yvuD9I0g5URUHtln1IGihyB6obCeBwMhRB2fLN2vqrqorarQfgN+wxe10Lmvbq658MR3Fy0Xot5VFVVdRtO4iBan39HQ2tBCQvFYmiZOE6hB3ps4IxhtptB9B2RF9/Z1M7Tsxfq8nIRWMoWbBWW3/GGOp2HMpIV/ig5V8KFK/t6Clc+elbMcrAU3heisQDpbOA0jmAlARu+g7wjZeBiTefred5L84Ihy+9fRyPfuMmPPyNG8/e4UK5UEYqEg/42wBPM+BpArxD/wq6QkHeuLQH/9JPAJM/lf7fF99A+I8vlAvlQjl7MeqxC+XDLca13Xm8Bt/5908g1+Qt+tBLMgAcfRmoXwfAAtzxu/TH0OhJZ+l4/svBZg/+srYGy3/3WXzt5n/8fC6Uf9HCRwFv65B90DT0byugGC6GRk9O0y1e+on0v5M/AYy98gJI74VyofyN5cOwEf6lPPRjLp2A+h2UOmbPSzM0sCMAcLV0YqeJmmLxT+8nHqryVVtRt0O/9eHjCSy/65F0ZaAMWPjvQPFbYBM/Dvz+APCrjTjlsGLm6oNk3J88SoH0Zq05hJM1+u2ewxvCw29TGrXfPb8EcYPHeFdRLVbv1m90ZFnBL56kYBkvztuO5u60dymcTN++l9e2kTY/e3we8dCv3HkSe0/Ua/VoPIU/mKjiHnxzDaGtK65qw3sm8DezjNNXHSCe8wFXAI+9QylSfjNlMfHQbztSjXX79Js5UZIzZJwyewulrWsbwOuLqJfzp4/PJR76JVuLCeBRKJrAn16iADf3vbaS0NYdPd2CBZuOkTZmGacu24fKJt070Ovw4anplCLlrmcWElC8TQcrsOmgDrQoiBJ+/TQFdnlm5uYMKqS3ltKbuf997D1ys7tw83ECtucLxXDfaytJn7+8upIA/x0ua8aizfS21CzjO+tPoS4+AfjM3cB334H9h1ux8EtFwEP1wM9WA19+ErGJnwELdAHlc4HtfwLmfR7srSuAZd8C9j8FVrMa3J7pgCEcsfWVaUgZQHH6KuoywF8W/PAeUi96byWhVol6fFh/33Okzeo/PkUAY5r2FxEKNFVVsfDH95I+e1+ZlUFbt+NZCpyz+Kf3kxviirU7ULtN9yAIyZR+NgyVTQ+9TMDeukurM0D8zDIem7WMgO1FXF6sN4GlrfztYwR4pmH3EQLcoioKFv3kL6TP7hemk/PP2dyBXQY6FgBY9JO/kPOvbOUW1O/Uz1EuFid0bACw4YEXCLhh29FT4A3RA2GHG90Gr4QiSRm3zB3F5eRWPOr2kdt2RZZRNHcV8dB3naxE10k9Yibm9aN4/pqMPsNecSDtPajaoIMSxv1BAh6oKgpKFq4loER9FXU4NFWnokoEQlj3lymaF2KYdq9qo34GDVQ3kmeWDEWw/r7n4BqKWlFVFaXLNuHgW/O0NoO1zZj3vT/gQvloiqoyVDXTCKy7n110xrOa40XcZaKge3rGJnJWVzX3pgFXGQMaNgFzPwfUrUkj1T9QCXxvBpYUDaC4Vo9wC8YFvLaDRlPNP9WLOK+fN73BJOqcEa3OGEP5QIj0cUU5JA0RBqKsImiirYsbaOuGAfPG5Bq41hmDnIiQPkqU0tYxPgE14qFt7DTCUPH2QiW0dRwkE22d2HCMguK5eyD36XqaqSq4Egoyx1UfhRLU9b8c9CBZRj2ukV3LiPc6WV8Ork33yKsCj8Ameg4Htq2EHNY9xlxXK8JHqV3hmEtp6wL7dyDZpsstBv1wLJ1H2vTPegdKynAelp1C4Ailret8ldKSDS5dglSfvjeT3T3oX0wpilufmUJkdO3YjUCJwT6MJ9Ay5WXSp+3Vt8F79UiK4Olq9K+g4K819zxC6j0LVyBUXa/VU3YXmp43Abk+8RbkSz4B3Pln4AfvwXn5cxi4aSFwXznwo8Vgd96HiJ8Bg+VAyTvApl8Ds26H+vY1wOofAkdeQnz/HLS+/SoJfT/6mwdJqkHbyk0EbI8PhVH0V6r/ix99CUmvvu/sJ8pRv3ANabPrF/eResX0RXAZaOsifYM49jR91jt/9yjx0LdtP4DmjboukQUBW++iFLSHn30bAYO33VnTiOK35pI2a3/6F2LHVSxej05DRF4yEMLWeykd7uY/P4OEIbqh48hJlC7QZWSMYflPqI1z6M25GDCAyPq6+rDzKSrjsl88QDz0VRt2EV0tcjyW/pJSCW957DWiu/sq6oheA4AFP/oz8YKbwXYH65oJvV8qEiWgeIwxVKzdodHWAWnKWaP+56IxAjLHGEPl+l3E/nK1dBJ5+HgC+16bQ9KUqzftQbfBi+9p78aR6fq7JyRT2PHsVI0amQ0BARvBjr2dvdj08Mukz87npmlge2lv+0GyTr7ufmJjiikOu1+YrtmYjDE07D6CtX9+Fh9G+Zfy0IspLiPXQJFl2LKyzvg3c11VlIycEDUVhvX4a0D1MiB3LNh/vQbLZ35DbhoVRYXNZj3n+rm0GV5+yzn+zqmuAO5aVoFZP/8kfvjpKz60cbV1UFVC+WNuo6oqLBbL3zQuYwyMsTOO+0Hm8kFlPFubDyLjucz3fO0PWVaQlUX389najNhHZbAZcpO0HMG4F/A0grnqAU8jLO56IKKHjyMrH7j0NmDyp8AmfxKWy+9IU+cMefI/0Pto+ltGfYRndLY+5zqumfLqbH1G2t8f1lw+kIwmGT4MGf/ZC8lnHaF+Lm3O5Tma9y5j6TxH499kUUSWIadPEgR8/NZbL3joz1Mx2ggpTkCBITcSyDzrRnrOZzsfGWNg4QFY9z8BdB8Bxl0N5bszYbvp61obVWWwWExntelMHemMBXDWffm37OUFxT2YerAdxx//T1w3YdSHNu77z1eFxWI9Q32EPqpK8lXNfUZsk9Ennc9PfussfdJ/U2AxRJll1Eecr6mNoug56+/326Y2I/Y5Sxs2lJv/946ryjKsxnNrhD7mNhl9VBUYSR9ZrUBkAHA3gjlrYfE2A+56IKl/gCNvbDrK77JPQZ30CVivuCON3G+xjDyueS4j6FzzunwYOnek/fKh6NwPMpcR9uE/yq44F934z14+jPPvXGynkexbi9VKxjlfNsK/lIe+/XgZ8VgBQPvRUzSH3utH62GaE1W1fhfxAtnrWuBs0nOiWe8JWBb8W/pj/ubvAQ9UYFf0NkQSuie9z+nHqTqae7V2L6WxKa3rQo8h3zkST2G3KTdv8+FKknvd0uNEdYt+i6UoKvFmA8CR8mbNkx7h0rdZff00b23dvjLiva5q7kVrr96G48WMXPGdx2sRM8jYPehFaR3NW1+zh8pYUtOBfpeeWxOOJbG3pJ602XiwgoDTNXbaUd+ufwCm+YKpjIfKmkgOvcMbwjFTbv7avaX01rOxBx39ukchxQkZOeg7jteQiIjOAQ8qDN53xljGcyyqbCM59MFIglALAmn6PtkApFTXPoBGQw69JMnYcIDmMh841YiAIS9z0B1EcRWNtDCvd3lDN7oMnqJEiseO4zWkzY7jNUgaIiLa+9wEC4ExlrHexdXtcPp0+iF/KIYDJhnX7RuScfQk4MZvoumKu9H82WnAI03AU31Q7tqJ3k8/Bdz0rbTyrloCy+6/Agu+CAx58tn+p2CtXwcEujWgm1QtldFeXotQT79W52Jx1JkicWpNtGm+zl70mXLzTq+mlEVtR08RL3PM60fLQZq3XrluJ80vr2uBo0Hfd7IoZuTDN+w+ot3kAuk8b3PeevkqOpee0mpCL8dFY6jfSXPzajbvhWjwFnjautFv8DAwxnB6DaV7bD1cQs6/qNuXkZtfsXYHOf8GqhvJ+ZemnKG5efU7DxPMAn/PADpPUBmNdHKMMUJ9A6QjLYxRFZIgkDaMMTgaWsk7HfMFCCWQLIokjxBI3+Ib6f0SgZDmJQfS0QJGWlIgfYtvxFNI0/np+0eRZbQeOkEAhNxt3SSfLxmOEt2iKgrajp5CMqi/R97OXoKnwEVjqNtGI7sulPNXFm4pysBe2XSoEpJBHzV02tFgwq3ZeJDuF3JWM4Zw8QKo874I9BwDvvAAcH851rRSgKfqTjd63RGtnhJkFLV5SZvKgRB4A8BqmJPgjutnN2MM9ijNoU8IMkTZmEOvgjOBtIqykuGhH5tPDXJVpFS3TEgSgDUmCQCfoG2idP5I0Bx6JktgASdporp7CYgci4fAwvo5zBjLoLpTnD00hz4ZgzTYQdrwrdUEKE9yD0D26+80kyWkmqiNk2qthcLpnnQp4AXfQ/FwYqeLSZ3rbIEU0OVWUknEaujZFyk7AVXSPYvcQB+humOKgmARxV6J1lZDDOl2hRgMIlJDc699hw6R8zDe0opUvyGHnufhO0IjDP1FJZAN52FqwI5IPc0vd+/aR+qhylpwTt0+lKIx+I+V0D57DkE1AInF27sQbdJ1I1MU2LfuSTu9xl8D3PIDePBV8N9aBDzRBTzWBuFbCxC/6pfAlV8AfG1A6WxYt/8RmPMp4J1rgTU/Qmr9g0gdXwpEnQBjkFMc+ndT/T+w9whEg4yxvkF4TPq/c8NOUneerETcbrCBQ2H0H6SRi51b9xHQ7EBLB7wGejNVUdBq8NgDQM+hYqQMnvSY040BQ/QdADSt20Geo7OqAQEjNVwyhdbtVC+07jhIMHSC3f0YLKe2Xq1J//cWn0bEIGPCH0S7CX+ofsNuEoXobmiDy4B/o0gSajZQGVv2HSN6LTzoRFcRtSErTDZO96kqQn/LxxOo3aLvO1VRiA0EAJ6OHmKbpCJRov9VRSERiECamjcV0e0vLhYn1H2qqhJKPSBNWRw2rBOfSBLbSlVVdJVUQOL1szg44IDLgKcgJFMEn4Axhu7SaoI1ELK7iF0hpjjU7TikRaQwxtB7uhbeTv2bL+z0oPUQffc+aPmXQrm/7btfhczTULOcwgKCtmjNykJuIfXi55rQC7Nyc9LIiYylc+WPvQrkjwd+ugq45X8AiwWjCkLkJj0nOwsFeVSBjx1NkZQL8nOQl6vn7mXZrBhdSBEaxxTmIcvgOc3NpiiPVqsF40zjjirIQ86QjMMIthPG0HHHji4g4+Tn5SLPkEdos1kxZhRdlzGjTHPJyUahybsxbgydS2F+LnIN651ls2J0AZ3LuNH5sJK55BAUYZvNirEmFOpR+XQuOdlZI8yFokXn5+UgJ1s3Wmw2K8aYnv3ogjxkGW7PcrOzkG9A2rRYLBnPcVRBHrIN3pksmxWjTDKON82lIC+HpDyMNJdRBbnE65Obk4WCPCrj+LGF5FawID+XzMVmzVzvMYV0vfNys0kOqcViwWjTXArycsh6Z2dnYVQBncuYwnyKFJpl073+BRfBct1XEM79FHDlEKZFKgRusBa5/iZYXbWAqx4Wu8EQyh0LXPZJ5GZfBoyKApffAYy5DDmF+bBm6fO12mwZyOC5o0dlIJsao3UYY8gfR1H6cwsLkGV8B0wopQAyUEqzcnMIErvFYskYN2/0KNiMzyQ7O2O+BeNpn5yCfGQbUdWzskaU0ThuVm4OMQrS446lfUYVkvPPlp2F3FGm98SExJ6Tn0eQYy1DaO1ExjGjiIfElpON3ELTeWeQMQOtGWnUXqPMiiSPeOtv3O+KKBHPkSxKsJqiZ1RFIZFTEi+QdZNFKcOTJ4si+W2R42E19hHEDM+YxPPIztPXSeJ4stayMGQIDs2FMQYhmSLrJiQ58jsXyvktf/npV4kOBtI61+hVyc3OyvDMmHXu6MIhHSBxwL7HcVH9OqRGX4usny8Frvhsuo9JN+Zm25Br0EdWqwWFudTEys+xEbvCarEg21C3WCzINnmArBaLKSXZXKcpy5GUBIsFGGOyV8wyw+QRh8UKmH7bYjOZiDYbbWOxAKYISWTl0AnZbICBUMliscCSQ3UYsnPS7bQ+WbBkU31kzaM6zJKdQ+dnscKaS8e15uYTz7olKzvjt20Fo0jdkptHzgKL1QZbHn3WtkLKiGHNySUo5habDbYCeg5b8/JgyTLOxQZbHp1L1ujRabt0aGxbXh6s2QZdnpUFm+kcthXkk/lac3NgzaHPPmv06BH6GNbOas0YN2s0XRdrXh5gZIyyWJA9luq5rMKC9HlnsQBjLgO74VvgrTdj9J2fScsVd8O/ZyUumazC4qoHXLUoTB0HutcCJ58ARk2CbfKncLFwMdCdC1z2GaDgImSPKiTnty07G1kmOyhnDJUxqyAP1hyjXZGF7EL6THJGF5K1s+XkwGZcOsaQN34c7VNYSJ6J1ZaFHJPOzR07hrK3mFhVLDYbcsfS9c0169ysLORk6Fyq/3MK8wnC+0g2Tu6YUUTGrLxcGoVgsSDf9BzzRo0iesuWk5MxbsZcRrJxxugyKlKmXjaj9Msm/a/IckbEhCLRv8mCSGyE4csLo10hCyKycvW5yLxAIxJkylwEpPW98XlIHE898ZKUjnQxnN9iiiM2gsjxxDZRZRmKJJO/iclUBmPABy3/UiH3/VUNKBg/FhNvuEb7/4VkKsPQNP+NjyeQZzicmCwBYiLtTWzfC1zxOSS+vwSjJl2rtUlyAvmgVFUVvCCRcL54kiMfShwvIjvLRj7azG3MdUmSoTJGPsDMbZKcgPzcbFitVrx3rAvTj3Ti8MNfwk2Tx71vH16QYLNakG3YKGebiywrkGQF+QZDwNwmxQnIzckm4dxnG1ccQuA9k4yJFI/C/FydWkhVwQkSeQYfloyyohKj78OQURAlWCwW7eLlXGU8X3tKUdlZZcwb2lPG+RkvLsx1QZRgs1rJXMzvScZ7E/dDstcg19cAuGoBZy2QNCAnj7oU7PLPAJd9BpYrPgtc/hkgbyyYLMKSpe9DOZlElkEZK7IMVVGQnav/lvm9HylFJ+NsSCSRZ1DGw/lcxnAo8/lhrquKAlkQyW+Z24hDH4PGUCzzb5v7KJKUltFg9JnbCMlUmsbNsKckjj/j+ScJAiwWy98uoyghJ//95yJyPLJysonSM8v4YZVzCQ3+MMKJzyUU0Rxyr0iSRvcDpPfUzbfcciHk/jwVo41wuKwZd9xyDS4ep+9L85kkSTIYcMazOskJKOBcsGy+G/A0Qb3tp+C/+Q4Kxl70vuPyoowsm5VclCYFmXzUc5KCfMNHv6IyMDBkGQ1URSVjmEP5GUtT31nfZy//eXU1KvtCqHvxm2cOjR8phN0c3q3KsFiNYdfKUHi0oY0swWK4kM2oD1GZGT8gmSSQD3YmiUBWljYuYwyQRdJGFXlYDR/jTE5TmRnHVQWefNSb62lKVAXWbP3sU3mOXBaoogBLVha5CFB4DjZDG4VLwZavn7GqLAEM5EPP3EbhOVhz9I8pxhhUgafjplKwFRjGFQTAZiMfFnIqhSxDm4w+sgwmy+SyIEN/cjysOdn08jSZQpZBb5jrw95640dyRh/T3Eb6G+nDGBR/LyzeBlg9QzaCq56C846/FuqkT8J69Z3py7RLPwHVkgVVkpFl0EdSPIlswyW5nOJgM9GiSskUsg3zNdcVSQJUBpvhUl9MJMkHu7nOVBUyLyDboP/FeAI5o+kHpMVmJXrB3EaIJ5Br1LlDH3/Gy3dzGynFkQ90xhikZIrMz9xHFkWAMWQZbSdTGyGRJI6BkWycjLnwAqxZNmrjnMWuSNs4KrkI+DDKh5dO9LeH3I8Ugm+12Wgq1nmyEf6lQu4nfew6EjYJAMdnryDho67WLhw1gB0AwIYHXiRhtULVTrAF/57+mP/8n5H4xQ48v56GgL22aBcJuz7d2IOVuygdxH2vrSL1lbtOotIQ6uz0hfHG4j2kzdMzN5MQ8MPlzdh+TA8PkWUFD79NAU3mrDusAcYNe+g3mcLEH3prLfEQbz1SRULWo/EUpszeSmVcuAuegB66Ut7QnRHy/cAbFHhk+Y4SkiIw4Arg7WU0nOvJ6ZsIKN6h0ibsMlC4iZKMR6ZSIL2Zaw6hc0APy2vqcmDBJkrr8eBba0laweZDFSg20MmFogk8N4fK+PL8HSSUv7S+C+v26eFRjLEMGZdsO4G6dj3Mrdfhw7SVlGrl8WkbCNDS/pON2FNcr9UFUcKjJrDAd1ceQK9Dzytr6LBj0RYaAvbAG2uIV3bjgdMoMQAt+kMxvDRvB+nz4tztJJT/ZG0nNhhC7EeSccHm4yTstGvAi+mraAjYw2+vg2AIudtzop6kkCQ5AY9OpXv1raV7CXVjo9+KNY5rga88DfxqE/BEJw59twj42RrgS48Al9wI9JXAUvQ6sOaHwNtXg733WbC1vwKqlgHuBkCR0TdvAaSY/hzbj5WiygBYwhjDmj89TeZyfM4KEj7v6ejBkXcXkzYb7n+BhKPVbj1AwvL5RBJbHnud9DnwxlwSFtZfWZ+RCmQGOSlbsYWEYkdcXux9eRZps+3JNwkoXuuRU6g1hGurioIN979AZZy9goSbe9q6cWzW8kwZDedf7dYDaDuqv+d8PIFtT1IgnX2vvUfSFXrLa1G2Ygtps+7eKaReumwTCWMLO9zY/9oc8jvtx/TfHaZ5MYbcedq70W8A+RGSKQJ4NwxWEzMAJHk7e9FkANsRUxyOz15O+tTvPERodvw9AwRUUeR47Ht1NknraNxzFE379DMo0GfH3ldma3WJ57H/9fcIeFDT/iKULNLHDfTbsf4vFODpQjl/5YpJ4wkVKwA8MnUdOat3FdcRwFheyDyrty94E+rCLwO+duC776Lu5ilYvJumc/355RWkvu1UNyra9XcmnBSx+ARNQ9ne6EJCMFDoxnh0BfT5MsbQ5ImTPoGUCN4Qci+rDDFOJG2SvGgIuZcwriCbvFeMMSgpOq6aCBFQPIgpsESQtGFeOn8WcgLJiF4XOSh2EwVddzUBxVMDDihuA6UbUyHWUgAtsb0CakS/6FUjfghN1BZJFu8ggHF8ZwPEPj0cVxV5RA/TMypWvAdyVLfjBHsPEhU0Jcm/idqLsfIi8H16CK8UDiK4h57vnvXLoXB66kGisQ7RCkM4rqLAsYQCpfl2bQfv0HUuN9AP704aQt3/3iwiY/DECUSr9X0nJxIYmE9BZvuXLIUQ0MN+Y03N8OyhNlnHqxTwzrl9F6JN+nPjXG70LaSgye1vTodsoCoLlJTCc1BPI1AlCc3PUd3YM38lEl26DRxtaUffUmoj1D3+om7jWCywH2+ELzgJ+OYrwG/3QPxLI5r53wM/WgR8/s9AwcVA2x7g0LPAsm8Cb10BZc4XkZj/c6BhYzqdjzGcfpyCEHas3IRArW7Xx/rtaJhBwS/Lnn0TsuHM799/HP0H9TNfEUSUPPkanf/spYgYUgT9jW1oXEJlPPLwi8SOa9u0G85S/TmmAiGcfGUm6VPyykwSyj94shKtm/XvB8YYDjz0IulTvXgdPAYbJ9w3iNIZdD8fePw1yAZQvI69x9BlsHEkjsf+J+hzPDFtIUJ9+l511bWgcskG0mb7A88TGWvX7SD0fXFfAIdepjLun/IOUoZ0xa6ictQZAO0iDjcGq/V0EVkU0WhKTewsKqdUvS4vWvbrdrQiSShdsoHMraukAoOG1L2ox0fsGUWWcXzOCpJm2F1aTYD+Yr4ADr6pA96pioLieatJWl5veQ1KFup7Ie4PYutjr2upfMMAvcbUvb7Keux5cQY+jPIv5aH/ULw9gxXAuv8FVBn4/mzgEz/7EGb50ZXHNtdjd70LXW98JzOE7kK5UP4Vi6oAgS7AWQ04awBHNeBtAdiQYZNdkAbUueKzwBWfS/83ZvI/dMoXyoXyt5QLtHXnrxjX1hxV9IFK3Vpg11/TlFw/WwVc+fkPYZYfXfnmjBMozM3Czge+9I+eyoVyoXw4RRbT1HmOmrSN4KwGgobzNH98OoVv2D64/A4gf9w/bLoXyoXyt5b/72jrom4fKtbtJH8rmruKAC15O3tR9N5K0mbzo6+mPVS9J4A1P4IMG/p/uE37mI8nuQzP7tvL9hJKt+qWPqzeTW+MzZR0q3eXEu+1yxdOU90YynNzthIP/fGKVuwq0kEUZFnBE+/Sm7B5G45q3utISsLoXBsWbqbe68enrSce+h3HagjgWizB4YW5FMTizSV7CKVbZVNPBiDfI6ZogVW7TqKuTfdIObwhTFtB6WWenb2FeOiPlDcTj4goyXjyXUoDN2fdYUIT1NrjzKBee+yd9cRDv/VIFaEJDMeSeGkevfF+fdFuQul2uqGbgNUxxjJkXL69BA0dOojfoDuI6auoh/6ZmZuJ1+dQaRMBzhNECU/PoLf6s9YcIt7rpi4Hlm4rJm0enbqO3CxuOliBUgMYYzCSwCsLdpI+ry7ciWBEB4wprevE5kM6OBBjLMOTvmRrMZoMIH79rkAGLePTMzYRD/3+kw04VKrfcqY4Ac/MovRDM1YfxIABNLGhYxDLtlOPiPm9WXegEhWebODTdwHfm4nw3cew+qungN8fBL75GnDjNyGH+oCyOcDmu4EZN4PNuAVs411A+TzAXgUmcgjtoTJWLV4HX5t+e+rvGcCxWZTWcPOjrxIPfcPuI2g9ot+e8olkBtXdwbfmEdq0gZomlK2knqENf6U36afXbEefwXsddftwwHDbCwA7n5tGwN7aj5cRek1VUbD5kVdIn6L3VpLzz9PRg6K5NHJIO/+GSt2Og4QmkI8nCM0bAOx/Yy6iHt1j1ldZnwHIt/FB6hEpW7kFA4bb9bDTk0FZuOOZtwn9XdvRU6jfpd/AB/rtBARHEgRCdQMArUdOIhHQvW4hu4vII4siylfR87z9eBncbbqyDDs9hOpGkSQUz1tNQAk7T5xGR7F+HkZcXqJbFEnCiQVrEOg3RLqcrCRUd1GPD7tfmI4L5aMpxyvaUG84u4H0WW0Eoj1wspHQnfKC4ayuXALsegD+7Cvg+OEO7WO+qcuBJVuLybhmvbGrYgDVXfr5Hk6JWFFKKfT2tniQMlDQuWI8eoLUQ9/mpZ70YFIgQHqyoiLGUw89Jxg89JyEcflZUIzAdIxBHslDrxho64QU1Dj10Ku+XloPucCMHnqJh+KgoFVyTx2YrM9PCTqhuI1gmCrEBmq/SF3VUKO63lCiQQitFIguVbqHeK+FniaIA7r+V0UesaKdpE/85AEoMR3cS3D0IVFDIy2DO1bTPpUl4Af0+crRMEIHqO3k374GCq/bcYmWBsSqDVFxigLXahoN5t+/C7xTPyt4px3+fRSMbHDRPCJj6FQJYvUG+zCZxOAy6oF1rFkNMaivXby1Fb6DVJd3T6NnkHvPPsTb9OhGwefDwLKVtM+suVAM3utg6Wn4juu6XJUktL9Jx+1fuR7JPt0+THT3YmA1tfVaXnyb2DiuPYcQLNe912I4ivZ3aHRDx5xlEHKvSVPo/XgRgl9cBucti4C7tgFfeRa4/LOQu04BxW8Ba38MTL0a4hs3Q1j5a6BmJeBtQXLQjta5VP/XvDyNeOidR0vgOKTbnTIvoOpFqhub5i5HfFC3nUItHWhbSW290qdfJzJ2b98PtwGojQuGUPHWe6RPxVvvgQvpe9VZXo3ObbptzRhD8ZPUk964fCP8Lfo7EOkbRNV7NEKvaMrbOt4LgO6DReg5RD30Rc9RG6d8xmJEDSBynoZW1K2gtt6BR18hMjZt3A27Aagw6Q+i+E0q4/FXZoKL6PZ4X0kFmg0yqqqKfY+/SvqcXrQOXoMdZ69qQNyjn7PJYBg9BsBeVVXRsJl+d9mrG+E2ANylwlE0mH63es12Yn856lrQZbAruEgMpYv0M58xhur1u+A3AP05G1pRs1G3K7hoDIfenKvZX4wx1Gzag24DNZ+ruQPHTXbpBy7sn7xcf/31pK6qKqlHXF4mCYJWlyWJhRxu0sbfN8hY52HGXpvI2Ds3sJSjiaVEmYw54AqQPnZPkMmyotVTnMC8wShp0+f0k7ovGGXJFK/VFUXJGNfcJxpPsVA0ccY2Tm+ICaLEGGPsh/NOsa+/W8RcvvAZ+wQjcRZLpMjf+k1tBlwBsp7JFM98Z5HRG4yyFGdYb1lhdk/wjH0iseRZZXR4Q0yS9GfCCyJz+yNn7BMIx1k8yZG/mWXsd/qJjIkUz/yh2BnH9QQijONFrS5JMnN4Q2fsE4klWTiWPGMb857ieJF5AmeW0R+KsYRhT420V80yx5McC4TjZxzX7Y9oe4oxxkRRYs6zyBiOJVnEJKP5twfdQaYof7uMSZOM7gjduylRZizqZKxlJ2OHnmPq0m8y9bWJjL00Jv3fq5cwdeF/MnZwCmPNOxiLuljU6WGyqD9HWZJY2Okh4wb67aSeCEVYKho7Y5uQw81kybB2HMeiHh+VqW+Q1GO+ABOSukyqqrLggOOMv8PF4iwRDJ9x3IzzTxQzZDT3SQTDjIvFz9gmZHcxRdbfRyGZYjFf4Ix9ol4/E1L6+6goCgsOOs/YJxWNsUSI7g/j/mGMkXkwll4789+Mz5kxxkSeJ3VFUTL+ZnwejDEmpDgyrqIojIvTc+v/sffeYXYVR/rwe8NkaUZZgEAgorGNbWyvw65tHDb/NnnX3y7ruM72OuOEAQM2OZkcJJAQAuWcs0aaGWmkyTmHO+HmnE4+3d8fd3RP17mDxGIwxp5+Hj3Qd7r6VHXurqq3pESygMYus73PksFwwT42k964JLat/XzAeeEaNd06NuoNc173eG4tee4T3Dc2zDVhfVTU869j0ZTCs4pOfvMn6P4UzaqER80wuazRsSzZ8pphclOgYYxx3T5HpvKMMX7lLXv5jze0FrQFM3RbXiNlmGlyZtB5xDTZlldJPYwxzhTalkyiawvTVc5UWo+Zsc15KcWZMPeYoXMzS+eakaTnDFPOclOh9epxukbpiShnzGorU1O5kab1alG6dhvpJDdVYT8yDa5FaV+rYbrGGlKWG2m6b6ghWkaLRjgT9g1T07gWpfwqAXp21VNJbmRp+yp+WkYJBEg/GrLMtRjdy2Wvj/IWjXJDFtYtXedygPIr2Wj0dJprtvVPmqDru+wLkH40FJUrQdp2WRuNGo1zXZCRMcazE/TbktfPmTDm9UyWKxEqY2ZskvPwIOet6zjf/RNuPvkRzu6cmz8jsHsu4saKv+f82D2cDxzmXIrztG0PVpMprtpkTI/TMhlfgJviuUJVedYfJGVSY7a9PBrjmm0vSdq+nRr3Ehm1TJZLETrmk/bzSjDMdVm4cxgGT9nuPwn7uSKe5HKCjtW4rUxy0s9NYazqssLTgfA5abLhKFcztB/jnkkbDc0rqTTP2voxNkrrTflDXFfo+fB8ZwRD1+naxljBGUG3nQcMTSPnOsYY2ds551zJZAtoNJnyZj8jZONJOj81jZRhjPHUG3RGeFtp6MMj4xg9Q8PAZaJx8vqkKyrx0QCA+fE6YP1/53xxvrofIccFSCSs12rGONFUA0A4loYhvJTKqoZkmoaTCUYoTSItQxE0mrphIpqkYWDCsRR51crKKgkdBwAhGy+xVDYfBi4h6agscxf4Cdp5SWcVZAU/O8YYwnHby38iQ0KvyaqOZOZ8MkpERsM0EUmcX8aMRKMTFMiYzEIVQgupmoGYre0KZJQUSIKmwjSnl1G0XJBk9XXIyIiP+nT8Z2QVGUk5Z5lYMks03qqmI56SSBk7L6msTKwdTJMRi4OzMor9KCkakplz1xtPZYmFgWGygn6cbkxlBF44L5w3sWQGqqCBUqaRMSBYvuR4kUg/6oYJn5eGS+oeGIdetigXheJv70bkP3Zg/GvdwDePAX//AHDtv8DMhIH6p4DNXwF+9w7M3vhpOHd+GzizHPC1wcl0VM6iiOMuIYwQACipNFSh7ZhpkrAkQM43TAxvpkkKpATtk5QQSg4ApESKaH8NTUNGCAuTqzdKLFDUrERejAEgJbxMA1Prn7jmqFrB+menUdIZKiNjSIeoZi4dihIfXE2eRkZbvXIiBV2Q0dR1EvrmbL3i2qBlZag2GccEH3ogFz5OFXw5mWEUoOqbwtoxXZ4zBm7aaXSSN1SVIt1yXlCP2NYAciGPRK+1KUR9Wi/Nz6Q3L9W3DxELIQAIRpNkXmUkBWlhrWamCXfdQ8DhXwOXfBj4yi6ElSISmUVWdcSSdM8NROh8yKgGZM2iMRlHUtELyog+jgbj0Bn1ehRD1AG58wkZYgC4jYZNFchqJnSTY255ERmXnHMS8m2qYhBods7yoUUtISj/YEaunFVxzhxaSFxXaXQO06C++gAJfQcA0NRc3QJvXKX7NJdtIfV0lXybc15YRs4CwjoGXQez1csytB+ZLOVA+vI/cLCs3bohTdYgrioF9YqWAQBgSpkceN5ZGtOAmaX8GkkbjSyDqdZY5YxBTyYoTToFLuxHTFVhSHSs6nG6z5mZDJi4TjEGI0H3DT0WI/1oSjJMmcqoRem+YWTSYMJ6xw0depLWq4XDNpoMsQTgpgndti9r0Ri4MB9NRYGRov2mBsPAgiuB9/038E+/Q/bv1sL4327gK3uAz9wOLP0rOMI9wIkHgLX/ATxwKUo3/yP4zh/k3GwigzAzWRgZajGjhuh6okXjJJyfqajQk5QXJUhl1FMZGMLeyHQdmhDSFQCUSJSMKUNWoKdpP8p2XuJJyouqQbPt/3LY1kdZiWAjAIBi2//VaBxMaG9DUaHZZJRs5yI1lYEhrquGASVGx7McoecKQ1ZJOEIAkEK280o8AVO840kyIr3UNN1nC23LdKMA3E6UB5jmzDAFbE3qse/3tr3c1A1iUXO2HpK3RWZjJivk5Q06I7ytLvQLll2CuZdcRH7zdfYhE7EGjRRLYKJVAGkZOgLs+h541RLgq/uBBVdiZDJMNn1F03G6g4K/tPaOkYufL5xArxDXHQCONdA46b0jPviEy0oqI6O5m5rc1bcPkcvLuD9KgNIMw8SJJhp/tb1/In/ZSkgaylwOAmgGACea+sjFdXA8iImANUklRUN9O50EjV0jSGWtCegNxfPge68mY8+wl7gixFMSWro9pMzJ1kFi4jjmi2Jk0rrg6LqBmuYBQtPWN0YOTKFYCl1DNL7t8cY+cjAb8AQw4bdkzMoqztj6saFrhBzeJkNx9HvOLWP3kJeABcaSGbQJIHkAUGeT0eMNY1ToR003UNdK4yG39noQT1sLaTCWQtfQJClT3dhLNtEBTwCTQWt8Z2SVAC8COcBGMQ69NxjH4Jh1Ieaco9oW775raBKhmHVIiSYzaOujpqp1rQP5h6SzMnoElwFVM3DSJmNLj4fMm2A0iZ5hWz8KQIYAMDgeIPMmIylo7vGQMg2dI+SRxRfNwhNRcr5yH/kO2H+8gFOfrQF+2p8D3Pvo98FnXZgD09n/C2DFDcBDy4D1/wkcuxsYPAIoScQaWsCEi11kdAKxMatPDE0ncUUBYKKlG3JKiIkbjBBgFADor6bmooHeISQFM301I8HTQC+uw6eaCShbbMyL0KDVDsw0MXiCxsv2dvQhE7YOP5lIDBNtdDwPHD9NNtHw0BgB9dNlBSOnaNzWsaYOyElrfCT9IQRsm2jfURp7198ziKTwkCEn04Uynmwil/6oZwKhISHOsq5jwCbjZFsPMbEfb+2GIjxIpEIReAVzOmaa6D9GeZto7Sa8ZSIxDAsyM9NEz8EaEhZ1oq0HoUFr/c5E4yReLGMM3QdOkIeZyY5ejDdb4HvZWAKtW6m7zkx689K7r7wY86oozk5d6yAMYW8cnQzD47X2f1b3GC7ueQ647OPAF7cBpVVo7aXrWDiWRrdtHTvRTPfpkUAagYRFI2smem0Ad2NxGapwYc9qJrn0c84Rk+mBUDEYDGHfY5xDs4d7Mhk454hnp2LQl7oLLvD2SzXXFXqBZ0YuTJ+YJHqI52oWEADvYBpgGXpoZ6kwIJr7yxlwydpPOecwI/T8whJBcDG+vSqBCbHrAcDwj+YQ889+OhGBmRIufoYO3Uv3Rs03Ri7aZiYBI0TPccowXS+1oBdmKmHxpkhQJ+i5Qh7uI5d+PRqGFrLOFdw0ke3rIjTK2AjMtNWeRioJeYzym+nqoG4FPi+0kLVvMFVFtpeCEGb7ewlAnxaNQPbQ80qyha7v0qgHunAZNzIZZPrpvpxs78ih7J/l3+eHPGH1GzMMJJrp3pjq6ScXeC0aQ2aQtl2soYVcXKWxCSg+q6+ZrCDRRi9oyfYu8pighiLIjFAZRbN9AEj3D0NNKsCyjwMf/ynUv3ka45f+DvhBC/BvzwEf/BpMWQNaXwZ2fg946oMoefEv4NrxVaDuUWCsHkxOI1zfROqNd/WRS6gaiSHZR/fGQF0DySeHRiH5rX40ZAXhpjZSJtzSCV14TMh6/UgK+w/nHL4aeq6I9Q6SC7CWTCHcTseH72Rj7uH5LC+eCaTGrH40FBW+03R8hDp6oMQT+bwUiiDSS884EyfqyVk1NjCMtN/qRz0jwW97nPc2tEEXHhNSkz7EhDMOZwwe2/4f7h5AVjjjKPEkAm1UxrHaBhKubvxkI+EtOjiKlDDG1EyWuAdwzuGpPQNddDEZ8iAsuDNqWQlDR2oJzWjNGcJbbHgMXsHtUJNk9Ow+nFcAcc4xUnMGsVHrrB0bGcdwNXV1fr3pbQWKJ6fSKC4vI2ERzpkiQ8DznwaKynKavKolbyKnb35ijOPKW/fhcx+4GA9+7r1vNTszaSb98SdDzSHlj58GJs7k/mXPboAOYNE7gaUfsf5VXVIQj3QmzaTfN82A4r15SWzbeCqLObPLXztg7MBBYN1/5Xzlv7wzd1Z4G6cubxL/9GQd7vrXd+FLH73srWZnJs2kP/6kpHIgexMNuXPCZBOgTT3EuYpzgLxLPwws/ShwyUeAivlvKbsz6U8z/dmB4rncbhL2CMgBSYkgSr7uAWy/+X5ASQLrbwQMBQ/Pvg3GLAsVe/WOWuw4Zr1IpTIyvnwLBTD5wb0vk7B1tc39BcBo//ajx0n+kZf2o0bQrk8GY/je3RRw5Ys3P0dA8XYca8bqHdarj2GY+NxNFEjilsc3o2toEilFB+O5cEl2gLv/+MmTREO/ctsJ7BJCxU0n43fvWk207dUNvXj8FRoiwi7jg6v2EpC2MV+kAOTs8798lpiJbzncSMLhabqB/++nFPTk5kc3EQuI1t4x3PkMDc/22R89QTT0KzZXEyC6eCqLr95GAWO+decqErbuyOluPLWOhsyxy3jfC7uJpn94IoSbbGGNbvz5M0RDv/HAGawTQsWpmo7/+hkFPfvZw+uJ5rypexR3L99Fynz2R0+Ql8VnNhwlQHSReBrfuIMCaHz99pUEFO9AXQcBTeSc47M/eoLQ3LV8J7EeGRgLFAAV/udPnyYuAmv31hOwPVnR8N+/oKBnP3lgLbHGON0+hPteoKEb7e39xNpDOCaEWAxEkvjOb1cXyCi6YOyrbScgVdPJeMfT29A2HMwd1v/qhxj7mxV47kMHrBf6D3wFmqEDTSuBbd8EHrsO/JFrwNd/HjizAvB3wJSy8PyOhnRb//3bERW0+EMnmwrA357+56+T/OFHnseAANwS9waw9js07NuqL/6YhE1p23kIdS9YfcJME8/+2zcJzY5bHiRhO71d/QUgfs/+2zcJKN7JlRvRtuNgPi+n0lj5+R8SmrXfuYWECO0/Xo/DtnCgT//T10j+0EPLMSiAvcTGvVj3XRqy7YUbv09A8Vq27ieAgqau47l//zah2fbL+0hovom27gKguWf+9Rt5KwTOOQHaAwBvZx8BxZNTadIGnHM0rt9JTPt93QMF4IE1z71CaTbsQlDQovh6Bgl4oJLJYvcdb0xImpl0/hSMpgqszOxr9fr9p3PAqOF+YOs3wGdfiG/1fZpc5n/28HoC0trYNYJ7VtC1+j9/tZqs1WtrR3Gy31r7ErKOR45RrdaWDh8kwSzfm5TRH7bWNc45uvxUKx5KK5AFUDzdZEjYXNiySs7MPS7lNHGVJS6YBtX8G5kEoTFTYaK150oWLEldnZiPam1ZZBw8Y52LuK7AGG0jZYy+egqKFxqDMWnVwzmH2kjDqmnddTRsXTIMrY2CYUpH1xMNvdrXBG3Y2hu5piK1n4ZnTR3aSEHxxgeRPkXXhshaet5K1R6AMmLxayRiiGyhIQqDLz0BJoLitTcgdUrYc00T3mfuJzShLWugTHjyeWV8FKHN9Hw49shviYzRoweQbLDWIFPKYuwxWu/YU48RULxUeysC2yhI68AddK/xbViPdJfVdkoggJFH6TrVf8cdRCsePlaN4F4BSMww0P1LGp51+PGnkPVYMqb7+jHyzHJSpuOHPyMaeu+mrYicsM7AeiKJ7l/dSWh6fn0X1LAlY/TkGYy9RM9kzd/8EckPPbkCiVZLWyqNT6LnTro3tnz35zB5EXDFp4FP3gxv5bcxec0zwHfqgH98GOyaf4bq6QZOPQls+Dzw0OVQ77wc+iv/A7SuBaLDiLd2ovdhuv/Xf+l/KS8r1yJQbYExKpEYGn58GynT8OPboAiWaP7qkxhYacnIOcfxL9B6Ox56mobmG/ag4TY6Pqr/50fEpHto824Mb7XmnyErOPbVHxOaUzffg5QA9hpsbEPLwzTk377/+g7l5bk1mKi2zvlSOIqj36Pj7vC3fwFFcAkYPVCNrpUWCDhnDLtv/C6hqb/7cYQEjXy0bwgnbCB+u77wfeJC17VuO/q3Wfc1LSth15et8WEoKkYOUbDmkUM1UESrxHEvxmosawFDVdG5lt5JRo7WISJo8VOTfnRvtgD5TE1D/eMrCW8j1acwUm3N6ZQ3gPrHaMjI15veVhr615yYmbvMDx7KxbJ8741vDnN/4DQayeJTDx/HL//+HfjuJ694q9mZSTPpLU2c8wI/qXPlXzVJMWCyERivz73Qe1sAc+rAXDw79yCw9KPApR8FlnwA3F1aUO/r/vZM+rNIMxr6Ny+9rraV48DznwFSXuBrB4CLrid/frvO313tPvxwfSte+fqH8bGrFrzV7MykmfSWpenm8Ovep5NeYOJ07nwwXj8VVnfqUaJi0ZSF39QZYfF14E7Xeb/zdl1jZtKbk/7sNPRyKo3+auob2bbjIGJCeAUznYSx5fu5y/xf/gB47414btMxotmtbxsioddkRcOqbTWk3nX76olGcGAsgEOnqE+UXdN7uL6L+GdHExmitQVyIdFEMLLW3jGi8TZNhmc30pfp7UebMRmMITH1+s50lYS6A4BnNx4lGvq6lgESvkeSVby4ncr4yp5TBFyvd8SHI6epb4pdxgN1HUTLHImnsUEIAwcAL2w9TjQizd2jOC347+u6URCSbuvhJvhC1ku6xxfB7uMUAPGZDUdJP55o6kOHgCWQkRRi7QDkQgkmBb/17mEv0QZzzvH0+iOEZn9tB4YnLG1BKJYimmkgZx0g+pc3do0Qrb6mG1ixmcq4+VAD8c0fmQxhb00bKfP0+iNE61Pd0Ev87FMZGWt20bA7a3bVEauPzsFJErKQc45nNtAxtedEGwmhF4gkseUw9UFbvqkauiDjmY5hEpZR1fSCUE6bDjYQi4ih8SAJEXVWRjEdPd1NrDOSaQmv7KHz/KWdtQQnoL1/HHUt1rxhjGG5rb13H2/DuICx4A8nsO0I9YdbsbkaZskc4Oq/A/76TrR+ah26vtgBfO0Q8Ne/Abvsr2BONgPVdwOr/x9w/1Lghb8BP3Q7MHAIkBPQIwGoQ3TenHmWal56DtUgOGD5S2bjyYIQnCdXbSI+9JPtPUTjzTnH8adpva3bDxBNenzST0LdAcCJZ18mPvRDdY0Yb7HWMk1WiCUAAJx5ZTuywkt6oH8Y3Qfpi/axJ6jWqvvAcSJjJhJDwzoalqn2+fUEHHC8pQtDJ60+YaaJ489QLVvL1v2Iey3/t9i4t0ADf/zpNWRtGKw5gwnhVV/NSji50gotZGgasew6y4su+IymQhEij6FphFcg10cpAagoE4mR0H2mrqP7wHHMpD9M6hn2kv0JyIXoFNfqho4BJFd/HogNA//6NLSF1xWED91yuJGsYyOTIWINBgArdlE/zYbhCIYEn3lJM1AthLEDgDZvkoDeJWQdwQwFGvUlqR97WtWJz7zJGGQBeBQAVN0A5zx/RqgscZI5zzmHaQOiY3KaaIO5roLL1OefJ6gfO8/Ecn70Z/OGDhalODBmcARc8KFn6Sjxh+ecw/DQs5TpHwYT/PWZlIYxQa0D9IFGChoWHIMZsXANuKFD7aH7tNLbDCZb/BqxENRROu8zDTSEnjLUDT1srammlEG2le5H6YbjYIIPvTrpIVp9zhiSNQcJTab1NPS4tR/psTDSLTaf6KN7SZ9k+7she6xzBVMVxI7R9T1WcxRGxuo3ZXIc6XbqEx3es4Pkk00NULxWv+nJJCLV9IwQ2rubAOdl+vuQ7rb6jRsGAjtovZHjx6FGBHwqfwDRGnom823eQuZNoqUVmUHrfGhIEvy7aNixwO59MAS/9ezwCGKnaV9PrKVh1aK1pyBNWDJqsTiC++l5dnLjNgJ8luzoRqLd0ngzXcf4ui05d913/wfwjw/Bf8ntUL/RmsPb+MQvYFZeCt5/ADj4K2DFJ4EHLoPywF8CJx4CPCcBXUH0VCNSvdZ5xchkMbmZWvxMbNoJXZAx3T+MyEkq4/ALNFSm/9BxZAU8HCUUweQuOu6GXtpIfOijze2Itgh7lKZh8CUads+zfR+xFkiPjsNr02j3PU8tc/019Uj0WRZJWiqNoQ07SJnBtVsJTkCsux/+OksLzhlDj61ez75jSAsyZv1BjOykc6Bn5XqChRRoaEWo1epHQ1HRYwst2L95N+SoJWNi2IOxw5aMajKNxLAnn2emiUATPcvGhzzICvu/msog2CrMEcYwUXuGrMWJkXHEBas+LZ3BuA0b4fWm1+iM/seRyipn46obPkJ+m3vxhSiZZYHgOIb2w9WzDrjyr4G/zsVsvmrpYvISNm9OBUqLi/L5IrcLl1+ykNR72UULSJmqWWW4cOEcUuYdl1OAvgsWzMGc2eX5fHlpMS69kPrbLLt4IYqLrGafV1WBivKSfN7lcuLqSy8gNJdcMA+zy0sxGM9N9sVV5bi4gvr6XXXpBXC5rPeZhfNmo6ykOJ8vLnJj2cWFMopl5swuh2lDubXLeOHCOaiabX27rLQYl15INQGXX7wIxUUWmvj8ubMJCrvb7cKVSxcRmqUXzsOs8tJ8vrKiFBcvnkfKXH3ZBXA6LRkXz6/CLKHtSqaRcdmSBSgtsfpxrtA/AOBwOHDNsgvJbxcumoPKCouX6frxyqWL4Rbae/6cWQSJuMjtwhWX2GS8YD4qyqz2rppVjosWzSVlrll2IRmri+dXokrgubSkCJddZO/HhWSszquqILw5HA5cdeliQrNk0VxUCmOooqwYSy+g7X3l0kVwu61+XDB3NnEvn07GSxbPQ0WZ1SdVs8pwwcKqAhnFdMHCOaiaZfFSUlyEyy6iY+qyJQtRJPAyf84sknc6nbj8YsrLRYvmkPFRXlqMixfT9r78kkVwOi2h5lQUo8hVAsz/MLD0w3DwHyGYknGhOgaMncq9zo+dguPU48CpxwE44F54LZyLrwe0vwUu/Utg1iLMv2oZ+U7l4gUorZxltV1JMeYtpXNr/mUXwyWsDaVVs1FUVkrKLLqa1ptb/6zxUTKrHHOW0PVj4RWXwumy2mrWwnkoFup1Fbmx8IqlBbwUlVptV1Y1G3MuomPogmuvJPmqCxehrGp2Pl9cXoZ5l1LckoVXXAq3sOaUz6tCiS6s304nFttlvORClIoyzp6FuRfTMbTo6mVkbZi9aD6KKywad3ERFggyOl0uzFpAx/ushfNIOxWXlxGkcKfLhaoL6NyrmD+XtJO7tAQV860x5nA6C/pjJr156R229RPI7bniWnHV0POoCp4CPnYTcN3nUMQ5li2h/XrJ4nkoE/aNyorC/f+qi+fTc8WsElSWCecKlxOLZpcQmjllRXAJ602xywkhC4fDgTJh7wSAIqcTLlsZsQ4A+XxCyh1q51aUFLSDw0nrhasIgFDG6QJctiNhsQ1TwF0MOIUyTiccxbY9tXQWIMxFR1EJuEDjcDjgqKB7gqNsFhxua11wuIvgKK+kZWbPh0Ost7SCyuR0wVlJ57Srci4cRVafOEpK4ayg9brn0/npml0FZ6klk6OoGK65C2w0i+EQ2spVMQus2Oprh9OJooV0jXLPXQBnibXuOkvK4J5H6y2+4CIik7tyDpwi/+4iFC+m9RYvXAyn8G1XxawC5O2Siy8h+aJ58+GqsNZdZ0kJShbT9b3koiVwCOuhu6qKIM073G6ULqHre8nChXCVWWPGVV6O4kV0bpVdupSMzeJ5c+EUaJzFxSi9iO6NpRddCKewb7grKwsiPZRfRvew4oUL4LbJWHohlbF86cUQJ2DRnCryaORwOlF+6cWUlwsvgKtqIbDkMuDKz8C8/nvITIyjaq46ZeVXj5Lh2pwSAABcxZgz713gSz4EuP82d64oKkG5DeC77OKLSF+7K2eBg8o468rLKC+LF8It3H9c5WUos8k469JLSL3Fc+eQfnW4XJi9jLZdxcUXwSXsa0WzZ6H8Qnq+qryS7tOlC+ejeI41r10lJZi1lI6PWUsvhku8l1RV0vHtdKLKVm/FRYtQNNuSsaiiArMupm1XeflSUk/p/LlwClhrziI3KpddSmmWLoFbGHfFlbNRcYHVdq6SYpRUWWuFw+lE+SJ6DyiZUwlXsSWPq7gIZeK5wuHArAsW0fE+exZ5tHMWFaFi0RtkTfV7B757k5M9Np89FnImlrBiB0oxzh5Yxs3fvZtzKZ4vY487npEUEkudc14Qf91Oo2o6T6Zp3GI7TSKVJbG9GWMF9dhpJFktiKVuLxNNpLlhmHxr8wS/9Jd7eN1AqCCue0HM2Wni8b4RZf6Y6p2Oxt529ryiauftx3gqS2IQM8YK4rrbabKSQmKpT1cmmkiT+JmaphfErrfTpDISV1TtnGXseVnReCrzf5PRNM3zyph5DTJG4v93GZPp1yfj+eZNPJXlui7ENp6mH6dbG2SF8mKniSSynMfHOG/bwPnOH3D25AfzsW75HZWcP/EBznb+IPf3RC6mKtMUEp+Xc85lW/zVtC2vKUpBHPR0mMalzUTjpL1NwyiI625fM+V0piC+qr2M/Tu6qnIpSdvKTiMlklxXrXXVNM0Cmew0qiQXxHYtWONtMhq6/ppk1ORzy2jPa4pSIOMbsU6ZpjkTh/5NTGLbGobJo4lzrGPeVs7unMON1f/KuTCm7OtAJJ6m8eI1vSB2fThB19iMonNVp/GRkzJdS7KqLV6yybhmUBp73jBZQUxl07SNsam/37mri1/6yz08LWt/sD33rdz//6/1MkPnpkL7zczSvjcViTNDJ78ZWTqmjIyNRlO5qdD1xh7v3simSZxxZprcyNB69RRd10xZ4qZK91w9ScvoqQSR09S1gtj1ejJu4z9DYqkzxgrq1RKUxlQUbsi07bQ4LaMnk2SfY4bO9VTqnDRGNstNW0xwLWbbC+NxKqOqct22N6p2mlSKxFJnjHEtTmVUo5TGkGRu2PZGNUb51eIJ2o+GwTXbvqFGIpwHezhveJ7zzV/j7KFrrPPBnXM4X34DN3bcxHnvHs6z0SkauucaynQy2nhJ2NrbNLlq2xtV2x5sZCVuZGk/Krb9XonEaHtrWoGMdhotleaGYu3/jDGu2L4t22gMWeGaTUZ7GTWeIP1oGgZXbO1gp9EyWa7bZLSXkW0yGqrKVZuMBbwkqYycv0Hr1Bt0Rnhbmdwz08SOWx4iv51atQnB/imzyGN3wyFF0f7e24CyOfkytz25lWiI99W244QQOiudlXHfC9TE56n1RzAZtMwxWnvHsOkgDadwyxNbSH7L4UZiyu8LJ/CkzWT9vhf2EPPomuZ+HBBAzwzDxO1PbyM0q7bXYnA8mH99TySSBablbX3jBMTPNBn2nGgjpk1HTneTb49Mhgm/ALDjWAsx3T/VNkhM4VMZmYC0AcDemnYCgtc15C0I8bf1SBPh5XhjH3Fp8IcTxCwfyJmFiybfLT0eIqNumMScO57K4uHVFLjw0ZcPkrjtDZ0jBBCRc45bbf24fl89CZnn8UUIyByQA5UT3QqOnunBYcFdQdV0/PY5am68fHM1PEK4xK5hL9baTMtvfYKao+041kJCKkbiaTyyhpobPfLSAQKKd7pjCDsFQETOOW57koIovrL7JHqEPhqZDON5m9npb57dQUDxDtd34ViDZa4oKxrutgFFPbPxKOmjzsHJApcMe3tvP9pETPmD0SQeX0vnzUMv7kNCcJ041TaI3Sfa8nnGWIGMq3fUok9wgRkYC2DlNmo2dvvT28gYO1DXScIYprMy7rL14/N7mjGpVQHv/S/gX57A5Bdr0HxjI/Cfa4APfwcoKgVa1gDbvwU8+q4c2N76L4HXPQXERgDOIflD6HnuJVLvvruegCTEAh44fhqdeywzSGaa2H4zBYM5uWoTAn3W+AgNjqLu+fWkzI5bHiKgeF17j2FQAHuRU2nsv4eCVB57/EVi5j7e3InmTRTIavsvKfhO08Y9JGRo0h/CscepWf6+u54koHgDx+vRtf94Pm/qOnbd9jChqXthAwkfF+gbRv2LFPRpxy0PEbO2jl1HMFRnmcdLiSQO3EeBi44+uhIpIV7wWGMHWrZY60fCF4SnoY3w1rqNzr2BE6cJQGLSH0LHbsulxDQM1K2g4E0z6c1L44Eont1I1+rfPje1VjMG7PsZmMON6oXfymuRZUXDb57dQWiWb64m4WS7hr0FbkD3rj1F3aN6g+icTOTzaUXH3h5qsn5mIk4A7qKSBn9KiDPOOcYT1OQ+pejETN9kHJIt1rGq6VMm9zqKXU6UujiZDwDADY2GsmNGLpa7mOQUjSGvZgnAHTgDz9CY1TwVISb2kNNgWRoLm4XHSb0sHqBx5jUZZpSGBTT9w9R0Px6gIfI4hzHRT+o1fMPgmiUTS8dhRKx9zgh5ofZTV770CbqHyd3N0P2Wu6KZTiB7mrqJpY7vIeHw1JF+yH2WSwY3TcT30zUqVV8NXQhtpwd9SNXTsRrZvpZo7zIdTZAHrf3IlCVE9lDT8tiBnSR+vTwyiOQZm5n7K6tIPl5XTUz59UgY4b10n/NveAWmAPyX6mhDqslyy2OGgcmXaL2hfXug+i0ZpbExhA/SNXP8hRVECx47eRKpLstM2UilMfkKNS2fXLceuhBGLd3dg0g1dbEbfYqu76H9B5EVTPkVnx/eTfTs4Vn+PEzFmn/xM42InbLcZJmmYfiJZwnNxIYtkCetMZUZGIJvOwX+7X/oCWDRtcBffAP43Er4r3gIiRteAf7tWeB9nwfPxuFqfSEHtPfgMuCZv0T2mf+CfuYVIJNz90y0tCNwgLpB9N1NwWAnt+xCSjBzlyd8GHuJus/1P/QUAcULnTiFcK11JjNlBf0PUwBnz0sbIU1Y8zHVO4iJLVTGrrspiKJ372HEBDN3NRJD/zN0fPQ9+QI04YwTaWiB94AAJskYOu55lNCMbNiJpAA8l/FMYOglOgfa7nuCmNz7jtUhKLgr6FkJHTbgwt4X1iLrtcZqrLMPI1vpGafpN7S9R3ceQKTNGqvRzl6kBfBALZXGpC203fCWPcRiJtbdj1Bjm0CTweBGOvdeb/rTAcXztQIrPgVc8w/Af68/f/m3YfrdoX48cWwIZ275DBZXlp6fYCbNpJn01iQ5kQPQGTuZ++drA/jUoj77IuCyvwIu/atc7Ov5V8yEyvsTTzOgeG9ees1t2/IysOv7wKduBW74xZvP2FuQ/ufFBnT7Umi89a/falZm0kyaSedKKf/U+eBU7r9hATNiwdVT54OP5f5beeGr1zOT/iTSnx0oHjNNrP02DZNx5NEX4OvqA/b+DHCXYPjdNxWEl/vfu18iGvothxuJljmdlfHTh6gW5c5nthPN9JmO4QLtnj201qptNQQYzRuKF7z8/+zh9URLfuhUF7YepkBLNU39RHsdiCRR1zKA+JSGfk55EXYcayba08auEQyMWdoAwzCxYf9p8nq950Qb0eQOjgUJIB+QC00mAggdb+wlYciSaQlbD1Nt+9bDTQR4rq1/HC09HlLvml0nieb/4MlOEjLPG4oXAPJtOthAAATPdAwTwCNdN7D5UAPhZV9tO+FlcCxYYIWw7UgT4eVk6wCCUevVMJGWSPhBjy+Ce5+nr5M/vn8t0dDvOdFGwgSqmo4f3kfBvR5YuZeA7bX1jxeA1X3ntzQU0it7ThFeIvE0fvU4ffn/1eObSb+eaOrD2r3WKzPnHN+9azWheXr9EbQLoInDEyE8sJK+Tv7wvpfJGNtZ3UJA/GRFw4/vpy/p9z6/m1ghtPR4Cqwb7PNmza46Mg5DsVSBtv3mRzcRAMdjZ3qI5p8xViDjE2sPoXPQ0p4OjgXx4Coq4/fvWUM09NuONBGrj4ykFIQsvGv5TgK219Q9WgCA+K0HtgHX/D3wt3cB3zyGo//ehPF/Wgt8/KfAnKXg3TuAPT8GnvoA8Mg7gC1fg7n3dvBgT95vO1JXD/9eC+CGmSZe/ubN5DuHHl5BwrH5e4cKwsut/faviLauadMe9ByyADLlVBqbb7qL0Oz69SNI+q2xOlLfXACc9/I3fknytSvWYVTQaMcn/djzm8dImU0//g3R0Hftr0bzFisUkqnrBaHuDj74HAGn83b14+hjNHTjK9+iMjau34neIxZ4pJRIYsvP7iE0O259iADaDZ1swqkX6cu/Xcaa514hoHdjTR2IiYA9sQQBD2SMkTB2M+nNTSOTIdy/klrb/ej+V6AkQsCRO4C5y7DX+AQBXJUVrWCttq9jrX1jBWC1v1hVT9bq/Z1+tI1bZ4a0YmBbB7VUq/NEoQga+khWxaQAgsc5hyeaJTQJSYNqUG37WRC8s8lkDIwxJCQdc8uLciB4hk614rpKNKPc1ME0ag3ApCTR4nM5Da4LFgTMBEuFaL2JIA1/J6XA0paVFgCYwVHybRb1gitCuD5Vghmi+7Th7Sf1mjE/WNLqE845jNFOwos+MQCmWPu/mYrBCNB61aF2ojHTvSMw01a/MU2FOtJDaJThbnABBE8P+6FHrPOWMtQFqds6x3HTRGw7tcBK1uyHFrLGgxaYRKKa7kfhjc+Tdkq3nILUKwCYyRLCW1ZTmh1rYSSs9pYGe5GooaChvpU0pGvs2H5Iw9a5Qo9GENxC93Lvi88R7XWquQGJekH7aBiYeI7WG9i6kYDtyWOjCO6k65/nyd8RGSPVR5FstUCejUwG4ytoiLTxlc9Di1kypjo7EDpAz/lDD1LrNf/27cj0WTIqgQAmVq+mNI/8DqZiWXRE604ickJYvzUNgw9Si7Gx1WsgTQhgzAODmFxHAdf67ryb8rJrL+KNlmWoFotjaNVW4LrPAf/0O+B7ZzBS8Svo//gs8KFvA65ioPlFYOvXgd+9A3ji/eC7fojJ2z8PpKwxNP7KBqR7LRml8QkMP0tDoPXceR9MAew1eKgaoaOWjKaioOdOam039MRyYoWQ7OrF2MtUxo6f30Hyk5t3InbGklGNRNH3AB0fPb99hGro687Au82aA5wxtP/8N4Rm5PmXCaBgZmQMg09TzX/bL39LNPTevYcROGKdcYyshLZbaPjhnoefgSRq6Fs7MbKG7v8NP/k15WXdVkQahL0jGEbn/VTGltsfyIMbcs4xeeAYmGAhmR4ZQ1QE7JMVjO2gY/l1p9/baP9NTna/gmQgRPLpSIybjatyvinHH+S6bpzXFziVkQp86AMR6ncSiiaJ36aiagW+wHaaeCpLfIEZYzxo+7adJispBf7Or+Zv8b21zfzaX+8/Zxkx/3r81kSZXy0/nY/oufKvpcwfyofutdZr59XuY2nvx4ykFPh028uEY6kC/3I7FoKdJpmWCny67WXseVkpxAmwl4km0sSH3jDOL2M6K/OMzYd+unkjtp/6GmRMpLJERsZYwZy100iyWjBv7GUi8TTxoTeMQpyA6WS04wTY57Cdt+lwAuw0GVUnvrFMzXBj8BjnR+/mfOXfc/7bBZaP3UNXc775a9ysX871sXbOhfac1r9c8KEzTbPA/z0ZDJO8nEoX+NAXrKvhKB2risKzNv9DO002niA+9Iyxgm/badSsVIATMN0abwg+dIauF/jm22lei4zJYJj6ScsylxLJc9LYZeT8ta0nMz70b14S2/ZV147dP87NrYFDPCMpBevYdBg6hnHutTo0jQ+9olMfebsPfUa1+Wa/Dh/6s3JOl7/hwWP8/3vu1Ju6N/6x+Ob/MfFiqkqhD73NH97IpAt8r+2++HZf95wPvXrOMgU0msaNLB2resLmR51Jc1MX9lzTLPShj1MaU5G5Idl96GkZPZGgPt26zvWUbb+M2fyoM5nz+tCrUUpjqgrX0+lzltGTNh96wyjw37fTGLJcgD9g921XY3b/cp1rSSpjAS/pdEE/2v331UiU1psIcKN1C+f7b+b82Y9xfkeVdUZ4/HrOd/6A6/UvcTM2YcnIWIGfvWLjX89KBf1o94dXozHSj6amcdW2/yt2DJpkihuycs4ySpjmDUnmWor2oxyiZwY1lqB4D6ZZ6Jtvo9EzmUIfettZRInEyHw0VZWrtv3fTqMmUwU+9LIdS8hGM+NDf47k6x4k+eLEGBxHfwPMuxz4yx8gK6skHBeQ8+MVQxoFoykSksY0GfpG/YRmaDwETXhJT2Zk4lMPAN1D1OdrMhhDMmO9eCuqjuHxEClTVlJMNLvlZSWQBC00AITjaaJBVlQd8VQWSVnHnCkUXV84QV6mY8ks0WYDOa23mHzhBKk3nVWIX3JOhjipNxxPEy2taTISem06XpIZGRlJKSgjpmA0RawmZEUjWubp6o0mMoQXznkBL8Eo9QHMSAoJdwaA9P3ZesV2MQyTtIuInn02lZUUE81uRVkJdJsWpbjITXgZ9YZJX6eyCsb81B/RPqa8oTix1tB1oyAs0+BYkPASTWYK2tte73gghrTQR7KqFcybnmEf4T8USyEct8LjMMYKsBIKZMzIxKf+1WQU21vTDWJtAgADngAZL9FkBn5b3xfI6I8SGadbG+w0gUiSyGiaDH0jdG0YngiRMRVPS0RjDwCdQjhFABgZCyCWEEILsSKcyVwMfPpW4Gv7gZvHMfB368A+8YucCX7vLjgP/BzuVR8HfnctsPUbQPNLqJA9BHmdh4NgktV2SiqNyCj9tq+T+pkmA2GkBc20aRhEyw8Agf4RGILfnZxIIT5B28Hb2U/y8Qk/pIQ1t3RZQWSYasf8vUNEk56JxIglAFC4xkdGxkk4PyWdJVpxAPB1UUujpD+EbNRa/0zDsLBWplJo0ANDCOcjJVKIe+ncstcbG/dBSVnzUc1KxM8eyPnVi/uNnKTrzUx681JWVolmHQAmmo+CN70IvOOfgKv+BsFokuwBjDGCmQLk5risnnutHvTTEG+RjIq0Yq3DBmMIZ+ienFQMmAI6t24yqIJ/PJDDnRfnq9MB2AC9wTinvu5TNHHJOiPA7k3JGaXhnPhrAwBMqvkHM4g2NSeYZsurlMY0wE3q4w+bJQA0mdbLTHB7GSVL69UV6qsPgMv0zMCVDKUxNHBNsdHYQvMpEm0HzsDs9Uq0Xq4pxHrAWVxSwJvDTfd/Z0kJoXG4XAS1HwD0EN1PzXQCLGvxyxkrKKOHAySEHpOzRGMPAKqP7gl6PAImW/sGN3RoIbq+a/5JGiYwlYKRSlg0nEP1jlOacABMtdrbVGRoYbq+KxN0T9ATMRJ2j5smFC/lV/P7iIxGJgM9RuejPOYheTUchJm1rF2YpkHx+QpoxD7S43HoCUFGxgrr9fthytZYNWUJaoCeV7JDwySvRSLQk9Z5hWka5DHaDvL4OLigZdY1J5TK9wN/fx/wnVrgl6NIv/83wEe+BxRXAC1r4D7wAzgffxfw5AeB3T8Ga1kPdZhiXGWHhomMWjQKTQjXxk0T2WG6N8oTk8RywchkoPqpjGKoQQBQwxHoKWFd1TRIY3R8ZEc9RJOuJ5JQQ/RMlh2gbaf4/DCF/d/ISpAn6XqdHaQyqpEY9Ji1/3PGkB0eJTSSZxxMsFzQ0xkoPpuM/TYZAyHown5uKiqkUZuMQ6NEI6/4g8iO0L62hyMUwxX+PultdaFnpglfFz1EOk4+DIccB/7hIaCoFBlZLThc2y8dgUiSXB413cCg7QIx4g2TS2ksmYU3SC/IojkvAHiDccSS1gIiKRqGJ+lilszI8EcS5Le+UT85APrCCUSFS5ysahgcCyAuaZhTnguRMDgWIBencDyNCeHBwTQZOgcmyUV13BdFRLhUpCUF/baHjK6hSfIw4AsnyIVM1Q10DEzQmM9jQdKesWS24NLZ0jNGTPknAlFy6czKKrqHvGRS9gx7SR+EYimMeoWLiMnQ1jdOeBmZDBFekhkZAx7at+39E4QXbyhO+kTRdHQP0b7tG/UT4L9IIo1xoV0452jro8A/Hl8EKeGBZ2QyjIxk1ZHMSJiwX+iHaRv4wwlEhTElqzqGxu0X+gBk4ZEomsgQdwbOObqH6QI44Y+SS3Q6q5C2zcnsI48UoWgKIcE1QTfMgoew4ckwuewm0hImAoUyiqlwvOvENSEnYxCK9uoyMsbQY6t3zE/bPy0pBYf9fo+fPBTYHy10w0S/h8o44g2TOZJMywVrQ49tzfGHE6S9ZVUjoFsoKkNPyfugffxm4Kv7gJvHoXx+O9S//BkwdxnQvQPY/UM4V306B7S3/TtA61rong5yuFAzEmLjtm/3DJIxlfKHkI0l8nlT0xEa9BCayMg4dCFevBRPIuGzXXa76WU3PumHLFzoNVlBaIhuZMH+EZjChp4ORZEOWePDNAz4e+iFPuqZJJdoJZVG1GNbe7v6yTqQ8AWREeLoGqqGgO1CHx7yQBMffKIJJLx0rfB20ljY8Qk/snFrDmiSXCBjoHcoLyPnHOMt1JVoJr15KSurdO1gDEtb7wXcpbmDMXJuS6GoNU4NkxXsER5fpGAdm7Q9TA746ONxOKMhJVzodZMjnKGPySlFhykerqe50OuMk0s/5zkexWSywsu8YTKkFB1zp84InNELPGcmIILicU4umADADZU+BJgGYGqEBqrtoq3JgHiBN/XCi3YmTmPeqxIgxLMHM8HSMWrKn4mTxwOuyuDZBOGFxQPUjSCTAFesermuwUzQC4MZDRC5WTYFlhEeh00TRsRPwfbiIQK2xxUJZoLuJXpggrgrGIkomEx5MSJ0nOlBH3kI0INe2yU6ATNjjVVu6IUX+kiQuAOwbAZGgu65qtfmzhCLwMxafcQUhQD2AYDqnyTtZKQSMBLCPscYlEn7hT4EJgDpMUmCHqH7hjIxRmTUYzEYtsuu6qXru+L3ggkPbGY6DS1C+1Ueoxc2LRyGmRFllKEGqIwFl+hEArpg2s8Zg2S70Cs+H5h4oc9koIboeUXy0IcCLRK1yahDnqQyyl4vmHDG0ZMpaFGrH3npHCSzFwJ/f2/+gp96960w3v3lHBBv82q4dn8Xs/f8E/DUh3JuyD07oQx1gQsXTD0WhyZedk2z4OItT/rABHcLI52BEqD9mBmkF281EIQhXnZVFdI4fZiRPBNERi2egBoWZGQMaVu9ss9PLrymJEGeoGe9zOAIcaPRwhEiI9N0ZIZsF/rxSRjCQ4GeTEHxUxlFwMEcLwHbhV5B1kPbLjPsARMUBWokBlVQoHDTRFp4KGC6jlQPPUu93vT2BsVLeoHH3g1c/Q/Af//pIwn/1f3HcNmCcqz9xkfealZm0kyaSX/IpEnAxBnAUwuM1gK+FoBNbdJzL8uB6y27AVj2cWD2TNzzP7Y0A4r35qVztu3AQWDdf/5JA+GdTfGshuvvOoxv33A5fvUP177V7MykmTST/pBJiuUA9kZrcueEkIADsfi63Nlg2SeAS/8SKK169Xpm0luS/ixB8Z79t29aP7StAzhD9L3fyv/UM+wtAA373E1PEi3cSztrSeiydFbGF2+mIBzfv2cN0UzXNvcXgO392w8fI/mMpBQAu+050UZe+jsGJgpA2lbvqCX87a1pI5rEyWAMWw83ISFo6FdtqyEav5qmftS3WYNB1w089vJBooleu7eeANx1D3ux5XAjeUl87OWDBFRuz4k2ElIsnsriqXWHCb/PbzlO3BHOdAwTYDEgF3ZM1HBvPtRANKpjvghe3n2S8PLcpmNE217d0Etk1HQDT647TMzN1+2rJ7x0D3txoI7ysmJzNdGwHjrVRbSwsWSmAFBww/7TpF1aejykHznn0wL/iaadE4EY6lroS9z2o82E/8auEWoRoemE/0g8ja/fTgHBvvbrFxARtMoHT3YSACfOOT77IwrccdfynWgW+nVgLIBfPEJBz/7zp08TF4e1e+ux8YAQ7kzR8N+/oKFAbnpwHRljp9uHCkCq/u1Hj5P8k+sO46gwb4LRJL79Gxru7H9ue56A4u2tacPzW47n84wx/PuPqYx3PrMdrX1WH/WO+HDzYxT05HM3PUnaf82ukwSkMiur+MIv6drww/teJlZAJ1sHCsD27DI+uuYACZXpDcXxvbvXkDJfuXUFmdO7qluxatsUsEtxOcxln8QPx/8B+MZh4JdjwBe2Inb9d2GWzAHa1gLbvgE8cg3449dPvc7vAqQYRu69g7xe172wAW07LLA9OZnCi1/6CeFl3XdvRXxSCPl34jQOPbyClHn6n75G8gcffA6DtZYpWWzci3X/exsp88J//4CA4rVs3Y9Tq6312tR1PPvZbxGabb+8Dz5Baz/R1o1dv6bhZJ75128QU/7aFetI+DgpkcSqL/6Y0Lz8zZuRDFhjte/oyQKwvaf/+eskv//epzF8yto7IqMT2PADCg604j+/R1wEmjbR8T+T3rw0NB6kALcta6BxN+T3fCX/04b9p7FeANRUVB03/pyuYz99aB3R9Df2jOGBl2gozf99gQKy7uz0o0kAxcuoBra0U21qUtERl6nJeiClkHrSqgFN2EdMxpBVKcCdrOlgIiieaSI6ZQ0wt7w4B4qnUVN4U5OJNpgbOpjNRJ1lYlSTLqWoxpuZ4Ak/0USzuJ+YtfNsEiwRoN/29hMzfBaZICHouCrlyoha8fFuEtrOjHphRiytJucM+kAjkckY6yb1slQExngv1Zb2NpBwffrkIMyYpTnnmgq1t5HIqPS3EDN8I+SF7rWZKXfUk3VWGe6GmRLcftJJKMP0fCh1NxHtujo5SjTa3DQhdVEQYnmgk4TM06MhaD5LSygPdiNxnO5H/uUUMC5+eAfkISsErR4LI7SBgqn5VjxCzOdTTaeQPCmEGDMMTD5JgcaC61dBFczlZc8wQltfIWXGHvkt0dBHD+9FqsU6VxiZNMafpOGpJ559FLpgHZBub0F4z3ZSZvhuCmAW2LwO2T7rUqsG/BhfTsOzDd/7G2J2HTtRjegxa54zTcPgXXR9H1/xLAH+y/T3Y/JlCoDY/+tbqaXl9m2In7HWHD2RwNAD9xGaofvvJ+b+8YYG+LdRcOCeX9BHyfFVLyLdN3WuKJ8HedZ7MTJ4MfC/9cDPhoDPvYiY+W5wXQZOPwOsvxH8/kuhP/wB4MidwPAxmOk4em6h+/Tgw48SC4JUVzc8L9AzWedPfkbyE+s2IHba2v+1aBR9v6FAtL2//g1xPYjU1MG7yZKRM4aOH/yU0Aw/+RxSPdbZKTviweDD9HzV/qOfE82/b8duBA9Y/WhKMjp+QgGFe397P2QBFC/e1IqR5VTGlm//iOQ9q15BtN6SUQ2F0X0bBRRu/8kt0NPWeTx4uBoTGyxgSG6aaPk2PW8NPPQk3oj09tXQMwY88d4cGuT3m/7kwz5pBsPVt+3HFz68FPd89rq3mp2ZNJNm0h9TkhNTr/Mnchr80NmDowO44Lrcy/zlnwSWfhQomfUWMvrnmWY09G9eetW2TQdz+BPv+izwuZWFf/8TS81jcfzHs6dw/79fhxs/tPStZmcmzaSZ9MeUUr7c2WC0JvcvOfUI5CwCLvlQzsLv8huAJR8AXEVvLa9/hunPUkN/8MEpbZmnBkiMo63ikxgVtNkTgRgJZwUAv1tzgGiUjzf2kvBykqziyXX09X3VthqEBe1q97CXhLoBctp2MbSdJKs4crqbvMwdPd1NtG6DY0E0dtGX3c2HGghQXl3LAAEFC8dS2HQkF9bjrH/c9qPNJNRaW/840V4bhok1u04SrfjBk52kXo8vgj0n2ojv6bp99UTu+rYhwm86K2Pt3nqiud1V3UrAxnpHfDhc30XaYc2uOqLhPt7Yiy7BTz0YTRaEk9t6uImA3rX2jZF+03UD6/bVk7Y7XN9FePH4Ijhq65Oth5uIb3VD5zCxFkhlZOw+3kra5eDJTqIF7/f4Cywt7Nr2+rYhMj5CsVRBmMDD9V3EWqB72Ev413SjgP/6tiES+nAyGCvw865psnyKOed46MV95O9bDzcRnANvKI6Xd58kZR5dc4BYeNQ29+NUm6UpVVQdj79Cw+Os2VVHfNv7PX5iDQOgQJu9v7YDHQKIXDyVLQgD98yGo0Tm5u5RYg3DGMPDq6kFzeZDDUTLNhGIkXB+QG5tEPvsRFMfTrdb80hWtIK1YfWOWjL3eoa9JGThdDLurWkj4z2ayBSEwXxmw1GCGdHYNYLqBkuLYpoMv1tzgNBsPHAGY74IUDYHeMc/YvJDt2P3BzdOvc6vAj7wFWhSEqh/Clj7OeCBS8Ff+BvwI7/NPQAYGpiqIHaEapFPrtxIfNB9PYNE4w0AB+6nWs22nYcIuF4qFMHJVdQi4tgTLxLt9cjpFvRXn7JkNIwCS4Aza3cgNmFpOsMj42jaSMNIHnzwOTJfe4/UwdPYns8r6Qyqn6JalJrlawmWwGRHLzr30hCLdhlbtx9AoM+SMRkIFYS6O/LoC9AF/0NRoz+T3tzkDyewZtfUOta+DuAmtkTfSfarU22DZB3WdGOadewkWceGJqPYfZLiKaw6QYGYmifiGLGFnBuPS0TbnlENxCQbCG5GJdp2STNImDqTcUgaBatTdQNM8KM3GUMskxtzc85q6HWtMGydqKE3DTBVomWkFC2jZm0aegaeClO/9XSUANpxNQuWCtN6IxPggj88S4aphl5XYYY8pF4z6CHfZqkoWMxaBzhnMCZ6aWi74BgJmcekFEzfkE3z30M1/xEvzJi1f3Jdgz7aRSwV9IkBMEnwnU1EoPs9EJM62E540X2jMJOWJReTMlA9fbQfR3qIFtweDo8zBmWgk1gLqONDYJLVLmYqDs1PfZWVoR7qU+yfgJkWfbhVqOPWWcpMJ5E6TffcxPF9xBdYHhmANGDtudw0ED+yi9CkzpyAHhXOL6EAUo11pEx0/zbSz5nuVsij1rnClCXEjtL9M35sP0wBOE8eG0G6rZGUCe+k63Cy8RRUn7Xn6okYYtV0nof3bCMyZvq6kem2QOWYriO0i2rJo9WHif++6vcifqqGlAls2UCBaJsbIQ0L5/NsBqG9tO1Ce3fDEHz+s0ODSDRZMnLO4du0ntDEak9A8VpnVy0aRfiwLWTh5k05ILrKi4D3/hdSV3wbqb9eC/ywDfjnJ8Df8c8wvZ3A8XuBVX8H3H8p1MdugHH4AcDfATAGeWIC0Rp6Xpl8hYY5jNefRla4kBqpNAI7qYy+LVthCECF6b4+xM9Y1hmcMUzY6g0fOQpZkFEJBhE8cJCUmVy7jgDRJZpbkGwXwj0qCibX07B7/p27SSjE7MgowtVUxrGVq0k+UlNHwAC1eALeLTtImYl1G2EIQMWprh5iucBNE2OrqHVmYB/ts9eb3G9ILX+g5HS5cOXH/iKXaVkDON0o+YsvYX6VpXGaW1mOay+/iNB95D1XwO125fOXLVmIYiFfWlKED737ckJz/bWXonJWWT5/wfwquF30/ePyixeioqwkny8pLsKHr7scDsFa4PprL8Wc2eVWPQsqcckF80g9n/jANSgtsV7Err7sAsyrrMjnZ1eU4eorLgGOBzGnPFfug+9ahkXzKvNlLl40F2Wlxfm8y+XEDR+8BuUCf++8YgkumG/RzKuswEfecwVBcf/Ie67AgrmzhbZaQNqhtLgIH7v+KpQUW/y+55pLcPGiufn8onmVWDy/krTDX11/NannyqWLsWCO9Z3Z5aX46HuvhEto4/e/81IsmmeVuXjRXNJOLpcTf/m+q8hv115+ES6Yb/kHzausQOW1lxJe/uLdyzC7ojSfv/SiBaiaZfVRaUkRPnTd5aRdrrvqYsyrsvpk8fwqFAljiHOOj7znChQVWVPqyqWLME8Ym7PLS3HdVZdATO+9ZinptyWL5qJCyLtdTlxv4/+aZRdgVrnF/9zKCiwU+gzI9clZ/h0OBz52/dXk79defiFp27mzy/GeqylvH33vlSgW5LlsyUJiCFNS7MaHr6Pz5rqrL8FcYewumldJDp4A8PH3X0PyV126GFXC2JhVVoIPvPMyUuaD77oM5aXWWF6yeB7mCv3hdDrxV++7yibjRaRd5laW47qrLqYyvudK0meXXbSArBXTrQ3vufoSMqcXz68i43Z6GemcnlVeguvfcSkp84F3XoayEqvvL148jyBtu1zOgva+9vKLyLicU1GMKy6cDcyaA7z7P4B3/weSGRULjaD1Mj9yHI66BqDuEaCoAo6lH8HsqncB/qXA4ncDTicufu+1KBHmROWi+XA6qRXUlR//EMlfcM3lmLVwfj5fVjUbF7+X+vJe9qH3wi3049xLLiIbscvtxhV/+QFCs+S6a1A+15rTsxbMxYXvouP5yo/9BZmvCy5fimJhjhSXl+Gyv3gPobn0A9cRGasuXISislJS5qpPfJjkL7z2SsxevDCfL59TiYvf+05S5vKPXA93iSXjvKV0P5pJb16qmlWG91xzSQ68reVlYM6lWPKhfyb71cWL55H1tMjtKphX77nmErImLZxTUQBE9/7LaD0XVZahrNhFyiyeXYpiYW0ocTtRVkTLzCkrglOop9jthEvIOx1AidtFvuV2ucha7HQ4kJwC5Js7dUZwutyExuFyAw5hnXI44SgqoWWKSwGnwJ+72EbjAMoqKTp7SQVQZI13uIrhKC+i9c6aR7R+jtKKXN15AdxwVi4i9TpmzwdKygSacsAhWhc54Jx3EeByCzTzcuXO5otK4Jh3EeHFOe8ioNia546KKjgI/y64Fi2FQ2gH19zFcJRa33aUVcBVTi2d3BdcCodbOJ9ULaC8FJegaPEltB8XLYGj2Pq2a3YVqQMOB4qWXAaH0Afu+YvhKBPqLS2HW/gOABRdtBQOl8W/e858OEoEmV1uFC1eItRRhpIll5E6Si+9Eo4ii5eieQvII4fD5UbpMroOFy+5FK5Z1p7rmjUbJUuotUjZVe8k/Vy88EI4hfXSWVKCssuupLxcdgWcpdZYKJo7H84SulZXXPtuki+56GK4K619w1VegbJlV5Ay5VdfS2QsXriIhJRwFhWh4up3UP4vXQb3bEHG2VUovYTu5bPedR3p59KLlhD+nSWlqLiKtl35lVfBVWaVKV6wAK5yoZ8dDsx+F7XOLb1kKdxzRBnLUb6MrmWzr30nGQslCxcBLicwbxEwbxnw/i9D6u7C7EVuYOQEMFqD4pETcJy8Fzh5L1A+HyUXfxTO+dcDsUtyIL0OB2ZfR9u7dMlFpF2cZaWouJqeyWZfey1cQl+XLFxIaBxOJ6reQ/fp8suXoajKkrGoshIVl9tkvO46ON3WOlB60YVEZmdJCWa/+12EZtY1V8NVYZ2diufPK4g6MecD76e8XLoU7krrDuWeVYHZ19J+rHz3u+AqtcZmyeJFKJo7x5LR5cKc97+P8nIVlef1prfVhR4A5l58QQ78oXc3cPXfY95Fy8iFrqTIjcXChQ4ALrlgPsnPmV0Ol3A4dTqduEi4kALAwnmzyWVm/pxZmFtJF83SYrppASCXDgDk4gXkQpmJ9QIgl0kgd/ETLxUupwM6ct85q6GfV1VBvl1WWoxy4SJ4lmcxza0sJ5eXIrcLZULbAcDCubNJvbPKS0i9Doej4PI4v6qC8FtWUkQOUAAKLvhzZpeTfnO7XQX8LppXSQ7p5WWFvCyy8TKvkvJSXOQmjy7TyVg1i/LidDjI5QvItaXIS1lJEelHh8NRwH/V7HJy0Styu8h3gNxFWkyzykoI/w6Ho2B8VM0qp5tFcVHBhbKygo67D7+HLhjvWHYhqaO8rKTgQm+fE5UVpfSQ5nAUlFk8r5I8dJSVFGOBrV2WLKY0cysryDh0u11YZJvDFy6cS2ScVV6CkmI6j+z1Lpw7m5QpLS4qGLt2mirb2uBwOHDhwjlUxgVVcAubRUVZCdEOT1fvvMoKMnaLi9xYJDyuAbn2FmWcXVFaMF6WXriA8jK/ksy1UrcTc2nX53zWL1gKXP9F4PovIplWUJwcRrn3JDB6Ao7RWhQNHwVangDK5wPLPoGll30ckGYDpcsAAOWVFSgtoRcR+0W1fN4cckF2ud2Yc9FiUmbOkgvoPKqcRXzfgak1XkizFsxDkbCuukuKMXvhvHPSlM+phEtoF6fLhSobL7MXL4BLOMyVVJQXbOgF9c6bg2JhPXEVFaHygoWkzJwlF9D5WTnj4vCHSqUlU3N87BQQGwY+fRuWTLP/i8nhcGDJYjqeFs2dTeZVSbEb86so3QVz6ES7oJLuMwBQZHsEczkdsDsHumxlnA5HwbnCVgROBwrKJKScdnhuxdQ6Y3dDtNfrcAB2bpxuWxknvdAD5AINAHDbaJzOwm/bHg7gLqIPBw4HUEzbz1FcSi6ycLoLvu0ooXuho7iUXMThdBWYDztK6dnJUVRiq9dBLuI5Gro2OFyFvDhtF3xHaRm5VMDphEN4oAAAZ1khL4QGgLOsvCBPaNzugj5y2vkvKaVrm8NBHhKcRcUoXkIvpSWXXkkfH+bMKwiVWDSP7kfu2VU5fs7WW1wC1yy6zxXNpzSuillEZofTBfdcOmfdc+cB5IJWCodtUhQtoOuwe3YVHMLl0eF2w101h5QpnjefyOgqrygI92ivt2juPPLo4iwpgXs2lbF4IaVxzZ5NadxuFM2jMhYvmJ+bO2fL2McPgJJFiygvc+bAWWydK5wlJeTyCOQulGLfu2fPJtPe4XCgZPFiYOEiYNG1wEe+Az3kR5E6CYenBhg5AcfwYZQM7AHq7wLmLAWW3YDyhe8HMhcBs3KyuudUwVlM27t4Ae3r4kULyfhwlZcT/gGg5AK6TxfNqYJTuCA7iopQvICu16WLabu4Z80ibelwOFC6iPZJ8by5cAr7v7O0FEVVtB9L7bxUVcIpPLo4XC6U2Pq6ZNEC2t4V5WAldhkpv8Xz6Hnx9aa3ncn94YefBzo25kKpvP8r2HKokYR/8viiBLgLyJkO203uGzotM/KMpOAZAUQMAF7eTU3uAGDX8VZSz+mOYWLSK6saNh48Qxa9bUeaiHlu36gfh051kXqXb64mpraH6ruIOXckkcG26pz56FkN/eodtQSYq6XHg53VLflvG4aJR20Ad9uONBMgtPFAFKu2U0C+pzccpWCALQPYL4CyZWUVj758kAD9vbLnFAnh1zPiwyt7TpJLziMvHSCm/PtqO1DTZIUgDEZTeGbDUWLi/fyW48T8vKl7FLuOt+Zl1KdkFE2xtxxuJObbo94w1u49RXh5dtMxYj5f3dBLTMnTkoLlm6sp2N5eCrbXNThJ+pFzjuc2HSPm8/vrOohZuz+SxLYjzWR8rNtXT8z/z3QOo73fArjRptwKRP731LQRsMChiSBxRci1QxPp15Otg2Q8J9ISAWkDcm4FYvs/sfYQMVWtbRkg7SQrGp5eT82w1+6th1dwM+gd9WH38TZS5uHV1Pz/wMlOtPdbfRaOp/HiDmrCtmJLNXFdae7x4OgZC/CGMYbfvUTN0bcdaSLzc9QbweZDNP7n468cJP1c09SP00JbZmV12rUhYDO531vTTsrYZdxf10FM7gORpGUaPJWe23SMjIXGrtFCk3sbMOemgw1kjgxNhLD1MDVF/N1L+4kry6leP5oTc4APfwu4cS20nw2j6593AJ+5Paeh79sHx96b4HjifcBj7wF2/RDGyZWQW6g52oF7KcBQ555j8Amx6VPBQpP7E0+vgSKEoBmpb8HAcctFytR1HH7keULTvGkPIiPWnIiMTKB5M23fQw+tIHOk79gpjAkm93IyhZpnKThT/YubkRbCyUy296B7/3FS5uADFBCxc/dR+Hssk7uEL4jTa6hJ5rEnVlO3ghmT+z9YGvNP7f8ta3KXnPd9AU+uPUxd2loHUCeY3CuqjifXUpPHDQfOYFwItznsS+BAo4eUefnUGDXlZhyt3iT5bTiWhaJb63BGNRDOUpP7YFol2v+sZhAaxnN0Yr2KbsIUxjtjHLEpULyzcehNXS0wuWdimDpmgMlpGtpOStBQdqoEyEJ4Ps7AEwEatz0VAVcyhIbHadg3HhwB1wXgvEQIPCmE+jI0MG8/Mfc3/UPEzJ2no2CBEaFeDmOkjQDcmf5hsLgAKienYXg6aCi4oRYSVs8Mj4MFhZBWpg699wwB8dNHOsFSQljgRBj6KHWFU7vqSWg7fawPRkRwEZCzUPubKdheTyMJbacHxqB5BV44g9R+irS3MtAJM50QeIlBHaV7udTZQPpRHRuEEbP2Ca6rkPvaKdhefweYyH/IB80WIk/qsc5f3DSQOE7X4UzLKRgxa03Vw35k2+memziyi/SH1NcBRTT/l7JI1tL5mKw9QsL3KROjyHRRN7fo/m0kn249Dc1v7blGLIpU/XFKc3g3kVka6IHUL7jy6TqiB3ZS/k9WE7cC1TeJVBN15Qvt3EKBLtubIY8K5ujpFGJH6V4ePbSPuhWMDCLd3pLPc84R3G5zKzh9Eqpoch8KIl5DXSeCO7eBCcCL6e5OZHqss6upKAjupG0XPXECWvElwMd/CnxlF6T/PIb4O24BPnYTUL4AaFuLokM/AR6+Enj2Y8DBWyEdWgFpwHJXMBJxhPdT14nQ3t0whFj12YF+JJsFtwLG4F1PI5bFamugTAhn4mAQkSP03OnbtJHEt0+1tyHTY/WjKcsFAIPhg4egha1+lEc9iJ2kZ7LJtTa3gtOnIQkm93oigcBu6v7n37aduhX09CLZbJ0BuGlici2VMXyUuvq93vT2A8XjHHj2L3MgUD/poq+8f8JpY+M4frm1E1u/+5f4wKVvzGvOTJpJM2kmFSRdBsZP5wD2Ro4DvjYAU9vEBe8BrviUBbBXVPbq9cykfJoBxXvzUkHbygngkWtyIE9f2PSqdH9q6dbtnVh7ZhwDd/8Dit1vK13NTJpJM+ntlOQ44KnLnQ9GjgPRqfXXWQRc8uHc+eCKTwEXvq/QomcmTZv+/EDxGMPub34pF1/x+i8AThceWLmXaoeHvbjvBfpi8o07VhJt5Yb9p7Gv1tLeZCQF37+HghSMTIZIuDYgp4kWNZZHTnejWwBTS2dlPLvxKNGGrdx2gmjSG7tGCkLF/ebZHYglrRfjtXvrUdtsabomAjFsO57j96x/3H0v7CZAaIdOdZGwb7pu4KYH1xFN9NPrjxCteOfgJO5fuYfIdPNjm4hWefOhBhLCLZGW8NOH1pEQYg+s3Es0xCdbB/D4K4dIm//kgbVE8//i9hrSB2O+CO54ehsB8fvNszsIWN3+2g4io6Yb+NnD60nbPbPhKOGlvX8cT9rC7N3+9DaiRd56uIlo22PJDO5ZsYtodZ5Ye4i0y6m2wYJ+vGv5TqJhXb//NNG2j3rDWL2jlmgSn1p3mPTR0dPdBJRNUXU8vf4I4X/9/tMEbK9raBLHBG01kAN1FPvVDhYYiaexW7B2AHIabbH9W/vGyBjjnGP7UWphUN3QS2S+4+ltBVYVdlC5r9xKQc9Wbjths9ZIFoTQ+/H9a8mYO1zfRUD8GGP46m1Us/vw6v3EWqPf48e9zxeuDaKGftPBBuw50ZbPZ2UV/3s3BVO77cmtZE6f6RjGMxuoFt8u44rN1QSIyxeKF4TQ+8G9L5O23F/bgXX7rJd/02T42q9paKEHVu4la9B0699Xb3uerElr99aTsJLJtETXv6Iy/KbWAd/7fgp86zjwixFE/9/ziFz7BUBNAycfB17+LPj9S4GX/gWoexTwtSFZsx/KqCVjbNyL7TffT3hZ+51bIKes8d6x5yga11saENMwsPp/aNiavXc9QYDoJjt6cfCBZ0mZF798EzHdP/3yNnQftCwKpEQS679/O6HZ8tO7Sdi6wZozqF1BX87toe6OPfEiRhva8vmIZwI7b3uYlHnlW7+CJlvayLadbwzgzUw6fxqZDGHP07cBhgK8/8sAgG/duYpYTm0/2oxtR6zQlIqqF4TJvPOZ7ST8ZqcnhhcO9ZMyXd4kAkkB0MxkODMWI+tjfziDrGatL0lZhz+lkHp8SRmGoKFPKTpkgcZkDCmZAtzJmk409KZpIp7VUFHsQrHbCc45DFUm2mBTlYmmjhs6zGyClkmFCXgdl5Jg2billWUmWHSCAufFfeCyoEmXU2CRcVrvZC+4allYscg4WMxn1avJMMY6iVbc8HRSgLuoF+akFdqOcwa9t54A3BljXTCj1nrI0jHogzS0ndZdB5ZNWDTeARjeQateXYXWdoyEk9P6zsAUNP9meBL6UCvVtjcfAVMsGbWhdhhBa/9nmSSUjjqibZfba8EylrWXNjEEbdxaQzkzITUeBRdwRpSeJpgJSwtuRANQBqm2PdtSQzTPynAP9LC1lzNFhtRBrUmlrkbKv38cmo8C/2bbThPtujLUTTTnRioOdWyQ0Ei9bQSgL7z+OVJHurEGUp8AYCZlENm6mtQR2f4yjFQin5eHepA6RffcwEs0bG382F4oHkGbGg0hspOCygXWPEPaKd16Bulma89lug7/ahpSLLxzPbSgZbmgjA0jeoCG0POu+B1p20TNEWS6rfOukU4h8Ao9rwReeR6GAFyY6WpD/Li1d3DOMfEM3WvCe7cRzb8a9CO4mVqiTS5/jGivE6drkWywgGiZpmLiuccIjX/9S1AD1niRhgYQ2i1o8cvmwrO/C/h/jwA/aAZ+3IX0ld+GvuQGINIPVN8NvPAZsLuXABu+ADS+AESHMbniKRhpa7ykWpoQOWIB3HHOMfowDecX2LIB0qh1plcmJ+Bb9zIpM/q7BwkWT6zmOBKnBbBdRYbnyd8RmolVz0MNWXM609eL4C5bKMQHbGEZ9+xCqtMaq1o0ivHnqRXf6BOPwchad5JEYwMiR6wzMDdNDN1P6/Wuo5YArzf9QTX0X//613HgwAH4fD7oug63+/wvN/ZXC2Prd+HuXAf8qB2YexkykoKKMss/i3OOjKRgdoWlOUqmJVQJfnOKqsPpdBAfaHuZ6RLnnPjbTJcHqG8bY4z4jNrzQO6gLvrOGoZJ/KgNw8RDhwawvGYErb/+G8ytKIauG8QfXtMNIg/nHIZhnrOMphsosoHtqJpOfAftedNk4JwT/qajKS5y/5/q1XUDLpeTtI29jJ1/xhhMkxEZ7e2i6wbcNhntZeztbZoMDgcIL9OVEfuMcw7GOPnNXma6vj/f+JhuTJ1vHL6WMtPRvBEplZEJ+KFhmFB1g+AY2OeaJKsocrtIn9jL2POabsA0GQEUtJfJSArKS4vz7ckYQ1ZWz7s2OBwg4+58vLxWGYuL3GQM2dtqOhkZ48SP3l4mnZUxq9zCNmCMQVI0gt1h/46q6XA46PqXzsqkXTKShlnlVtsyzmEyjiKXE4h7gJHj4MPVcIyeyL3WA+BlOf97x5WfBi7/FDDnEijpDEpnW76l9ryh5S4qRYKvo5xKo6zSwjpQMlkUl5fl+5FzDjWTJfXIyRTKBP83TVbgcruIj7y9jP07pq7D1A0Ul5e9Ko2alVBUWgKn4Ntor8dOo6sqrn3Xu2Y09K8h/b5nBM452HOfgCsTAG7qAVxFr2n8n29emYxB1RnKS16dn9ezDr+WMq91D/jiyjPwRCScvPnTr5nm/GUY8WOfnsZWhrECf33OGPEr5cwkvu65i7GdxlaGmTkgP+GsB84KypyL5tXKUF44wLmN33PzP329dprX0C6vp73foP3/D3VGYLJEcAGYpsHhdBLfansZU5bgEvLcNMBNk/hs28swVYGjqCjfJ5xzcFUh4HSmlM35zZ+l0XUAHM6i4lctY8pSzr/97DhkJriuE5C+gno1FQ6ni8hYUK8tzw0DnNlktNerKHAUUxmZIpN2MCWJgOudfdQ7n4ykvTkHU1UC9jZte7vcufEc6gFGqsEHj8AxcQYwco9uvOoSOK74dE57v+wG8JIqcMMgoIh2fk1ZhrOkhMyTgjIF7a0BDgfxkTeyGbgrZpE6nGVCP5ommK7BJYyPAhpFgbOoiGAb2MvY80zXAc4JVoCRyeT8/IW2vOa697y9NPRf/vKX0dLScv6Cr5K4moarb2fOnGPuZQByoeNEf+J4Kku0ckDOZ07Uio5MhoiGDchpnkWNbCItEY0yAHQNeYk2z+OLICT4hWu6gdbeMfKtjsFJonULRJLoG6X+ZafaBsm3+zx+okGWFA2D3igcDqByyj+uoWuE+BRPBGLoGfYKr9ccx5v6SL32MHvxVBYNnSOE35Otg4TfoYkQ0UzrhokTTX2kHZp7PKQdgtEU2vrHiYy1LQNE+9s76id9kFU01LcPEU1iY9cowQAY90dJ2D3Oc/WKvHQMTBBf/djUeBB5aegaIe0yNBEi7a3pBhq7Rmk/DkwQnAN/JEE0OA6HA03do4T/fo+f9FE6q6BvlIaX6xicJPxPBGKEf8Y4OgcnCf8DYwGifY8mMqRfgVzoQJFmIhAj7a+oesEcGJ4IEZlDsRQZC5xzeIQQkUAu3J0os9PpIDK73S7ShwBQ00w1Xf1jAQSilsyyoqHRZh1zumOY+Pd7Q3EMCf7xQG4siKlzYBKxpKXVT2Zk4qt/lkZsp5HJEJn3hmGivp0usi29Y2QshGIp9I1QX0O7jH2jfgSFfpVktcACqL59qGAsDAtjjHNeKOMglTGekgrWPztWwuB4kOBBaLqBU21UxobOITrewwl09E1pa+ZeBnzgf7Dv4l8BPx8GvlkNfOYOaAveAfTvBXb9AHjs3eBPfhAlJ24H+vfnNPsA2MQg0dbExn0ID1laIM458akHgInWbsgJwe8uGsdkh02mmgbSj+HhMcQmrLlmaBpG6uneM3qmjfi6JwNhBPooFkW/jRd/zyDSIWveKOkMxps7SZmhk80wRW3BOB0bM+nV0+97RsgMn4Er2AG87/N5MLTaln5i4eTxRQjuDmOM+NQDQGvfBNJZa/y7nE6EUwrxdQ9nVKQUax1mHPClFDIO47JOwtZpJkfGFoIuq5kkbJ1mMhgCDZ/6jfrrM0LDOUc8q+UxdoDcAZX4sZsG9X3nDNygmn+uybSMoRMfdQCAkiaaaahZotWHqQNKhgKoSXGiJYeSJRp7MBM8HSH18nSMfluVwCWKUcDj1J+fZ+K0Xl0DT9pC6MWDxL+cZ5NgWUszCs6mrAcEjIJEEFwTMAAUCSxF90IW8RJeWCoKJoTdg6nnvi3yEgvYeEmBZa21DuAww15CY8bDxHqAqzLMFD2rmtEA5T8VJ+HxwEwYMbp/mvEw5V/OEP9+AAU0RjJG+pVpKkzCP2AkorTPmElkdrjdYAKmATcMElIPALSJEWJdYqaSJLwfACgjdE/Qg17ik85VGeok3XPV0QGKrxAPU6wBxgrq1bweMNkaY2Y2UxA2UB6kFpN6yA8jaZ3RmK5BGaWWDMroANGkG4kYtBA9L4phAwFA9Y4RGZksQRkbsdHQENJ6OEgwALhpQhrsJTTK6BBMUcZkAqrXZq0hWBwAOSwBPRnPgdFd8G6wD3wT2fffCdw8BnxlN/Cxm8Ac5eAta4DN/wM8eDn48htg7v1Vznx/ai3K9tL9VBkfpVYgmTRkDx0f2V4aZlILBaCHBSwN00S2j7adNDwApgjWPakE1MlxUibbQ3lRvRPQY0IoSlWBNET3Dqm/l/SjHo1A9XlJmUx3B8nLHjouX2/6g17ob7jhBixevPj8BV8tDR6BQ88C138p/1MyLZODvqab5EIBAKEoXWAykgJJMMEDAEXTCTCrrhvk0gTkXu3FTVRWNGLKxxhHPJUlF5xUWiYAcqpuIJ7MkgkWTWZIeKpMViGPFLphIpJWUVniziPixpJZYoIsKRpCsVQ+RBhjHKFYmhzKk2mJXCpUzUAgmiSX21Ashahgwp6VFPjC8fxFzzBN+CNJpITDTiyZRVBoY0nR4AvFSb/4QgnEBH6TaQneoGXKp+kGvKEEaatQLIVQzFqsMrKKCX80376MMfjCCSSFS2c8LcEngL8pqo7JYIzyEk4QGdNZGZMBy1TSME1MBuNkjITjafJoISkaxv1REut9IhhDSgDoS6ZlAkSn6gbG/VFyuAxGkogL4zUjq/AKNCZjBfxHExlEhPGhaDkZxTHlDVH+E2kJIcG03zBNTAToRhuKppCRBICYqTElpglB5rO8iDKrmlEAJukLJ4jMYaFPgdx4lxQBjMcwySUVyD3MiHVIioaMMAY55+QhBABSWRmKMIdVzShYG6KJNJmvkqIhI4xBkzGE45TfeCoLXeBF0XQyBgEUtFtGUiHJggmnYZL5kJdR4EVWNaRtDyp2GZNpmaxTml4oYyyZITLKikb6mTFOxlNORonwomo60hI1FY4mpRyGyZL3Ax+/Cf5/34Lkj4aAL2wFPvp9wFUER9NKYP2NwAOXAS/+I1ztK8Enm4CpzVeTZKhZi1/OGIkNDwByMg1T3CBVDUqK9kkqSA/XSioDXRhTzDCRjSVJGSmeJBdvXVagZmifZML0oCwn09BVq15D0yHFbX0djuZeG6eSvc6Z9Orp9z0juHp35P5HOCNEE3S/zUoq2W8NkyGaoH2USEtQhTUXAFSdEUx43WAFITlVg0H8RWeclGGcwzApjcG4OFzAOWDaDCft38kpkelvcUmnF3rOANCKxcsLOKbmoVCGmQApw3IPAXlQPJ67wIllTDN3iRdoYGi5/579ydAA8UJvGoAmk3qhqbSMoQLChZ6bBqBIwtziucu7eLnVNRK7HtzMAfYxoV5VAteE9drQwEVwQM7A5TRAwAFlWq+pg2dTpD2ZnAaESz90BVwE9TPN3MOBeGlWMsRlgOsaWFZ4tODI0YiXflWyXYB1sHScPhRkkgSgj2sKfShgDGY6TvmXMuAK5cXM0DXTTMbIgyxXJHK5hWmQePcAcnWILhqqAlMS9hvOYSRtbh0S3Y+YnCXtxg2N8Aqg4LtMkeljiWGASXSem9k0GctcU+nDB+fkwgwATJKoy4muw7TXm0nR/lAV0h8wzdy3CS9Z0k5M18Bkm4wpu4wSuG6XkbadmUnn5uhZGk0DU+hebgruDEBO4y26eTBDp/0MENP5HC8KuCbMRZPBzGYAdwmw7BPAX9+B9F88AP6jHuBzLwLv/xIcUhRFHSuB1f8PeOAyONbfCFfPOiAymJ/npiwRXrhpFrS3nkxAhO5nikwu1ZyZMNP29s5QGVUNpq29jaS9XSTbmDJhZmh7G6kk2f+ZopAxxU2TAAOe5eWNSG8JKJ7D4Xh9Jve1jwBHfwv8oAWYn4snaTdrBl6bmfubkd4ok7vp+L/x+TMIpRQc//mnpi3zekzATZPB6aQmYOcz/z97mTuXObo9/2rf/r/yMp2MnPNz9vUfu5n7W2Ua/3ZLr6WPXkvfv572fiPqfb3j8I3g5c2aE+ebnwBgJnxwjdUAw8eA4WogO6XhKZs7BZzzafDLPwnHHCtWsd0MlZkmMXGf7rc/ZDu8nj6ZAcX7v6XXfUbY+CXwkWo4fmXh6rzdzwivleZddxzEp9+xCE99/v1voMn970+T+81uJv5aTMtfi/k/P0+9NP/myvjm7P+vh5c/x1TovjBNe0/jBnFeGnt722heS5nXU+/r4f91y/ha6j0fv9Pycm73FnAOHhmCY/R47owwWgtoUxfvqkuAKz4FvuyGnJl++bxzfPv1uM28vrYD8Dra4fz1XnXVVW8vk/vXkp544glceeWV+X/JpPUixZNTZguVVvzju5bvJCamPcNe3P40BTb4r58/Q7R7psmwt6aNvKDtOdFGtF8DYwHsrWkj9Tz+yiGi/dpV3UrMWVMZuQDY7eHV+9F61lQVQF3LQAFI2/fuWUNMmVdsOY7NhywT0jF/FL1jYcwW4kD//JENJITYruOteHDV3rwm1zBMfOHm5zA0bpmd3PfCHmw8YAGhtPeP48cPULCxb965ioCyrdl1Eo+uOZA3BU6kJXz+l89hTOD3lsc3E4C14019+NXjm4l1wBdufo700xNrD2HlthP5B4JRbxjf+s2LRLP5o/tfIWBp24424aEX9+Vl1HQDX/zVcgLCdu/ze0j4vuYeTwEv37tnDQkhtmbXSazZZYXZi8TT+P49LxMriTuf2U7A9o6e6SH9yDnH9+95mZjur9h8HEdPW2Y+g+NB3Pv8bmIR8dvndhLT/T0n2rDjmAU8p6g6bntyK+H/uU3HCBBaa+8YXtlziozn+1fuIWN1+9FmtPR48vlQLIXntxwnmttV22rIHDjdPkSA3DjPheYTzcJ3VbcSmUe9YSIzkAOhFLXIp9oGyXiXFY0A0QE5kEdxHn3jjlVEnv11HVi57UQ+zxjDf/6MhlG7e8UuMvd6R3y49YktpMyNP3+GyPPKnlPYetgCzMrKKr58CwW4u+nB9cRd4WTrAH63hobM+4+fUCCdJ9cdwfFGy6zNF4rjh/dR8Jqv3b6SuDjsPt6GF7fX5POmyfBfP3+G0Pzm2R0EFLRraBK3P01D0NjXv5d3n8SOY1YYlVRGxldtYHs/fmAt6dfa5hzQpZj+v58+RfKPvXKQjJeJUAK3rG0D3nsj8O8rgJ8N4Pjf7oTxmd/m0G/79gG7fgDHY9cBT/0FsP9m8L4DCK16kNS787aH4eux1rrJ9h7s/e3jpMyKz32XWI7UrliHrn3V+byUSGLN135OaNZ/91Yk/dbc6zt6EsefeomUee6z3yL5gw88i5F6q+0ingls/slvSZlVX/gRMeVv2rQHM+mNS+c6IyhhD0I6jQf+lVtXEEu69ftPY/MhK1SSour4ws0U2MgbTqJtgJpJ7mvzQhXCybV7kxiOCCHHTIa6kSgBuOsPZ5AUzPJTioGJhEzWal9KIWb5adVARtXzZRjnSEgq0dLLmg5d0LrJmgFJM4mG3lCp+TxTJZia4BJg6mCZOCljpsJggvaaS0kw0RSeM7DIGDGF53EveEawEJNTYKERqsX09ua03mfzkYkp4LwpGl0B87QRs3Y21gGWEFyOYn6Y491CvRxGdx0JbWeOdcMMjFra3kwcel894dforgVLWmcG09sPw9NpyWho0NuOEI280VcPM2yZ47LIBPTe0xRsr+kAWCZh0Qy3wBBB/LJJqK1HiXuC1lYNU5DRmByANiScTTmDcmY/0eJrPWdghIQHq1gAahcFq5ObjoBJVnurw53QvZYpNlNlSM3VhH+5/STMlLXm6/4xqKPUFFtqqiYaSmWgHUZcaMtUHMoAPVtLnWfAhH7VJoYJQB83TUhd1GVKGegkAH1GNAjNT82h5b42InN0A90b0zX7oI4L+FuxMBIHKBBtdONyYsovdTYi22qB4nFDR3gtPVfE92+CHrbM/dWJESSO7CRlQi89TuRJnzoCqdcyUTezaYQ30HNFeOPzxLRc7utAspYCxgVWUWC3+KHtBPhPC/kR3UHPFcEXHyNa/EzTSaQb6/J5pqkIrHqM0ES2vkRM1uWRAcT207BvvmfpPp04fgDZnrZ83kjGEXxlOSkTWPMMkTHT2YxEzwjwoW8C/70e/OfDCFV9HvjEL4BZi4HWV+DY+nXwBy8Hnv80cOweaC07Ed6ymtTrfe5hMi6TJ6spuKEiw7uctl1w3QvQItbck/q7Ed1P747jj95N8tEDO4hLgB6PwfciHXfe5Y8SC4JUUz3iJwRQPGZi/DEb2N5mCvL3etPbS0O/7kZgsgH4xci5if4E04fuOYJ3XlSJ1V/90FvNykyaSTNpJv3+SZeBsZM5zf3QUSA8dXh0FQNLPwJc8Rngys8Ai98NvM01UDMa+v9bet1nhEfeASx6J/Clbecm+hNLwZSCD997FD/49JX46d9e81azM5Nm0kyaSb9/kmK58LnDx4ChY0Bq6iGrpDJnxn/Fp3NnhClMtbdz+rMLW8dTXvi1CvLbml11GBbAsUYmQ3hpZy0pc9fynQUaelELCgAHT3YSoCiPL1IQouuFrccRjFragBNNfSTcWTor4+HV+4km8aWdtUTj3dY/juWbqonG8u7luwhY2rYjTdh0sCGvcZoMxhBJKygVLFUeXXMA1Q3W62lNUz+eXn8kr9XUdQO/enwz0eS+tLMWGw+cydfbO+LDPSt2EZnuWr6TaMX3nGjD8k3VeQ1HIi3hV49vJuB0T68/QrTijV0jeHj1fhJO7pbHNxMQsI0HzmDNrpN57ehEIIbfPLuDAJI98tJ+Eo6tuqEXz248mpdR1XLaa7HtXtpZS/q2Z9iLR17aT6wQ7l+5h2ir99W2Y+3e+vwYiaeyuGfFLuIL/vyW4ySUYFP3KFZuO0H68d7ndxNt+/ajzTh4sjPPy0QghqfWHSba9uWbqklovrqWATLuFFXHo2sOEP63HG4kmud+jx8b9p8m2vYVm6tJv1Y39JJxGEtm8NLO2oKQbWL7t/ePE60y5xyrd9QSC4Mjp7uJzN5QHAfqOsi82XakiWAjtPR4SJ8pql4QQu/o6W4CpjfqDRNNNAAcqOvIj2XGGH7z7A7y95d3nyTj1OOLEI03kBvvYhscOd1N+lmSVTywci+heW7TMTI2OgYmsPlQAylj15JvO9JE+iwcS+EpWzi/h1fvR1rAIzjVNogDdRZ4imky/PY5KuPrWf8Onuwk1j0ZScFDL+4jNM9sOErGT3v/OLFcmE7GLYcbiRVOMJosCOf30Iv7rLFQVIZ65Socm/9V4HungZuewSnjAADbwUlEQVR6wf7laYSX/h0Q6AKO3AE89zHwh68G3/YtoGMzkI1ACweQqj9O6t19Bw0T1LmvGiOnLXA1OZnCoYepRuToYyuRiVoaqfGWLrRup5YWu379CMk3btgFX7dlhRD3BlDzHNWI7L/3aRK2buAEBdabSW9SMnXwdAD9Mfr4c98Lu8k6Xd3QS/ZOVdMLQj0G41mc6aUa+kNdfmRVa60YDGcwELb2OMNkaJ5MQBfWYU9cQlyyNIBZzYAvRbF4whkVqjA/sxrV0JuMI61oBJBP1XSC4xFN5+bUnCnQXM45DFUhoRxNTSEaem4aMKUU1dBn4mCCNpgpGbBMLK8J5cwEi/vAdUGTngqDi6Ht1Cx4zEtC0LGwh/qTJ4NgMa9Vr67C9A0QQDszMJwDoztrqZCKwPQP5evlnMHwtJMQdGZgBGbIY9FIqZz2XbA6MEY7wBJiCLoJGJN9+XbghgZ9oIFYFBhj3TDDlkUBS4ZgjLYTraDefwYsbVluGd5BGg5PzkDvbyBWCPpQC1jM2qPM8AQMT5fQ3iwXZk/wmdc93TBDgrVAKgZtoIVo29XeM9RawD8Cw2dZGHJNhdpzmvCvDXWQcHhmNAB9rI9qzrtOE/618QEYUYt/JqWhDnVABORTB9qItl0PTkIPWns5N00ofS1E2656+sAEH3MzGYPu80BMymAH8efX/GMw05bMTFVICD0znUC2me7/6Zp9pA1UTz+UEeHMY+hIHacWVpmmGhgJq5/1sB/ZdrrGJ4/sIO0m97ZBnRQsJGQJqVq616RqDxIQQnViBFJPq8UL54gfontupvUUCaFnJKJIn6kmZeJHdhAZ5cFuyEPWuZrpWoGFQerkESKjFphEpuUUKRPbR60dsh2NUCcsGc1sBolqenZKHNtDtNeKZxDZLsvijXOO6F6h3vJ5SGXnQ/vILcBPuoDvNcL8+K3QZ1+ZUwLsvQl4/L0w77safO/PgIGDgJZFtredABMyTUXsINW+J04cIECFqncc6WYqY2QnDWObbq6HMm7JaKQSiB+jMkYPbCdge9JQHzKdgozMRNgWPjFxkp6TXnfif8D0xS9+kS9ZsoQD4EuWLOE33njjeWmuuOIKK/PAMp5Y/s/k7wOeAM9ISj4vySrvG/WRMq19YyTPGOOyopHfUhmJ5CVZLSgTjCZJPhxLcVXT83nDMPlkMEbKeLxhbhhmPh9NpHkkniZl+kZ9nDFGaNJZ2fpOIssv/eUefueurvxvPcNe8m1fKM794QSRsbVvjJum9e1+j58n05ac8VSWD3gChJfWvjFS76g3zAMRq15N03lLr4fU2zU0SfgNRpN8ZDJE6m3p8XBdN/L5wbEAjyasdshICu8emiTt0DEwQfpgMhjjXqF9TdOcVkaxL+OpbAEvnYMThJcxX4Twomk67x2hfdLv8XNFtXgJRZOkXRhjBTRjvgjPCmMzIyl8IhAlvAyNB8n4CEQShH/TNPmoN0xoJgJRwn8yLfF4KkvKjPujhJdgNEn6VdV0Ho6lCI0/nCA0iVSWyMwYK6CJJtKERpJVIjPnvIC3ZFoifWYYJpnDnHMynjjnXFY00k6c84LvtNnm+eBY4drQ7/GTMva1wReKF8xze73dQ5NcE9oykcoW9JG9Xo83TNpB03TeNTRJyrT3j5O2DMdSBeuJvd5+j5+0Q1ZSCua0nX9vMMZDgoyMMd7eP07KdA1NkjEWT2W55zwyjkyGyPqiqBrvGfYW8CL2fSiW5t4wbe9AWuHcNDifbOL8+IOcvfC3nN05l/M7Kjm/o4qzZz/BjV2/5HysnnMj1w9jLZ2kjui4l6fD1lwzTZNPtPfQdujq54Zmje9MLMEjnglSZry1i+TDI+NcSlpzwNA07u0eOCdNMhCi+9hMetX0e50R4uOc31HJQ1t/Rf7e2jdG5pU/nCBrN+eFc0TVjIL1JqPoJJ9VdW4K9TLGeFalZSTNIN/WDZNrtnpV3SwoY69Xt9EYJqU5NRTml/5yD9/aPJGnMQ36bWbonDGrHmaanBn0jMM0hdLoGmeGJRNjjDM1S8uoEmemtVYwQ+NMo+s3k9P020qWM10VeDE4k1K03myS1qvKnCnW+sIY42Y6Ruo1s0lar65yM0vXFzMdpfVKac5UoV7T5GYqQngx03HaDqrEmUTPcWbSRpNNcqYJvBgaNzNxSpOKciash0zOcKZabccYy5U5Fy+awk05Y6s3RmmkNGe6sJebRmG7ZJK2PpIJ/2fLkLyUpvzrGjdVuaAMySsybX9mclORbGUkOhY0lTPDoGXs31FtY9c0aDvpGtfCdP/X/HTfM9JJbqTp2qD66NqghXykLU1F5no0dE4aPR7lRtZqB2aaXLV9W/WPk7Y0smmuxyOkjOL1UF4iAW4qVjuYmsq1EL3/KJOURk/GuZGiMtrrVQOTnOlW25lylmuRoK3eUcpLNExlNAyu+sZtNB4qYybF9Rg9VyjjI5SXoK9ARtU/ybkmcz5czfnB27j52AemzgeVnP92ATdf+AduHLmf80AX54xxZppcmaD8qr4Jbgr7vyFluRaiZyd5bJjKGAlyI2vNNWYYBe0rT4zS9TyV5FqM9qO9XjXgfUPOCOe3Z3sD08sv/x5+AroCSFGwSy4iPxcVueAWAG8cDgdKhRjSAPDOyy+aFiBJTIxxUoZPAa6dL4llOOewG4bawSdyeVqv0wba4nQ64RToknLudW1OWbFQxkHKOBwO0g4A4HbR+KtOWxkHcu0npiK3i9TrcjpRJADcnY3fK9brdjnhFgCqnA4HSoro0HK7XXA6hXpdtnqRi/0t1lvkpn3rtMUOdjgcKLbFmHe7nCgSzDQdQAEvxUVuApLkcjlJ3HEAKC2ZjhdBRqczF5Nb4MVOM52M9rFZUuym7eJ0EhkxDf9ul4vw73AARTbQsNLi6fqI9n3Bd2w0TqcDLieV0U5TZGv/3Lh0FpSh/NNx6XBgmrFLaZxOB2knAAXAi++8nK4Ny5YsJJbaZaXFuHzJQlKmrIT2h9vlLADQKi2x99m5+3m6eovcrnyEirM09n6ddvzwc9dbUuQmYF4ul7NgTtv5d7tdpO3Ojl1CU1zYLueTMceLOOZchTSlxVRGJ+zLIRKRGBZfdiGw5APAkg9g/Jpv4oIKhpKJOmD4KDB0FK7mZ4HmZ4GSKuDyG3DJsk8CyTlA1cUAgMrKMjjctj4oKyV5VzGNJ+t0OeEWYsVOS1PkhstmBl5UWkLzBTSUj5n06un3OiOkpjRVVUvIz2XTrOX2dK1t7YCjYFgW5AGAc4Bs+udzDXGg4IzwWtL5qk1IU2cEwYe+8EOOaX605e0fckz3cZthp8NerwNw2Ms4aRmH01bGATjpvgCnnQYF9eaAsIS9xFlYrz1ePJxuWsbpzEXrEL/jKirkRaRxOAH7MHLRdcHhcE7JIPBiKwOni7avw2GjKeTF4XJTfqer122jKeAFhTQu2pbT8WJfU6fj397eDheleS195HDScwUcTsC2/5+XBg7Cm8NdBPdcuv+7F9F575pVScM2AiQOPAA4iopovU4niS8/LY3bRfl1OArKOItLbPW6gPPWW0T6aFpeSmw0LlufAXAW2XgpKqZT2uk6r4zOoqICGR22va+AF6cLsI0pZyndP53FxVRGhxOO4mKgqDQHrHv5J2G8739RXIop8N2jcAwfg3PiJFB7LzD7QuCKT8O16IPAvH/Lg+s5iovhcNr60XYms/PicNMzQ06mQn7pfHUCsPeJrd436Izw9jG5T+XM3xrGaLiFo6e7CcBWzuSXxg4cGAtgTACxYoxjR3ULMVGubRkgsWkD0SS2H2shF/+NB84QMKzWvjHsrWnPX+plVcOKLccJsNj+2g5itjwyEcLKbTXE7HrlthNo67NMqOpaB7B+/+m8mexYOFefCOyy+WAj9tVaps1dQ5NYvrk6b+6vGyaeXn8EjV2Wecjh+i6s3VtvmbkHcybgIsDd6u21OCCYiTd0jmD55uq8KXBaUvDUusNo67f43XG0BRsPWCbfA2MBPLn+CDFLfnbjURxvtAAEa5r6sGq7Zb4djqfx+CsHiYn0+n312FltmWJ3DEzg2Y3H8jKqmoGn1h9Ba69lynygrpOYn4/5o3hy/REEIpb58KptNQTM8EzHMF7cXpM3y0xlFTzxyqEC8/n9gin5gCeA5Zuq8/3IOcfT644QF4fjjX3YeqQpTxOKp/HU+iPEFWHtnno0C+b/7f3jWLe3Ps+/ppt4esNRwv+Bug7UNltmv+OBGNbsqiOh7VZuryFj9XTHMA7XW2B1qayCldtOELCorYcbMThmmSL2ewLYI4BHcs6xctsJYhZ+rKGXAAwGoylss7mqbD7YQNxQ2vrHyXhXNQMbDzSQ+XjwVCciQri4UW+YgBICwI5jLcSU/EznCBlzibSEuhYa6/XomR7STqLbBwA0dXtIrPqsrGLD/jOkjl3VLSSU3eB4sCDW+6pt1LSvtmWAtG04nsbOahpve+OBM6RtOwcm0dApmLCZDC/trCM0h051ETeJcX8MhwU3IAB4aWcdaaeGzhF0Dlh9ls7K2HiAyrjjWDMJ7TjgCaBGcEWYTsbjTX0YFEA4g9FkAdjh+n2nSTjFjoEJNAquOIZhYs2uk4TmaPMw/BkH8M5/Af75cSS+1YyBG48Df38/cMmHgMFDcOy7CXj0XcDTHwYO3gq1fh3UMWuOqOkMmjdR07j2HYdyIebO8ts/gsEa2g51z28g+f7qeoQGLX5ToSjad1KwwIZXdhBQvPEW2h8z6U1KU/6V9SM0vNLavfXETail14OWXg8p09A5QtaoeFrFqd4gKVM7EEZKturxJhX0Cyb3JufoDqahGtY6FsyoiEmCSa/BEEyrxHw+IWuERjVMZFVDWHeBrGrAFM4iumHCEOLMx6bM+s+a3AOAqWkUFM/QwERQPG7ClDM0jricAVcl69u6Cp5NWPVwBp6J5PAvphKXUsTkHroKngwS8DeeCgKSAHAsp8ATQgx5UwePTORCzJ0tEw/kyuRN1tNgwRGhXg4zMAyescxmWTwAFvJY5tuaPGXKb5n5Mv8wWMwyU2bJMMzJfqsdTAPmWBcx5WchD1hQANvLJnOm8SLYnqcTXATbi3phevst83NNgTHcSsD2zMk+sIi1FrNkBMZoJ2lvY7ApF7ruLE1gBMwvmM/LaehDLcSs2hhuBUuJ5vNeGBMWQB8MHVp/IzGfN8b7wOLWmGepKPTRLmo+39dAzOdN/yjMsGA+r0g5UD9hrGpD7QSgz4z6YfitNRSMQe1vpgCD4/0w00K/ZhLQx+lerg51UJeHwBhxGeC6Cs3TS84imqeXhI8zY2EYMSFeOefQRiwabuhQuqk7nTrURcL5GYkIVA/d/6X2k/S7E8MwIgIQoCJB7mkmNHJPM7jomhD2QRsX+plzSC10/1dHemHGhX5OJaAM0PuP1FZP28k/Bl0AGOS6Dqm9ntDIfW009nssBHWYAiRmGmuIjKpnAHpImFdSBnI3lVHqoC4nWnASigBcyBlDupGeK+T+TpiC+b+RjEHu7yBlMk214BULgeu/AHxuFeR/2grl714APnUrMGcp0L4e7kM/AR66Anjhr4Hj90M9uYGE69OjIWKmDwDpeuq+oAz3Qg9SGbPtdHxkWurJHNF8E1A91tjljBW4Rch9VJ7Xm94SULz/S8oDBYzWAi/9E/DZ5TnU5D+jVDcYwRdXnsET/309/uW9F52fYCbNpJk0k/5cki4DY6dyPnVDR4DI1MODuwxY9nHgyr/JAedMhTp9K9IMKN6bl/Jte+pJ4NBtwP+eARa9461m6w+anjk+hAcP9KP6Z5/EsgUV5yeYSTNpJs2kP5ckx4GR41NnhKNAeupSXjZvCljvr3NnhFmL3jIW/7xA8aY09HetbyQ/3718V0HYOjs4VmPXCHpHrFcV02R4/JVDRFO3ekdtQfinx14+SLR3v3hkA/o91ivbun31eGGrFforlZHxpV8tJxqzWx7fjK2HLS3tiaY+/PC+lwnI2b//+AkCxPXomgMkvNmAN/c6lUlZr5xfv30l1uyqy1sQbD3chG/duSof9k3TDXz6a/cT8J/bntyKu5bvzGtlW3o8+NcfPEZk+uyPniAh0J7fchzfv2dNPoRbLJnBJ75yDwlP9f171uCRl/bn2/NwfRf+62dPE8uJv/nmgwQ478FVe3Hzo5vyGsnhiRD+/tsPoV3Q/H/5lhUktN3GA2fw7d+8mLeAUDUdn/n6/aTtbn1iCx5ebfHS2DWCG3/+DOHl//vpUwSE7fktx3Hbk1vzYF2ReBr/8v1HCVjdTx5YS9rlcH0Xfnz/2oJ+FC0ifrfmAJ7bdCw/PgbHgvj67SuJtv3796wh2t0thxtJaD5F1fGlXy0n/N/7/G4SUrGxa6QgXOIP7n2Z9OuaXXXYdNAKDROMJvGLRzaQMGn3rNhF2v/YmR68tLM23/6cc/zydxuJhcGL22uIzANjASIzkAN7EwHW9td2FADP2efaml11BKSyvX8cR2zh8FZspuCSB+o6SAjDYDRZEHpy6+Em0k6tvWNEc84Ywy7BKiQrq/j67StJHb94ZAOxfjjVNlgQ0u2/bCH0nl5/hIBN+kJx3PQgBVz51p2rSH/srWkj2mrTZPjCL2l4rbuW7yxYt+zAeV+8+TmioV+z6yTRnKcyMr555ypC89OH1tnC1uVAN88l4+OvHCJgexOBGH7+MNVwf/32lcQ6aWd1C9butbQDum7gi7YQYnc8vY2s3+3947h7+S6rQFEZvr5NAv+7e4DvNwA/7kTwhvshXfrJ3EV//8+BJ98P/th7gH0/BwYOAZqEiRVPQ49Z/dh/vB7VtrB1yz/3XZI/9PAKGrZudAJbf05D0Lz45ZuIhr51GwU/mklvUpoKa3vnOqox+cqtK4iGfsvhxgIQywN1HSRk6kQki30tXqKB2tA8iWjW0jp3B1Lo9KXyZQzGUDMahSyEthuMZBDKWOtNWjUwFpeIht6XlCALa19a0ZGUNQEUjyGRVWAIa6qsatB0S4sfy5wFxcuZdnLOockZMMOq11QkGErWAnYzdOjJCNXsJkNgcpqAypmJYF57ypkJIzRCNd4xL1gymNfkcjkNMzhMgfN8feCZqKX5jHtJaDuuqzA9reCy1QdssgcsOmHxkgjC9HTk6+Wcweg/RUPQTfbCFADuWDYJve8UAbjT+04RgDszMAJjuCWv+eeGDq3tKFja2n+MgYZcvVMymjE/9K4aGk6u5SDR/BueThgjbRbYnpyG1nKI8KJ1noAZ9Fj8+4eh91oaVc5MqA27CS963xkYE71Cu4SgtVcTawGt+RDRthueLhjDgrWdpkBr3E9ACLWuWphh6yxtBj3Q+s5QsLqmA0Tbrg22wPALYG/pONTOWgrQ134CTNC2G5OD0CesvZCbBpTWYxSgb6AZZlLQPMcC0Ea6qEa48yTRtutjfTAFbTtTJKgDFGxXHWgloI9GaBJG2Drncc6h9rcQqwRtvJ+A1ZmZJPSAZRWqBycgNdC9MbVnNQXF6zgFbcySmclZpA5vpDSHN4JJ1tlK8/RBbrdA2jjnSOyk+3T2zGHoAevMZsRCSJ/YRcrEd62moHg9TZD7LOtArmtI7Kb7Xqp6BwxB8695R5Gpp2ec2NbnKS/NJ6COWmdZM5NCYj8Ff4vvfpm0pTLYhaxgdcA5Q2wzBa9N1eyFFrDGpR72I3mUAtxFN68gYy7bfhpyryUjc5YhNhAH/vUp4KYe4LunIF3y72DzrwF6dgI7vgM8fBXMR94HHL0LGD8NmAYi622hEOuPQhm1+tFMxRHfQ89x0a2rwGRrXsl97cg0WUDFnDFE1tF6k0d24I1Ibx8Nfe0jwNHfQv1OA0ousMKyaLpR4Nc73W/nS9P52Dtt/kOmyYh/rWGYxBfVNBk45+Q3VdOJf7ai6gW+ypKsorzM8i3JyioqhPzqkyO4c3cvdn//Y7ju4ioAOTPZ2RVl+TIZSUF5aXGeZ845UhkZVbPL82USaQlVs8ry35ZktcB/PJGWMEegSaYlzK4ozddrGCZkVSPfjqeymFtpaQUykoKSIjeKhD6wl7Hzomo6GOMoKy0mZURe0lkZFWUleV4YY8hIKipnWbykMjLJy4qW8/8VeJmu7SrKSvK8GIYJw2TEr9jeJ7KiTfm/W+0tKxrpR1nRiDyabsDlpD7a9vFhzzPGYJqM8G8f37puwG3zZbePzenGqtPpOOeYt+fP4krYfxPrsOdfS5npaP6YkqLqZCxM10eGyUif2Gl03YDL5SRtZy9jz0+3nkzHi4hpwTmHbpjn5MUwTDgcDjIOz8cL5xyGYZJxaG+H6WR8PeP7fDTTltENgknAGIfDAThMPRfqdPAw+NBhOIJTj0LuUvClH4Xj6r/LafDnXwEOgBkG8XnXVRVFgt+foWkFfvb2Mva8aRi45h3vmNHQv0kpf0bY+CVg5Di0n42S8W8fK9ON/9eSCs4InBO8mbNHqXOVYVM4O+crc7567bz8Yks7NjdPYuief4TL6XgVGgbAQdaKgjLMJH6wnJmAw0lpOCsoU0jjyPltn/3NNIjPNjeNnF9uvl4GcE7rMXXif11IwwHTIH7d3NABl7AemuaUS7+LlDknDWcAY5RfO41pTPn8O89ZhtQxdbGnMp6vXTjAzIIyBfU6nOftR5pnU33kIL85xL3dlj/Lj31MkTaw5aenKcwD5x7ff8xnhGn7qGAsTM0J5znGiz3PGcA48dmefhzSs99562UMAD/vnKC8vAYZmYkcHsIfQkaD+PRPKyM/T71n82oaGK0FHzwMDB+BIzH1QFJaBb7sk3Bc/bc5Df7sCwq++5pknHoQO3e7GLjqDTgjvH009FOv77tbqF9bXcsA0f4BuXBsorbP44uQ0E6MMRw53U1e7Rs6R0iZYDSFI6e7iQZwb0070b53DEygtrk/r/3SdAMbDpwhPvSH67vR3D2a13KOB6LYfrSZaOI27D9DfMcbOkdwuL4r/+1AIvfaowmvPruOt6Ghczhf7+BYEFuPNOXrZYxjze6TREtb29xPZArH01i7p55ojLccaiD8dgxMYGd1a16rpuoGVu+sI/7lh0514URTX74dxv1RbDhwJq/VB4B1e+vROThJfPP313Xk+yCZkbFm10miFdx9vBWNXSN5XgY8AWw/2pLnhTGOV/acIrycaOpDTZPVJ8FYChsPNhCt8tbDTegZtrQv7f3jOHSqy9KKazrW7j1FxtWhU11o7R3L03h8Eew+0ZbX9jocjoKwb2c6h3G6fSjPfyItYdvRJuInvbemnfDfO+pHTVN/XsNtmgxbjjQR/87a5n4S9s0fSeLI6W4y5vfUtJFx2N4/jo4BS9shKSr213WQ8X28sY+MhZHJMJq7Lb9BADhwspNouJt7PESTHk1kiMw5fgeIVnZgLEA06YZhora5n2j1W3o8JGydP5wgmnQAaOgcJprnfo+fWExkJIVodgGgc3CStJM3FCe++pxzdA9TzZw3FCfWPLKqk7ExGYwTKwUA2H6M+o41dXswLoyNdFYusDjYV9tO+mNwPEi074yxAr/7k62DRLMYjqdR1zJAyoiWMWfbQPR1VzUd+2rbCc3RM91knI75owTrAQC2HaUyNnSNYDJozd9kWsLRM9QnbfeJNtL+faN+dNusp3ZWtxKa2pYBMpYDkSROtdGNb9sRGlKvtdeDofEQ4C4GLvsY5Bt+jQMfXAvc1Af8y1PA1X8H7m0GDtwMPPUB4In3AXtugrN/L6BZ4y5RQ/35Rs+0IT5pzT0pkUT/MRrqpmPXERiapckNDoxiJv0BUsoLo+ICYpUGFI45l8uJ9v5xMid6RoMIx609IiFpaBuLgwma9A5fKg9QCwCRrIbJpGxpSjkwlpCJP3xM0pFSrBB0usmQVAyioU8rOjRhHdMMBkXQvnMAim7zoTdzj85ny8SzGqpKiwhuGNM1MGb52XPDADcsXsAZmCoRP3uuSmC6SnyIuZoVtLQcXEoS/3goGXAlY9Vr6uCZONGYIRMjvvlQs4CUsL7NGJAMES0zT0dz3zpLo8k533yhXh73EWsBno3l6M5qWE0NPOql9cZ94FmrXi6nwON+KwQaYzk/fEF7zRNBsJRgYaBKYOEJovlkIQ/RvvNUBCwesNrONMACo4QXFh4HEzAAuJQCi3qFPuFg/mFiCcDifrBURGhLGSzooVgIgVGKR3CWF7Hv/UOU//AE8dXnUgpmZJLME9M/RPmPBQj/0FWYwTGi1WehMRI2kKdjxL8fnMMMjFK8h5if+JNzJQMzHiS8GKFxKnMyQsL7cUOHGfVT/mMBKnM2BZa19hYAMCM+SpOMUDwITSEhAR0OB1g6RrT6XJVIO5kRH7Gy4LoGfYLu0/rEALhufYclYzAi1HpAG6F4LEZgjPDP5Cx0L8Ua0ka6SH+YsQDMuHXm5KYJbZTu09rEEPEDZ5kkdP8YKaMOUb9vIzABlhJk1FRoNmwBdaSHtL8ZjxRaSAzSevXJESqjlIE2Sfd/dZCGSjbCPpgJ64zJTQPKEG071dOfk7FkNvCOfwS74Xbo/74N+F4j8Hf35UB5+/cBO78HPHIN8NzHwHb/HEb3fmBq3DFVIVYJAKAMddlkDEMPTpAych8942gTb8xj/x8U5f73SikfUD4fhoNqR6Z7tZs/ZxbR+BS5XagStLYAMLu8FMUCGnSR24XKCgt50Ol0oLy0mCDiFrldBNnZ4XSgrLQ4/9LvcDhQ5HaRb7ucThQLqNgOOOB2UfR2l8uOJp6jO0uTknODZ05FMSkzHYK+OKidwitv/vvTtFcB4r/NaIMxTi5bAIj539kyTDiAcA4YQoxQzjnJ5+u1fVu8oHGeA//J70EAGGf5+LtnNcaqZtA6TNPihXMwxknMXs45VOGAd5bXs5rNs22o6ZRG0w0wxuFyOQrqtXjRSb2abk5pw53gPNeOYr2Mc8iqTr9jGDBMEy6XMyczs9WL3KPD2X7NaU9z7XJ27DFmkxHIm2halggMmm7ktVc5XoSNi+cecM7KDOQuXJphojxfhkNWbPwLMgM5k1FVMzCr3KpXfEzjU2VMZlnAsII+4lB1nfCvT1lSnNVgcw4yFjjnpJ0Aq5/PtlPhWOAF7WQyRqwizsooJvu8ctrzzsJ5VwAoXTCfz/33V/vNnpxTGrv8GmBHC34NdUxXogD72uEk64/D4YDDVsrldBK08NwYMYX8NDLaeHQ4CtvG5XQSixKn0wnG6drigAOovBB4/5eA938JvngaFyTa4R4+CgwdhqN5FdC8CnCVAJd9DLjqb+BSpvFHnmbdLShi03TNpD9ASvnA5l0zrYWQk+yvDiyaX0nKlRS5MLvCsqpwOhyoLCsi47HI5UCJm0YKKREidjgcgMvhgKj4dwBwEUsoRwFwvMOmKXUAKIyXAzKX7PMqLukU4f5sRXht8/v8yWbIWWDYyaf+Oc5T5jzfsNPw11AvY9b6xoV6HBDywhzkU5rkAt4YCHQ9WT84wE3KC7fVi5yWMl8v5wL/Qt6+Hkw9uuQjIE1pF60v57SjhFVylpriw8YvN00iI2cmHJznBl+eFxNAkVUPs9XLzFy9Dpclg72MYdD2z/PizNMU8GLSPRZTVhF59H7OwZlB+8g0QNqfsRwvU1pjDg6H+IiEXB04K7NII8psO6fy6WQ2TXJbIo9VZ+s9O+amquWmCcfZz9in4GuZkw7bnJ+WxrYSFEScwFREAW4rc25eCn6a9tPnr6eQxE5znr+/xnrhcNJ+PjvGyYemW3+mkWHhVcDCq4GP/i+U9lqUlUnA4GFg6DBc7auA9lVAaRVw+aeAZZ8CSi47Z525cX5uK5Y3Kr19TO6f+xgAQP1a9XnNMe3ptZj42E2SpzNjtpuhSrJKwjCZJoOq6cTsOpmWiNn7dObosWQG86pmkfyc2eX5Q8iP1rdgb2cAg/f8Q/5boVgKi+ZV5mniqSzKS4vzbcE5RyiWwuL5VfkywWgSC+fOztebkRQwxomJuj+cwIUL5+TzkXgaVbPK8vwaholYKku+7Q8ncMGCqjxvybSEIreLtIO93lAshflVs/IXOEXVoWg6MbEPRJJYLBy8YskMZpWXkotVOJ4mvIRjKSyYOztPk5VVOADCS+T/Z++tw+Q6rrTxt3tQNGJLlmWZZEjixE6Wvt1v81sKbTbJJlkHN8yJOWZGycwss8i2mCxm1mg0GknDzN09Pc10qap+f1TfunW6J5bXa+8mX1TP4+fxHdU599Spurdv1fuec2IpTJk4jvhu/NhRyi+27SBn2sQvhXOUyuRQWV5G5nGkcIWqgrACAGS9noz+zzmHYdI1VRiiYZg2ystK/kt0bvfgRF/zI1H5ywpCVwr/9n6o/IWhKiNR+YH/OuXug1D5/5ioex9kjt4P5V4/pBlJxrYd+AtCP05my/sJK7BsB6X/xbCC9ztGfTzvZ4wfxBaRDIC1bkVp51agYwdg5tGqiecA538BOP8LELP+FigfTSnTliVL6+RbIeWec44LLrjgFOX+I2qzZ89Ge0sTcN9U4NM/gPmvT7zn2hipnYxODwCMC1J6svBaCAEu8J59RqLcF/Vxw0W0Z1oA70nL/9zjuzCuohQrL/+/SgZCFB8s+XTKfZ4Kqn9svh/KfREF3Ab82jtoJGp5EY22QEbwvF6dhmqRkm2C2YCvRI1JCAE4FnxayS1hm0BpuSYjN17EXtukMo6Vp9xrepkNX2n5e+i1pV/0MRbqtS1SPk5uFEUBbdmi9ymi/48cVlBESfb56VyPQOUn1yOGOLw3/d8dw3+byl9E0//f+/3/Y/5GeF/U+A9EuX8fz+eI1PgPIQzlg1DjP8gYP1CIw0nCCoSACLcAHdvha98CdO8DWJ6Fcfol8hth9uchpl8CX3mlpneksILCkIE/N8p9chCi6gz85HaaiOHRNzaQpHiApFTr5bj21raSJFycC9z+zHJC6X1xyXZC1WvpCeKWJ5cS2unVDy4kyeCWb60hSebSWQPfvv45kljs3hdX4bm3tqoP18P1XfjRbfNIqbjv3vA8lm72Epa9umI3rn14saKJhxI5cNsiCaeueWgRHnx1ndokbjnQgO/d+IKiJdsOw7/97nEsXn9A6X38zY246oGFigrf0hXAv/3ucULR/entL5Okcks3V+M/b35J0cKTmRy+8KtHSKK/O59bgRsfe0f58+DxDvz7VU+hVqPofuPqp/DSkh0K6X952U788u7XVJmx/lAUX/jVw4SGfOUDCzBnnpcccOO+E/jO9c+rMZqWgy//9jHiu4dfW4/rH31L2dLQ3o9/v+opUtruh7e8hJeXeckM31p/EL+59w1Fo46nsvjy7x4jScxufYom29tb20bmUQiBy659hiQbe/6dbbjr+ZWKot4TiODb1z1H6PJXPrAQb284qOxft6sO1z/6FinN9+3rnyP2z31lHUnGeKylF5fPmU9oyb+461WyXhas3YenFm5W1NNIIo1f3P0aCXG487kV2Kb5f8fhZrLGhBD4zX1vErr8i0u2kwSDbb0hMmYAuOPZ5ST0Y83Oo2TOcoaFW55aSsJQnntrK6GbH2nsxoK1tBTM3JfXEor98q01OKKVQAsOJ4ifAFkiUqfY769rw8Fj3kuUc455S3cQpsiaHUcLQhGGyNoAgCWbqgmt90BdOwlFyORMsrYHh2K47emlRMfVDy4kPti0/wTe2nBQXTPG8Yu7aIK+R17fQEolNnQM4OHX15M+v7jrVTKedzZVY8Nej9aWyuRw1QO0/vdtTy/FoLY29te1Y97SHaRP4bv4paU7cFArLdgXjOLOZ5eTPlfMnU/CL9bvOY53NnkJymzbKUrQ98Ar60joxPHWPjz2Jk0097M7XyFMo7fWH8DGfV75nlgyg2seWkRkbnlyCSlzeChQgkXJvwW+/SZwYyfw0w0IXno5UD4WqH4JWPQfwCPnAgu+CVS/DMS6kesfQMfTLxC9i351C8yM99tyKine/0BLBQEIRDChKCnub+57gzKChMDi9QfIelmzvx0dg95674/l8PahXjhan1UnAhhMeGu3I5LB0YGEYoMxARzqiyFteu+B3lgWwaRXKi5nM/TFc7C1d1IolSNl6rKWjUTWUnR/IYBE1iQsM8OyYVoefT6etVBVWUrGZBtZMFtLrmflwAyPPi8Yg5OMgOvU4FQETKO5CyMDFtdoykKARfrAc14yQJ4Mgye0EnRWDnyoiybOC3eBJ8Pe+zs1DDHU5VGZmQ0x0ASR0ejn4S6ISK+nNxMHH2jU9ArwnjrwmEer5uEe8IEmT6+ZBeuoIXp59zFZ/s5N4hcdBOs86tHCmQPWvB887oUlsb5GsP4mRcsXqSicgmR7TtM+sCEvLI8F2sG0ZHuwcrBP7CxOtjfQ6tkfGYDTtN8r7SU47GPbiC1O93FZIs+dx0wc9okdhGJv1++iCe4G2+C01XjIsm3Bqt1MKPZOSzVYoNOzJRaQtmh0c/voVvCkl0iUdZ8gCfpELgX7xE5Smsxu2EMS9LFAJ5wujSItOOyjW0mIg9NeCxbRqNiJIdhtRwjbya7fA6FR7Fl/C9iQ950EKwer6YAXSgHAaTtCxsyH++EMUoq63XyQIPBObxNJ6sfTcTj9LeRbxO44RvzkDPWSsALBHNjdDVSmv5XS8hMRQoVngU7YbR41WwiB3G76e2rV7wePaCFryQjMup2kT27vKjIeu6sBdrdHsReOjeyeVUTGOLINTKPPs/AAzHpa2i6zfQm1pbkGzoCWIDGbQu4A/RbJ7lsLrs9zfzusVi1Bn+BIb6XJAnNHd4ENa2OMDSFXs430SW9fSubZaj8Gq8v73hK2ifSOZdT+AxvIGJ1gD4xj+0if1CYt4Z3PByMQhnPmF4EfrgRu6gL7xuuwZvyzzKK/+xHgtS8AD58LseQnwLF3gMwwrK4mmM1eSKAQHKlN9FskWzCeD9r+NBD6pnpgzjTgL38OfOXx/22TPvJWeEL4jef2IW062PL7f/iDfd4PC+GP6dTzw5L5nxrjqXaqnWp/xi05KEvitW4COncBVv5DfsqFwPmfl6fzs/5WxuyP0E6Vrfvo2uzZs9G+fSHw2heBrz0DfOZH/9smfeRN/40SQuD82zbga5fMwOPfuVT9Dfhofhs/Kr1/yracaqfaqfZn3IQAhtuAts1A2yag5wDAbQA+GYt/wRfld8L0SwD/yDj6n0/ZunzJOj7udNz8BD0VennZTpJQDpBomY6sHzregY0aIuU4DHc/v5IgdfPX7MW6XXXqR6K5K4Dbn1lOErvd+tRSbDngJVZYue0I5r68Vt0rkcri53e+ShC/uS+vxTOLtyiUc39dGy6/fz5BaX982zwsXLdfna6/vGwnbn5yiUIFwykDwdAwNu/37v37hxfjkdfXq1Jr63bV4Tf3vqHYAbbD8M1rnsH8NXsVQvnQa+/i5ieXKOStrqUX37/pBTKmn97xCh57c4NCWBes3Y/L75+vUMBoIoOvX/UkQThufXoZ7nxuhUKIdx5uxk9uf5kg/9+67lk8//Y2hXA/99ZWXPfIYoX2dg2Ei8rJXfXAQjz06rvKv6t31OK393ljNC0Hl/3+WSx617PlodfeJbYcberBT29/mTArfnXP63hpyQ6FqC5Yu5+UIhuOpfD9m17AJg3hu/O5FXh8/kbll52Hm3DVAwuK5lFnLry0ZAfmvrxWoe0dfUP49T2vE7T95ieWYP6afWqO1u2qwx3PLleJznKGhV/e/RpB259etBkvL9up7D/a3IObn1hCEOEbHn2boO1LN1fjmcVbFFI1HEvh9w8vJokgH3tzA3kG9h1txaNvbFBrTAiBGx97m6ClC9ftx7Ith5VMZ/8Q5r68lrBfHnl9Peo01sq2gw1kznKGhXtfXEWetflr9qL6hHdyXt/ej9dX7iZo+2NvFpfD0+c5HE2SeXb16n460tBFmDkuQk+TYdaRsoG9gQhZGwDw9oaDhBV06HgH2rXEc9mcSXwLyESLGY3J0NYTIutpd00L1u70TugZ47j5yfd+/7X1hIqQ9FueWkoQ+nW76gjDIJXJFZW6e+zNDYSVUNvYTdgCgCzfp7fF6w+QtR0Ix/H4fIpO3/PCKjLmHdVNJCGfbTu49SnKXHhpyQ7iy5buAF5ZvpP0ufnJJWRtrN5RS94/iVSWlrqDXJf6+qlp6MI7Gw+NPMaqGcBnfoTV5z2Ilh/WAT9eC/zdleDwAQeeBeZ/DXj4XOCdH4BtngsR99Cx0C6KbJxqH0HLfyOE7LF4dvEW8k93PLu8CKF/c/Ue8kxsrB1AY19cXQeTBpbU9sPSEtxtbR1CX9z7ruiN53A8kFQJ7hwucGwwgaSWU2QwkUMwpSH0FkMgkSN6wykDadND2zOmLFvn6uVcIJWjCL1pOyqnSNp04HCBqsoSgtA7RQi9AcfIeignZ3DScYrQp2Ng2aSHXpsZsOSwl6xLcPDYIHhWQ+hTYbDEkIcCWjmwSD+4oSWrG+7JI/R5vakIeKTfQyiZDR5sh0hHPbQ30gsRHfD0ZmLgwTYIw/tu4wON4PGgJtMHHurw9JoZ8L56iLT3zuf9jeDhHq+cXCwA1t8I4drLHbCOIySJHB9sARtslVR7ACIdhdN5FCIT9/zdXgOul8MLdcHpbVC2CDMLp/UQQW6d7uNgwQ41Jzw6KPXmWQiCc9hN+8Gj3u+C098sUXE3MVc6Bqe1GiLrMfSc1mrKFgh1w+k+7pXDs03YjfsoW6D7BFigwxtzPASn/QhBke2mgjKBA61wtHJ+IpeG3XKIoO12ey2YVs6PDffD6an3/M8Z7OYDBG13ehsJw4CnonA6j1GkufUwQdtZqBss5DH0hG3CbquhZRm7T5Ax83gIzkAbRc7bjhC0nQ22g2sl9HguBaevmcg4PQ0UbY8MEFaCYEz20WTYYDtNdpiOgWnzDEAyAfSEdsP93joFYHfWkfngmTjsFlqS06zbRhkHg+1wAt63lXBsmHXbiYzVfIj6NhaE3VFH+hg1m8i13V0PFtaS+BoZmCf2kD5m3U4yZifUA7tHYwsIDuMw1Wu1HiEJ7ngqCquJ/k4bhzeTpIp2XwthXgjbgnGElhY0T+yjY4wEYGmMCADIHdpAbWk/BmdIG2MuDaNuVz72/gLg766AcfE1ENc2A99ZBHzmRxDxXmDHHGDePwKPXQix8rcwV90FGN69zUY6ng/cxB95O++884To3C3EXVVC1L0lWroD5N97AxGRMyzyN9OyyXU6awjGmLrmnIvhWIr0CYTjpE8qkxPhaJL0ae0Okj79oaiIJTPq2nGYON7aJzjn6m8N7f0inTXU9VAkIdp6gkTvoePtxObmrkExEIqq60/dvUlc9sxOcu/D9Z3k3j2Dw6KxY0Ddm3MudlQ3Et/UNfeIfk1vNJEWB4+1C8fx9O450kL0tnYHRVPnoNJr247YdrBBGKant/pEhxgciqnrwaGYqKnvJPbuqG4UqUxOXZ9o6xMdfSF1nc4aYs+RFmHbjvrbgbo2Mk9dA2FR395/0jHqvovEU+JIQxexZf/RNmJLW09QdPYPqWvLssX+o23EltqmbuKXQDguWroDZK4PHqPz2NIdEEORhLpOZXJF6+Noc4/I5kx13ReMEPsZY+Jocw+xv6U7QOyPJtKieyAs9Fbf3k/mtTcQEXHNftOyi9Zhe29IWJr94WhSROKe/znnor03ROzvC0bImNNZg4zZvbcuE44myZw5DhPB4TiRCQ7HiUwynRUZ7TkSQhTdJ5pIEz+Zlk2ePSEEmUMh5JzofuKcE9+6Y9KbYVpERghB5tDtozfHYWQ9CSGIr4UQRf8eS2aKxlj4/usZHCb3MkxL9AwOv6fMUCRR5IfCPu29oaL3of6MjyQzEIoSX9m2Q57xkWSiiXTRe7awT/dAmKyxbM4UvYHIe8qEIgmy3jnnReu9rYe+z5PprAiE6Tos1BuIZUXW9GzhnAtjqFOIQ/OEWPgtIe6bJn+r7qoS4oW/F2LbfcJq2CZ/x061j6Sdd955Qux7Woi7qoQ9WH/SNSfECN8IOXpt2I7IWvR5jGfpM521HGEVvjsMu6gPY957zGZcmDZ9dxi2Q951tsOEo8lwzoXt0D4OY+q6N5IRZ920Tjy1pYX8NjLHJjLMsQUn30FMMNukfSyD9rEtwbU+nHPBjIzgXOtjZgV3PN9wxxbczBC9PJcSnDmaTE5wy3tXcMYEzyao3lyK6rUMwY00sYWnY1RvLiW45b2/uWMLnqG/JTwdo3qNjOC5tOYXLnhymNqSjlN7LUPwTIL6LhmhtmSTgptZYgtL0d9Cloqe1BaWoLawTEJw2/u94bYpWIb+TrBUhM5jLiW4qfmFMXlv3ZZ0vHiODPo7wVIx6stsSnBHex86FrFf2avLmFnBbW3MnAuWpb8BPJem/rdN4n+3D7k2s3TMzCFjFkIIbmTptW2SMUs9BTKWQe137GIZ2yy4tqgM58RPrh56TZ9xdwz0mr475FrQnz1HsFSM9knQ7wFuZIr8UNiHpaIF74ER1liCfnOybJI+I5wJlqS/0068wBYzJ1g2VdCnQG8qXjBGu2iMRTK5dNEYi/okCp4RyxQsnXhvmUyi4L3lCCdROMYwfV5zGcG6Dwmx+1EhXv2iEHdPkN8H90wS4vV/E2LvU4J1VX8o3wh/Ugg9qmYQdAcApk2uKuoeS2bISVjOsJDOUrmhaJL0SWUM0sdhHKGCPrFkmmQkzxkWQfk55xiOpUiJq1TGICXHLIchHE0RNCkSz5C40qxhIZKQY+BcIJmzUQpOUIZ4KktQUNNyEImnlV4hBCLxDLKGN6ZMzkQ04fnGcRiG49TeeCqLVMazJWdaiCUyKp6PC4FIgvohnTWR1BgRlu0glsqSTPixZJbMXc6wEE96ZWw454gk0sSWZMYgfjEtG/FkRostFIgmMjA0NDWbs5DU7HcYRzSZIbYkMzmCphqWjWRaLz8kEE2mCSKSyZrEFtthiBess0Q6R5DdrGEhpclwLoj9Uq9B7Ldsh8gAQDyZIesla1jEfsY4Epr9AJDOGBTRsWxkNRkhBBkzINeHLuMwjkxOK08E6TtdxjDtgsz+AumCZzSTM8mYbYcRGZ8PSKbpmHOmTcbMuCB+cv2g22JaDplnIQSJ5QfkutNlZKZ8VtRHb4aGngFyHvV1CoBkyndt0WVG7FNwbTuMIGwTxo3G2NGVpM+s6ZOpbZZNxswYL/JT4TvTchhhLQghisacMy3if4fxInsL9Zq2U1ClglZwAEb2f6EvC/Ualk30FlZjGNEWyyFr+Q/p1delk09q+l4y2XQKttbHdhjak+XAX/8S+M8lwE1d6P/X+RB/9UvAiAO7H0HZkm/gVPuIW76srT16elHVk5mnTSxal7FklvRJmw4pHccFkDIKnlfGSUw9EwJWQbUXm3FSJUYIAUbeA/KavE+EgN5FqL/pfehwhfbv8axcj+NHlRX1oX+QCJj6u0BxxvWRsqUXZWUvyMIuhMo0T2W0+7uZw/X7aCX1RtILzkbOuk7sPZnevEyR3kIZp8D+EfqQ+wiAF2Y6d4plCn5bwE5mi1AZ4Ine9/KLEECRzEj2FtpSYL+bad77Q7H9hbYIXqDXp1gMxN73YYtuvyicM4EiGTHi+tHt940wRyPIjFB14D2v8/bS68J1WbD+35deQcf8PmR8lWMJhdtXUgLfqLHvKVPsJ4zgp/ezfk6iV6DITz5esE6L3jeAb8RnXJcZ4dkbqepA0bgL13uhXi7/RvQWruXC9eIboY8DPdO9DwKYehHw2euAn20EbugA/9JjwMX/AYQagC13wP/G5/BhtD+pDT0fN4MkHQPkB1dTF601feh4J6IJj5bSG4hgf51Hq+FcYN2uOgxqCZFqGruwq8aj0QxFk1izo5bQTjfuO4E9R7xkGE2dg1i1vVZRhXOmjeVbDqP6hJcYYk9tK1Zvr1Ufhv3BKFZsrUF9u0fbWLX9CN7dfUx9dNQ19WDZ5mr0BCKyhi2A/oEh7NTs23qgAcu2HFaHBe29ISzbfBhHmyXl1WEcy7ZUY82Oo+qD+cCxdizdXK3ow4HhBJZtPozt1Y1K79p8wjL3sKC+vR9LNh1SiQfTWQPLNh/G2p1Hlb07Djfh7Q2HFJW5ZzCCdzYeIokIl20+jGWbD6sN1pHGbizZVK0oxsPxNJZsrMaGvSeULZv2HcfbG7x69q3dQbyz8RCONEpalWUzLN1cjdXbj6gNyr66Nry94aCyZWAohiUbDxH67eodtVi25bDaxBxr6cNbGw6q2typjIElm6qx+UC9smV7dSPe2XhI+aWrP4y3NxzCcS1x2zsbD2Htrjq1Eaqp78TbGw4p+nw4lsI7Gw+R9bF+z3Gs2ubZ39wVwOJ3D6h69oZpY8mmauzR7N97pIXY3z8Uw9sbDhL6/MptR7DtkEfxqmvpxZJN1epQIpnO4e0NB9Go0ee3HWzAxn2e/zv7h/D2hoMq8ZwQAu9sPIRjLR4Vrrq+E+t2H1NjHoom8db6gyRB37u761CjJatr7BjAqu1H1PoxTBtvbzxIkrDtrmkhtcb7Q/K50Td/y7fWqDAJAKhr7iFrLpnOYflWmiBzy4EGdPZ79K2u/jB2VGtJfYTA8q01ZCN36EQHobWHYylsOUDpcxv2HicJ7Zq7BkmyOtOysUnzLSCTdeqHfQNDMbKeAGDrwQayyT/W0ktCEw4e6yDvqMBwgoT8AJJir29oGtoHSB36TM7ElgMNRGZ3TQtimm09g8MkySUArCqoQ1/b2IMebT4iiQyZD0CGGejz0dodJGvQth28u+sYkTlQ144h7eB0cChOniFAvrf0A4j6tn7yPKQyBrYdorV2d1Q3IaHNWffAMAkNAYDV22vJdU1DNwnZGI6lsP+oFw6DslHYan0S5hceAq4+DvzuEKx/vhun2kfckgNARRWipp+E3QDAYDhOfusBYPuhRnJ40zKYRFvQe67SpoOavhhyWnnKzkgGwZT3XkgaDklwxwUQSpskKV7aZIjnbLXJd5iQdee1tZqzGHJa3XmHyTr0XulVedBra3XnGeNwmNycxLLyeRpfWUIPARwH3PH0cuaA25b3AS04uG1AaHXnuWWAmzkv4Zpbh96lIAsBbqQhDO0w28qBG2nvg5k5sra7Vnde5JKyprxLs7ZyMlGdnT/I5Qw8E4PQqPwil5T1690PZtuASEcAvb56KiL7uGMyUhCpYcDJz5NjQSTDsua9qzcdgUh6IQLCzEAkQoCbbI8ziHgQQqv1LjJRWateS3DHYwEg6717RSwg5Vz6eSYBHu33ku05Nnh0QI7BlUkMyb+5fjFS4MO9gEurFgJ8uB8i7tVgF6lhSe1X9HlDhhBotvBIP3h0ULM/IfuoEAcHbKgbQqefx4Lgw32EPs9CnZQWHuqW/nSvk8PgQ90e3dk2wIOdJEGfa7+6zsTBgp0eDVxwSfXXEgyKWBA8MuDZb2ZkH72GfKiLhDzwVISEPIDZktauUeF5pJ+MWeRS0g+FVHgtqR+PD0FotHZYBlioy1tzgNShhRmIdAwi7v3+gDM5Zu23nEcGiZ+EkZZrSms8pPkWkGtS8xOYDa4lDwQAPjxAKPbE15CUdZ7S1iBzwAL095SF+7x1C+knHqWhzc5gG7nm8SEIjcIO2wALdVO9oW5An48CPwkh4AzQ93exnzKE2g/IpI96UjyRDNMxOjaYFmYAQIak6GPMJkloCwA4fbTGPI8FCU1fWDmaiBEymSG0kA2eioLrYxw1Ec6Y84FvzgNuaAd+vgXskz/Eh9H+NJLiPfk1oOZV4LYgUDbq5EIfQhPi5IlRCstvuR/e+t/eTzm8wnJhepmmruEM/unRnbjxixfgd/90vupTWIonZ1iorCgjiXIM08aoSi9J00jlzspKS0j5qsI+mZyJ0VppPidf+1u/dyZnYowmkzMsVJSXEj8U6i28tmwHfp+P+Kqwz0hjNC3nPUtRmZYco25LYRmswmuW/3A6WUm3wnk8WUk3x5G15d+rXGJhiTcXiSlcZ+91PdLfCtfu+1nfH7TPqXaqnWq0nUqK99G12bNno/2mWYCVAS7/kGIR30cb6V0I/M8noltdN4Cr367Dgp//NT57/tT/ki3FfQpLinEAPvKbC7x3XeVCGQDFpcuKSpmNoHcEGVp2TwCCF5VNKyyR9j9hyx+690n9MkKf/6mSbh+V3j/WMnCn2qn2x9z+jJLiDQKjJ4OXVOBb1z1L/ikUSZByUADwzOItBO3bsOc4Xl+5W224HYfhezc+TxIt3fPCKsxb6pVVq2vpxTeveVqVawOAr13xBOav2av0zFu2Ez+85SV1r1TGwCe/eRtW76hVL8xf3fM6rnlwkULidh9pwV9/7x6CGP/Vd+/G3Je98mwPv74eX/7tY2jqHEQ8f/r+4LxVeHP1HnXvb1/3LH5+56sqqdOanUdx6WV3qERotsPwsa/djHteWKUQsVufWoYv/foRhRw2dQ3inC9dR/T+yy8ewq/ufk0hrG+s2oO//M5d2FUjT6pSWQPnfOk6Us7s1/e8jn+/8knlzz21rbjg324ipck+8+07cd0jixXC/fDr6/H//XiOKjM2GI5j1uevxYtLtqs5+I9rn8GPb5unSkut2HYEl152h5pv03Jw0Vdvwpx5a5TvbnjsbXz9Ks+W4619uPAr1JZ/+Mlc3PDo2wpRfXHJDvzzzx5U6Fw8lcXsL9+A11Z4a+Ynt7+MX2p+2XKwAX/zfTqPl37rDjwxf6NC2+95cRW+d+PzCm3vHAjjU/9xO0mo9vWrn8K9L3pztOjd/fjaFU+o0nyGaeOSy+4gieeueWgRbnr8HZUs8MCxdnz+lw+TMm9f+NUjmL9mn7L/yQWbcPn981UpxKFoEn//o/txuN47mf3FXa8R/6/dWUfWmBACn//lwwR1ve+l1XhcG3NDxwAZs+s7PaHjgrX7yJxlcia+dd2z5Fm787kVWLPDS5C4t7YVdzy7nCDnv77ndVIO79UVu7BkkzfPA0Mx4idAlpHU/bR5fz0ph8cYx81PLCHI+asrdpFkb02dg2RtADKJnB5+s2HPcZLUL5XJEd8CwKJ3Dyj2BiDfOYXo4vw1ewm6vvVgA3m3BYcT2Hm4icis21VHmAzfuu5ZouONVXuweoeHPKcyOfz4tnlExxVz5pOShrtqmvHkApqs5htXP02uH3tzA3ke+oJRXP3gQtLnh7e8REJXVmytwfw1XqkY23bw7eueIzK3PrUUjRrboa6lF3c/v5L0uez3zxDfvrJ8J97dXaeu46ksflpQZu+3971B2A3bDzUWJVQrHONDr75LGBBdA2H8/uHFpM8Pbn6RhHos3UyTFJ1qH0FLDgJVZ6Cjbwg3PEqTNR5t7iFsGSEEHlm8BxmNKbKspg+HOj1EZzBhYGFNH0HbN7SE0Bn1mH/dsRxqBxIKbecCqB1IKMTc1RNIGiq0w7AZ+qIZGBryH0rmkMx5oSgZy0YsY6hQGiGAeMaAqaH4hmXBMC1wIZDIyffomBIBppduymXgWB76zswcrEwS3EXrOIOdjICZXhiVk4rCScc0xDgLJxYEV2XUBJxwH1g6phBKlhyGEx3U0GsDLNQJrpW/Y+EusHjA05seBgu2eyXomCOT1Wml7Xi4G0wvbZdLgPc3EiRa9NVLFNzVG+0DH2yGsLLKFtFdC6HpFf314KF2L8FdIgjWfVQyAvJ+4R2HJXLuygRa5L1ddDEbB28/KBkC+cY7qsGHOj1bhrrAOms95NY2wRp302R7nUfBBpo9tkAsAKflgJbgToA17Moj53mZvgawbq1MWjYBp34nSfbGmvfJZHv5OeKhLjjtNR7yzGw4x7eBJ7QyaR21YANeEjYRD8Ju2keSsDn1O8C1BHe8r1GW0HPXlJGGXb+LJOhjrQcLkgV2w+mo9RgGnME6vh087f3eOF3HJLLsjjk5LJPt6Qn6GvfREnqDbaQEoLAM2I17CdrudNQStJRHBuH0NtJyeE37aQm9/maSrI5nk6RsIAA4nXXETyzcCzbsfWcI5sDpOErQdqe/BTyrheymIkVor9NTT9H2cG8xQqz5CUAxkyERJr4VQpDyhII5sI7Q5LVWw15a3i8WhN1WQ/qY1WuprZ3HwIY8hpsws7DqaCI6q3YzmQ8W6oLT7X0PCyFgVq8jMnbTATpnqQjshoJke9VrqW97G8E0pF84NqzDtISedWwHuL5Oh/tht9ADYXM//c6w22rIGHkuDauWfjOYh9eTdeoMtsPp0sfIYR5YTW2pp+P5oO1PA6G/frq8+M3eEdHIk7WRThELUc9CdNWyHZSW+N8TZU5nDYwZVaF0M8aRMy0S9xpLZjCxaoy6TmVyKC8rJYjwUDSJ0yZ5uQDC0SQmjR+LkhI/djQP4advHMaj3/wELvvrs1WfwaEYTp86Qd07Ek9jdGW5QuSFEBgYimHmtElEZtrk8QoBTmVysB2GSeO9mJveQARnTp+k9IYiCYwfO1qh3o7DEIomccZpE5VMXzCKM06boHwVS2ZQ4vejaqzHpugZHMZZM6ao60A4jikTxiqfyzwHBqZqfugPRXHGaROVLcOxFEZXlqs5EEJgMBwntgTCcZw2qYqMUQgQWwaHYpihyQzHUhg/dpSyxbYdJDMGJk/w/BKKJHDapCplSyKVRWVFGZnHcDRJ7I/E05g0foySMUwbnHOyhgrXRzKdw5hRFcp+zjnSWZPYn0znyHXOsFBWWkKQ/nTWIOuwkGlh2w4EQFgHOcMijA7DtFFRXkoQEct2yJg/DObCSMyWQqbC/xQL4f9FNOH9jOmjYmf8T6E+f0y2jLRWTyH0H12bPXs22n8wDHz6B8C/P/uhfCNwIeAvmGfGBUr8vj94LYQAF3jPPlwI+ICC9SLg99Nrnw/kvSsAYo+u56mtbXhiayv23PhPOHPSaCUDId4Hwl3QhzHA77HIBGd5Gb8nwxl8JaWajAP4S6gMQJFzxwZKtN8SZudlXL08r7dMk7GAEo2RxxxpS16vEAJgNnxaqcgimXwsNrHXNoFS77dQOHlb/P730GsCJeV/0Ba3j6+0QrsutEXGCxNbHIvep8gvMj7eV/oefuEMgI/Oo2NTGWYDfv23nANcwFei2c+c95zXEftwVsSQgA8F7IbiPkWMiBHW6nuxHUb62/8mC+FPvf2p/+b+v/Bdcf755/8ZIfRVMyGEwBur9pJ/iqey2FvrncoBEh3TEcITbf14d7cXR8q5wItLdpAYy/V7j+Pd3R6yNRiO47m3t6myaoBE5Dfvr1d6Dh7vwLylOxViljMtPPDKOhJnv3RTNRas3aeQ0fa+ITz8+noV6w4ATyzYhJXbjij0ccfhZjyzeAs6+obUaf/qLYew9WCDuveba/bijVV7FMJX396Ph157FzUNXRBCwHEYHnxlHVZo8cDr9xxTet0x3v/SGmw/1Kj0vrBkO+av2auQ6IPHO/DIG17ZsaxhYc68NViz46hClZdursYL72xX8cztvSHMfWUt9h1tVZu1x+dvxFsbDirkc3t1E55cuFnF0MeSGdz30mps3l+v5uCNVXvx+so9CiE+3tqHR97YgNrGbgghYOfHuHpHrULE1u2qw4tLPFv6QzHMfWUt9te1KVteWLId72w8pBD6/XXteHrxFoWKZwwLc1+mflmSn0c3frmtN4RH39hA0N7H5m/Ehj3HFXNh68EGvLJ8l2IYDMdTeFCbIwB4PY+WuvYfbe4h9tsOw6NvbsCBunZl/+odtaQ0Y08gQuYVkKyDXTXNCrXcW9uKxeu9ePiMYeHJBZtICbp3Nso15qLtTZ2DeHP1XhIP/+xbW1U+BUAi3PqYh2IpvLJ8F0E+F717QM0ZIPMn6OvHshnmLdtJEOF3dx9D9QmvhE5nfxjLt9DY9oXrDqBHKye3v66NzHMincM7Gw8RhH7drjrCBGjqHMTumhaSTHLJpmqC0O+tbSUx9IFwnKwNANi497h6xgH5ztF9a5g2thyoJ8no9te1EVS/NxAh6wmQyLiOtp9o6yeofiKVLYr7PtLQReKDewMRMh+ccxxt8koa5QwLi96lpdX0/ByALIfnsnTc9uqKXeR6+6FGsgZjyQyWb6Wn+gvX7Se21bX0kvwKjsPwxip6Wv3u7mPqGQLkQd/GvbRs4Osr9xDGxIG6dpKnJJszsXg9Lbu3ZFM1SSza0h3AniOUIVE4xm2HGslvQiSexsqCXAIL1+0n86yzO061j6BxB4AAxs9EOJrE2oI8O539Q0UI/drqHiQ0JL22L44Tgx6inDIdHO6NEYS+bThNStAlDBt9ca8EnQAQSBpImR6SnjRsxHO2V9qOccRzFknAlzIs5LQkmjZjyFkOGPf0mpYN2/ESejmOUxRDP67cB64lp3NsC8zxEnpyZoPZpodkcQ5mZMBJabssuKXH0Ftg2RS44/YR4Jk4uJHx0F8zA55LerHuzAFPR0kMPc/EZBy9i16bWVmiTsXQc/BkGDyXUnpFNi5j1/UY+sSQjHl30cVECCIT9/TmkjI+XiuHJ+IB+XdXJhUG0hEP+TQzQCLoxdMKDhEblHrdOOlUFEiEPFTcNiCi/RBGytMbHYRIDXv+zcYhYgPaGB2IYRnrrmTiQfBESEO4MxCRPg0hFuDhbulPVfJvOB/P7/rFhBjqImXfRKRPsh3ceczEpV7XL5xDDHVSW2IB8HjIs9/MgIe7aTz5UJeMe1b+D8tYfdd+ZsnYdj2efLgfPBXxZDJxsOE+b16FAA/RuHvpF49VATMrY5712OShHhp3n4pI+905Y46M79fQUhEdoHHeuRR4LEDQXR7uIWMWBQg3bBMsMkBk2HB/QQm6OHhKK8HIueyjMWh4PET9ZGTAtbwNAKhvkY8518tBOraMXddlEmGC0ItcmvpJiCIZkUkQGTgWQa95NlUUq88GaH4cHg2AazkNhGOBB2lsPg8WsAdSUZJfQQgB1l+gd7iPrm0zCx6mv6k6swTIx/PrMfScgRfG/Ac76drOJIrH2EfZjywyQMdom+BBGpvPB1vpnCUjBWPkRXr50IfzjVB68i7/200A2YisAwxg2pQq8q8VZaW48Ozp5LTjjGkTMV3Lfj9uTCUuOOt0hQr6fMBZMybj9CnjVZ/J48di8oSxCm2sKCvFmdMnEeR8+pTxOGvGZKWnakwlZp0+WSHcpSUlmDltIs48fbKyZ9KEsZgyYSzG5dHSURXlmHnaRJw+ZYLSe/qU8TjjtAkYlUfBx+fR18kTxiKW32SeMXksZkydoFDLqRPHYfqUCUrv6MpyzJg6AdMmj4fP54Pf78fpUydg+pTxqMwjquPzWbMnVslT/IryMpw+dQKmTfFQ+2mTqqTeMdKGcaMrMX3yeEzJo9UlJX5MnzIe0yZXKV9NqhqDsWMqld2VFeWYPnk8pk6qUkjJtMnjcdrEcWqMVWMqwSZXKVtKS0swbfJ4TJ00DmV5/06eMAZTJ41TSPOYURWYPnk8Jk8YC5/PB19+Tk6bWKVQ4/HjRsPn8xD5ivJSIuP6burEcYp1MG5MJU6bVIXx40bl59GP6VMmYPKEscovE6vGYPL4sRidR7ArK8owfcp4TBrvoevTJlVhysSxyv7xY0ehsqIMY0fLU/uy0hJMnzyeoPaTx4/BFG3djRlVgamTqjBujByz3+fDtElVmDTBk3Gzn7tjrigvxWmTx6NqjIfIT504FpPGj1XIz9jRkkkyqkLaX+L3YdrkKkwYN1rJTBwvx+iOubKiDFMnjSOMgmmTxxNGQdWYURhVWYbS/El/WWkJTptchTGjPNRh8oSxmKiNeVRlOaZO9ObZ7/dh2uTxJA/DhHGjMbHKm7OK8jKcNmkcyjVkf+rEcYSFMGZ0JSrLPeSixO/DaZOqCKNg0vgx6plxbZk0YYzyk88n/VKpyYwbU4mqMR4jorysFFMmjiMMgskTxirfAsCYUeVEh9/vK5KZMG40YURUVpQRpM7VW6rJjBtTqdYgIJ+bSdp8AMCEqjFqPtwxjtLySrh+cP1UVlqCqRPHkX+fMoH6evSocowfO5r0ma69w9R4tPuUlZao94bbTptUhRINeRk3upIcWJSU+DFNey8DwMSq0SQvRmV5mXpvuG3alCqCylaNG0X8NPIYxxJ2yZhRFagaR3O0FI5x4rjRZF7Ly0owZQLVqzN5ABRVKjjVPuTmJmOrmoGK8jJMHEefh6oxozB9sremfD4fzpk2DlVaVvjxo8owabSHwJb5fZg4uhyjyrRnoLwE4yo8lLPU78OoshKUlnhzXV7qR4WWJ6XU70OJ3wf3sfb5fCj1+8kzUOL3ExRf/n57yKJP/c1D130a0p7I2Sgv8WFM3jafz6cQIIpq5mXctemDREH1LNk+v0RTVR957fP5lV74S4CSEriZnH0+v+zv3svng89fCvi9Z8vnL5HXrl5/CeDqcmVKSvPor9fH5y/V9PqBklKFNAshgJIy+bd8H5+/BMLn1/T6pU4N+ff5S4kM/H757wpF9kmmgG5LSYn8d11vaTlBylFaJvUovaVACcgYkZfxJr9M3ovYUp6/d96W0vI8c8Hn6fVp8+bzAWUVQKn2OV9aLu1z14u/FKK0YkRbdPuljGtLiWQcaL8lvrIK+Eo1GddOvzdHvrIKzX7NFjXmEtnH59oCaX+BX1DmfQ/Al5fxU1vIfUpK8/+uHjb4yiqJDErL5Ty5ze8HSiu8MSu9ukwZtd/ny9vvK5DR1ntJCQDvXSH7VBIZ6X/N/ry/CbpbVkltKymlMj4fUK75ydWrj7mkhOgAUCTjKy0l7wG1vvX7lhXIlNPfYJSVE/YGfH6gvOC3r6yS3qeEfpf4fD74KuhvcNE8+0ukLwttKfStfu3zFdtSTteGr6RUyul6K+gYfaXl8v2hbPHLMRG9owpsKdOT3st3acEYC337gZv4I2/nnTNL1uzb/agQoriOdGHdRiGKa0CnMrn3VYdery2dyuSK+hTWLe4PRUmtY9t2xIk2Wme8qXOQ1M8eiiRIzXMhhKip7yQ1qVu7gyKUrz/92KZmcdZN68SWw63k3kcaukQy7dVZ7AtGRGu3V2eZcy72HGkh9XaPt/aRet/RRFocaegi9h6oozXa23tDxF7bdsTummZSM/tIQxepJR0Ix4vqre+tbSG1xxs7BkS/Vm89kzXEoePtZIw19Z1kjD2Dw6SWNOdc7DvaSmw50dZH5i2aSBfZcri+k9jS2T9Eamxbli1q6juJzPHWPlJjOzgcL6r9XtvUTdZQe2+IrI901iiqidzQ3k/mfiAUJb5kjIn69n5iS3tviKzxWDJTVD+7tTtIZPpDUbIOTcsuquXdMzhM/B+Jp8ha4JyLviCVKXxuMlmDjFkIUVRjPppIkzljjJF69+69dfvTWaOodnThfRKpLJGxLJvMs6tHb9kcrcPMOS+SKXyfWJZN/CREcV3rwhrzjLEimcJa9oX/PtLfiurUjvD+O1mfkWRO1izLLvJd4bs4nTXIvApRPEeFMoZpiWzOfM8+yXSW+MFxGHkvjCSTzZlFc1LYp9A2y7LJMzKSTCqT+0BjPFWH/qNr5505XX4jtG0VnHORSBXUmh5h/ZsFc5i1aA1oy2HCLHg+C/uYI9SLNwr0mjYTjNSP58Iu0Gs5jOh1GCO162Ud+uI+7vWPXzsk/vL+LUXfOKygrjVznBHq0NN62bIuvdbHsWmdcc4FM3P0nWkZtH45c4pqdzMzW1xXXK+/zpmsj11Yr1zX61gFda55vi69ptfMUb3MKdZrpAvqTxu0rjvnsm77yWwprFeeS1FbrEJbWN7e97DFNkewJX0SW2zBrcJ665niOSLzyAQ3syPI6LZYpP63e29ybeWoDHOKa7IXrpeC2u+c8+Ia8x9K7Xc2Qq33gvE4dvH74WT14hkrlimqF19wzXlRDfmiaz6CXn7y3/8P8nv/UXwjyDkqsLdwjqyCa+YU+7ewj23RNcZ58boslHGc4jko0lvw7cdY8foo0msVj7Gwz/saY8F6tz+cb4Q/fsq9S2upOgOMcVz3yFvkn4PDCSxct5/QR55YsIlQ7PbXteOh195VSbgY4/j1va+ThGCvr9qNOS+vUdTnzv4wfnzbPJW0DQBuemIJHn1jg6KMbthzDD+94xV1r1TWwA9veQkvacn1nlywCb+bM19RqI+19uE71z+H5VtqlM2/ue9N3PTEEkXZXbLpEP7zphext7YVsXyN2d/c9TIefn29uve9L63Gz+98TSUF21vbiu/c8JxK8GXZDn52xyu47pG3FK33tRW78L0bXsDuGklp6eoP49vXPYeHXntX6b3hsXfwi7teU/TzDXuO4bJrn8E7Gw9BCIFEOocf3vISbnriHUXffmLBJvzg5hdVErC65h586/fP4Nm3tipa8q/ueR2/ve8NFQrxzsZD+PZ1z2L9nmMAZLmtb1/3HO55YZWiVd/1/Er8+LaXVUKs3Uda8K3rnlXzbZg2fnzrPFz/6NvKd/OW7sD3b3oBh45LW1q7g0W2XPvQYlwx10v6tWbHUXzn+uew5YBM3BZLZfG9G1+giQpfexc/u+MV5Zeahi5c9vtnyTz+9PZXcNszyxSVf/6avfjRrfMURb0vGMVl1z6DN1Z59OBbn16G6x59S1H5tx5sxH/e/KJKvJUzbfzg5hfx/NvblP3PvbUVV8xdoEI9GjsG8J3rn8N2rSzXFXPn4+HXvPWycmsNfn3vG6pkYTSRwXdveI6UgZz78lrc++Jq9QwcPN6Bn97xilpjQgj8+NZ5JPHcG6v3kDH3BCL48W3zCC3/pieWkGSSm/adwA2PeXOWNSz85LaXCfX6qYWb8cryXeo5OtHah2seWkTo5lc9uJAkkVu6uRrPLN6i/BRJZHDF3Pkkidzcl9diR7VHd9p7tBWPvrFBocScC1z78CJSDu+1lbtJIsOO/jAeeGWdWhsAMGfeGkLl37D3BNbu9JL6ZQ0L9720hiRLe3n5TkLlP9rUQ9YTADw+fxMJGVi9o5YkiAuE43h7w0Eis2DtfkIlP3S8g8wH5wKL3j1AKOob9x5XzzMgaco6VfxwQxcWrdsPvV3z0CJyvWDtPjKHfcEoHnljA+lz+9PLSNjE1oMNhCJt2w5ueIwmNXv2ra1o7fEoa42dg5i3bCfpc90jb5HxrNh2hIQIxFNZ3PXcCiIz9+W1KpwHkOv9rQ2Ull84xjdX7yXhUt2Dw3h8Pk0odOtTS8k8b9pXj1PtI2wKoT8DXQPhovmoPtGpfvPc9uT6ZgxrJeh2tw9jd4dHC06ZDja1DCGe857x44EkOqMejTyatdAcTqkEd1wAPdEsolmPwh7PWRhKGap+vc0YhlI5ZC2PlZLImkgZXmk702ZI5kzY+feYEEDWMElSPNt2YFoyJ0ssa2PCqDLYlgWmlalzzFw+KV6eGm9bsI0MuEpGxuFkU7JMnUu5z6XhZBKKMsptE046CubS54UAS0Uk9Tf/bcZyKbBEWCXOE44FJz5Ek+Ilh8E0KrAw0mDRgCyBl4/LZ7FB8NSwos7y1LBMTOfqNbNgkd48/TxP5Y/0Sfq5m1QuHZGUaZe+7VjgQ12Shu/6IToIEelVVGyRS4KHOvIUe2mLGOqUdHmXyh8Pyr+5tHwzCxFso8n2hjolpd6lkqeGZR8jT3dmFsRgMxAPeDKRXoihDhmjDxlmwAeaZEk/+ReZ5C/S59HnowMQg82eLVYOvK+e2MKDbRDhLs/+ZBi8v8GjazMG3nsCPK4l6At3gw+2eckCc0nw3uM0wV1vvSz9psIMAuD9TVooggneVafZD/BAK0S4RwsZiID31nt0Z8HBu46CJ73wOR7ugQhpZd6MDHjPcVJmjPWcANepzPGApDu7ewbmgHXV0RJ6g220nF86Ju3XE891HyMUdT7cR8Ys/d1AqOOsv4kmq0sMyRABV0ZwsN76gpCBLpqsLpuUIQI6fb6/qShkQC/HBseSNHathB4PddGQgXQUXCs1KIQAD7QTGREdJCEDMDPEtwDAw300NCEZISEDPNxDShoKywDrpQnLWfdxOp74EHhYS6QnBJx2GqbHBttImITIpcD6afif01FLbYv0kxJ0gtlwOmgJWtbT4JWqRH5dFpS2c1ppQlse7KJjNLNgPTT8z+k8SuZZxIIFY+RFelk/peB/0PbHnxRv1nS0/ywH/HgdcM5n/7fNIU18gGQIjDGU6HQejFzezL2+YnEttjcPoeGeLxI9RUn8LBvlGhWUcw7GOOljmhYqNFqwaVoo1yjKI/UxTAuV2rVtO5I2qNlb2GckvSP10e9jWTZKSvzENyPZq1+PNMZCv3yQJG2MMfj9JysvVzyPhX8rvB4pWdPJ1tD7WVPvp8+pdqqdav977VRSvI+uzZ4xEe2/4sAt/UDFuJML/A+2D/KuHqksqU6xL+zzD4/swLRxFVjym78j/w6gSM9/Re8fuv7f1PvHasv71ftflXE/z08ldjvVTrX/t9ufR9k6LT6OMY5rHqSISXA4QcrNAcCDr64jSNHWgw24+/mVqlyS4zB894bnCVL3yOvrcfszyxWydby1D1+/+ilysv/9m17AfS+tVgjTG6v24NvXPafuFUtm8Hc/uA9PLtikEL8r5y7AzzSUc8fhZvzTzx4giOU//HQurn1okUpc9fDr6/HVyx/Hxr3HEc/aGFtegksvuwP3vbRajeF7N72A/7zpRZUQa9nWGnz2R3Pw8rKdYIzDdhg+/e07ceXcBQqJvvXpZfjq5Y8rVPx4Wz8uvewO3P/SGjWmL/32MYIqv7x8F/7xp3Px+srdYIwjnsri4m/cit8/vFihW7+570184+qnFUK8rboJf/Xdu/HoGxsUivl//vM+/PJuD/l/4NV38aVfP6LKyXUHIvjUf9yOO55drpJxfeeG5/H9m15QLIklmw/j//uxN0bTcvDpb9+Jax9apJJm3fj4O8SWmoZu/M3378Hj8zcqtPpLv3kUv77ndZXA6/l3tuHLv30MK7cdgRAC4Vgan/n2nbj3xVUKHf3VPa8Tv2zcdwL/8vMHSWm4v//RHNz8xBKFts99ZR2+c/1zCm1v7Qnh//7wPrzwjoe2f+/GF3DNg4sUirx4/UF84+qnVWm+rGHhsz+aQ+y/5aml+O19b6jkXIeOd+Arlz9Oyrx985pnMGeeN68vLtmOn93xikrUFhxO4Eu/foSgu9c8uAh3PrdCPQMb9x7HD2721hjnHP9+5ZOkzOHj8zfi5ieWKBZIc1eAjBkAfnf/m3hpyQ415mVbDpM5S2cNfOf65wii+sAra/H0os3qOTpc34kr5y4gyS5/fc/rBDlfsHYfHnvTW3OhSAK/vud1gpzf99JqgpzvqG7CA6+sVYgqYxxXzJlfVA5PR87bekK454VVReXwdFbQhj3H8Zbm20zOxJ3PrSCJ5uYt3UES2h1t7iHrCZDMED3Z3podRwlrKDicwGsrdpP33+srd5NkewePtZP5YIzj1RW7SFK/tTuPErS6s3+IlKADgOVbaojMwWPtJFndm6v3kPfuwFAMD7xCS9vc/OQSgtBvOVBPSujZtlNUBu6phZsJk6GxYwDPv72N9LnmwUXEb8u2HCbl/BKpLG57ehmRuffFVRShP9aOhQUshCvnLiDXr63YTZgLfcEoHnr1XdLnxsfeLkDo6Qn+qfYhN+4AFVVAxTh0DYTx2JuUFVLT1IeNB7x3ixACT2xpRTDhoVh7uyLY2xlRKHnCsLGtfRgxDaE/NphAZzSj+gynTbSFU8jlEXrGBboiGYLQRzImhlIG7PzzaTocoWQOGdNLVhfLGEjmTFXaznQYkllDS5znQzpnwrA8GdtxYFoWOOeIZ22MH1UG0zDg5BF6n88Hx8jBNg0P8bZNWNk0mIssCg47k4BjeKwDlk3AySQ8FN828qXtZB8fACcekqXt8gm+eCYGJzEE7qKnjgknOgimJZVjsQCcRFghVyKbgBMZyCfBE/AJBj7cC5YMa6h4ACw64KGyRhrOUJdC6H0+H7hbDs+1NzkENtwDnkdYfY4JHmoDTwx5CPdwt0T23WR1mShYsF0le/MJLsvU6QnJov2yhF4e0fOZabDBFlJmTwRbpd68Lb5ESCLl+XJ4PmbL0nfxoIeOhjslgyBviy8bk4h8xk08JyAGGiUqr5fmC7V76KiZAR9olMnyXFsGm2VCO9f+ZEjqddkC3AHvOwGR0BD6UIdMTufOUSYGVlAmkPXV58v55ddUpE8i8Hn7hZUD6z0BkfZ+p3mgFXy41/N/Mgw+2KLmVXAG1nOMMgzC3dIvKtlhSvpOQ1T5QJNMiujKxAKyFKLL1nBsaYuOtgc7wGMUoWeDrRRt760nY+aRfspKMLOy1KCGwrJAG4SWLI0nw3LMLiuBM7C+RoJO83APTdyWS8kx62h7oI0mbouHCJNBOJacMz0h3FA3Rc7TMVKeUAghS93piHYsQHwrzCx43PvNdf1Akr2lojSRIWeE/eDaS9gPfY2UpZAMg0e08n5CgHUfI/dlwU7CEhFGGixAN75OVx31QXSQ2C+YA6f7ONXb31zkJxbqIn2czqNUJtxDGBLCMsD6GqlMzwma+C8eAh/2GJJCcDidBWyBgoR9H7j9l0n6/8PtvNPHy/g4S8buFMb92rZTFItaGMMYTaRJXCznXLT3hkifjr4QiZ9MpLJF8c41BbHXHX00vtxxmNh5uInEbh6u7yTx2YFwXBw8RmPFN+8/IaKJtLo+3tqnYvH/7end4ktP7BLv7q4jsaY7qhtJDHdn/5DYc6RFxXdyzsXKbTUknvzgsXZxrKVXxY1E4imxbtdRMu71u4+JnsFhdd3Q3i/2HW1VPrZtRyzbfJjYu+tws2jQ4rz7Q1Gxad8J4qvV22uJH2obu0VNfafyQyZriFXbj5CY7S0H6kVHnzdPbT1BEr/PORerth8pGqMecx6OJsXm/SdIHPSmfSeILQ3t/aK2sVvZYlm2eHd3HYkZ3ne0lfi7PxQVB+rayNrbtO8Eiac91tJL8hqkMjmx83ATia/eW9tCYuY7+4dIHgbGmNhR3Uh8ebS5h8TMD8dSorapuygXgj6vbT1B8uyYli2qT3SQdVjX3ENikwPhOFnfnHNxpKGLjLm1O0iet2Q6S8YsRHGegP5QlMyZ4zDR3DVI7O/oC5HnKJpIi6F8Xgm3tfeGiMzgUIz4yTCtotwCfcEIkYkm0uS54pwXyQxFEsRPmaxRFE9emG8jnswUxX3ra1sIURQHns2ZRe+ywpjuwnhzy7KLZEaK+dcb57woDrzwulCnEMXx/IXX4WiS+J8xJga0PBlCFL+/k+ls0fu6sE8gHCf2mZatcoz8IZloIl3k78L8D4VrIZM1iuaxUG/hGB2HkXfJSDKJVPZUDP1H2M6bOkqIZ/9aCDHymjPM4jjZZI4+I4mcRWLdLYeJtEmfm6Rhkz6G7QjTprGdmYJ7GbYjHP09wGT8PonFtx2i13YYiZnnnAurQMZxZJy9w7g4++Z14oaldSRmnnMuHJvawhy7uI9F40hZYTy8Ywum9eGcC2ZkSBwps3IkHpUzR/bR4l6ZkaEx3JZBYvE5Z4Jlk+TezEjTeHLblH/TbckmqF4zQ2K2OXMEzyZonHouSfVaORLbzjkXPBOnfsilafy+bQmeTdIY3MxItmQ1W5jUq8cDZwttMU5ui1Fgi2PLMem2FPklS2L+Oeeyjy6TS9GYf9ssjsXPJqn9Robaz5zimP9citr/fnIWGJkPkCcgd/I8ASbNs8Ntqzi+uShPgDFCnoDCWOvimOiTxn0Xxvwzpzg+e4R4/qI8AUWx+cXx/FTmfzGe3yjwrWMXx9kbBXnSLKMo90dR/opCGdsqjocv7GNki/1fOI8j2eIU5H8oHFOhjGOdfIxm7s8ohn70ZKBMZgUcXVlOsiJbtoOugTA5FersG1IxvYCMn2zqGlQIjhAC9e39JGY0EI6jpcc7rcyZFo639hFErb1vCG293olgNJFBfVu/QpwcxtDQPkDib3sDETR0DCh0NZUxcKKtj5SRaukKoKUroFC2UCSB+rZ+xFNZxDI2qipL0dA+gI5+r9REV38YjR2DCo2MJ7NoaB9AIK+Xc4HGjkG0dHt6B4ZiaOwYUGPKGhYa2gfQPeid7Lb3hdDYMaD0DsfSaOwYUEiW7TA0dg6grSeo/NkTGEZTZwCpjDxJTKZzaOwYQH/IO6Vt7hpEc1dAlXMKDifQ0DGIaCKT97eNxo4BdPZ7c9k9EEZT56AqbxZPZdHUOYhg3hbGOBo7BtDeG1K2DAzF0NQ5qGxxx6gju+29IbT2BL1Y63gajZ2Dyi+2w9DYMUj80huIoKU7qOZRjnEQYQ0Jbe0OEPtDkQSaOgcVWmdaDho7vDkCgK6BYWJ/PJlFc1dAMTE4F2juCpCSboGhOFq7PfuzhoXGjsGitdoT8GJCI/E0WrsD6tlxHIamzoDyPyDLgXUNeGNOZQw0dwZIrHhLT5CMORxLorPPW5eWzciYARlnHCootdbRFyLPY3NXgCC3weEEBjX0N2dYaOsNESS6ayCs5hkAhuNpsuYY42jpDhBUeSAUI35KZQz0aM8rINeHXnYsFE0ilvRkLIeRtQHI9aG/l+KpLIbj2um1EGRtALJspO7bTM4kvgWA3mCUyAzH0+p5AGQZrKCGMgPSd7pMMmOQ+QBAchEAQCSRJgi3YdlqDbpNXyuuXl1mwrjRsB3PB36/vyjD+0AoWmSbPh8A0BsYJtehSAKGVurOMO0i+/uCdA5jyQxZG4xxDIRipE9wOKHilAHp/8IxFuoNx1LIGp4vLdsh73IA6A8WjjGHU+0jbNwBqs4AINdcSYmfrMuUYSOsofFCCPTFcwo1B4CszZAwNFRFAEnDgcO9eTQdBtPhpI/hMIXYA4DFOJFhXMBiXik5IQRsxqF1AcuHjul9GOfQYyGF4OBCkD5CcMSzFoQAJowuk3bopag4k//pMhoqh/w16cM5BBtBRo+35QyCebH6gnFw5nj3FlyiclqJLuHYEMwm9wGzPb0CeRlPLxiTcu5cCgE4NqAhfmCOLE2nbGESAVR6uUTL9D6ODeF4LApwLmWUb4S81voIbgOOqdmSl9FsEY4p+2j2wzY13wmJ0OolxZhN7gPBZR/OCvRqfZiTvw8vkNH84hTo5UyW2tN9aZtyDpQvbVkCT7MFjknmHg61X+rVZQRgG4BgVK9+H8GlLXq0r22QMYPLMRbLFNiij5kz6n8BwCqUsd6HLSZBe8EduubyYyQyjkmfLc7kvfRm56gMs6ifBB9BpuA+zKF+EqB+cu3XZTijMhhBhtnUT0LQMQN03vO2EBnXvqI+mi2lZUTGp1eb+EO2OQV+4iP5qUCGF7x/hBhhzBZd25zRtTGS3iL/ixFtoXPGiv1i028rsAIdH7D9CWzoHVWyDij+CM6ZNo639pEPs/r2AVIPOTScwJGGLiTym3whgAPH2tHQPqAc39IVxKHjHeqDLp7KYv/RNtRrdaFr6rtw8Fi70tMzGMG+ujZFYzYtB3uPtmJ/Xbv6gK5v78fe2lZlz3Ashb1H23DgWIfaaOyra8Peo21q09beG8Le2lYcaexGPGthdJkfe2tbsa+2TX381jb1YHdti7r3wFAMe2pbsPdoKyxb1rDdW9uK3Uda0Jv/KG3uknWWq090QgiBaCKj+rh6Dx7rwO4jLWjqknq7B8PYfaQVe2pbYdsODMvOy7RiYCgOQCYs23OkBbVNMqFHKJLA7iMt2FXTrDYFe/LXbb2Sct/WG8Se2hbsy9cNT2UN7K5pwc7DTWpTc7i+C7trWlQ96f5QFLtqWrCrpgWW7cBhcoy7aprRn/9Yb+wYxJ4jLTiSr3seSaSxJ9/HtWV/XRt2Hm5Ge35OugbC2HW4CfuOSluyhoXdNc3YWd2k1kNdSy92HG5CY4dHWd91pBm7j7Soedx1pAU7DjepD/zW7iB2H2lWtOpEOotdNS3YebhZreGa+i7srGlGb/7AoS8Yxe6aZhyul7XqbYdh9xHpF9f++vZ+7KxpQke/t6b2HGnBgWPtaj0fqGvHzsNNaq12DoSxs6YZLd2ShpTJmdidt9/dJB9t6sXOw02Krh0Ix7GrphkNef8LIbAnb4u74W3pCmBnTbOiXsdTWew+0oxjLR7F6HB9F3YeblaHIb2BCHZUe3Nm2g521zQTuvaJ1n7srG5Sz1E4lsLOw80qqZ+7pg6RWvVD2Hm4SVHhMzkTu2qalZ8AoLapGwePeTKDQzHsOtys1j/nArtqmtGiUbybuwLYe7RVbRJiyQx2HW4mB4IHj7ejUas73zMYwb6jbcq3pu1gV00zocIfb+0jCe6GoknsqW0hBxB7a1sQinib1/beEE60eb5NZw3sPtJCDiBqGrrJYUh/KErmgzGOXUdaSD34xo5B9Ty7Y6xrpvXtDx7vIO/e7sFhclBm2g5qC2quH2/tIwcQNQ1d5Lo/GEWPNqeOw1B9gtaubewcJBvt4XhKvffcduBYO9nEdfWHSTLErGGitqmbyNQ195BDi8BwAu29NBHQvqOUCtdacKCVSOdwQvuNAIDDDZ0wtaRnfYEoTrWPsHFGvhH6glFy8BdJmegI0EOullAa0Yy3DmNZG4Gk6dWL5xzDWQsZbR5TpoOE4dWUtxlHxnJIHfqcxZCzvQ2x5XCYNlObfC4ELIfD0mrK2w7Pb/K9Pg7zNvkib48+Js45GOeqBv2EUWXgnJM69IIzcMbURltwDs68zbgQQv4/c/LWy001d2yP6szlBpmrevYC3DblJtPtw2wI21SbZME5hG2AaxtIYRuSOuwmXGO2/Hcrv2EReRnL29gJ24Swcl7COObIayvnUZnNnKTNuh/ijgVhZT29nMu69WZWfbwLy5DXSq+V75Ovby8EhJmVFGT3490yJL3Yzh/OcQcwMxBmWrMlI/u4Y3RMee0mFORM9VGbPysnKeHuZsOxASMtdbvzlktLPcovhpRxqdicSRk3wSAAYaaBXNLb8DqWpNtb+cNTweV1LuVtsKwckEt5vmS2DBfQqdi5FJBLehteOwfkEp79nEkZQ7PfSAPZhDdmx5SUdndTI4S8ziW9Z9TMShlV396RfbSkeCKXpDK2AWQT3pgFg8jGpS5XxsxIva6MY0m92kZOZBNkzDBzEFkvfATckUn/9MRnuaScA7fZhkyyqB2giEycbCqFkQG0+upwbIhsjBwMiEycbv6sLB2zYBBpKgMjRfwEx6Jjhgyn0KnwMDNUhtn5MWsy2TiVsXPEtxC8WMZI0UMXZgMGPTQXmm3C9ZP+70aGHiYwm1D95Xi0+QEAM+c9q65tGXrwLnIputF2LC9ppNtHS1oI5NePfjDAHRVSo4+HbPptg1D7hRDFenN0PB+0/fEnxZtShvan/wP4/tsn75xvQhQmouOk/rO7UdJrEGdzJqm3bZg2/H4f6RNNpFXNeUB+9I4bXamSpTkOQyyZwVStdv3gUAzTp4xXiU7iqSz8Pp+qkw7ID+OztNr1A0MxTJkwFj5/CS64fQO+85czceVnz8TMaZOUTEffEM6eMUWNayiaRFlpiaoRLoRAa08QF5w1XentGgjj9CkTVE3nZDqHVNbAGadNVHqbuwK44Kxpyt7+UBTjRldifL5eueMwdA6EccFZ05VMW08IZ82YrHw1HEuBcY5pWu3fps5BXHTO6cqWnsFhTJk4TtUez+bRybNmTCF6z505VY0xFEmgorxM1U4XQqCtN4TzZ01TersHhzFj6gRlSyKVhWHZxJaOviGcO3OqkgmE4xg/dpSaf9t2EIwkceZ0z9+9gQhmTpuo/BJNpFFWWoJxWn3yvmCUyATCcUydOE6tj2w+DlJfQ4NDMZw+dYKyJRJPY9yYSmU/5xzD8TRO09ZUOJrElInjlEw6a6DE7yc1zSPxNCZrNcDjqSyqxlQq+23bgWk7BEFNpLJqngG5Ia4sL1P+F0IgnTXImDM5k9SPNy0bJX4/SSCYMyxim2HaqCj3arRyzuEwTp41y3bI9QdLbshJ7Wb3b/q7YKQkREKIor99GIkKT7U/33YqKd5H12ZP8qN9xVzgH29+X/3dTx6SKE0I+AuufQV9GBekXjzjAn6f10cIAS7wnn3cTbuf6OWkLj3nQpZ11/QKAfg1vW6yt9reOP7jhf144JufxHf/6swCGbcWff5vnMsa2lofCCFr0bt6GYNPSwgrOMvLeL8B4EzWgnb7MIdecw5AyNrzrs8dGygppTI+v7q3yCOCPq1GeJFM/iPZ1StlbFJLXcqUePZyDghO6mMLx6IyI9pikzrcJ7NlZL123i+uXg7wQlveh1+4k69DD03vSWxhDr1P4RzlD1HeU4YzaYv+u8YZlSno426qfBrqWixz8nUoOKfXggOgv+VCcHqfouvi5/zD+C3/oDIns+VU+/NufyZJ8ejp+9aDDQR56QtGcddzKwil9PI581XiNwBYvrUGP7n9ZYUiMsbxF9+5C4vXH1AP2u3PLMf3b3pBUXZbe4K44N9uVOXaAOArlz+Bn9/5qqKfL91UjU98/RZV+iudM3HhV2/CdY8sVonFbn16Gf76e/dgf51Eeuqae3Dm56/FA6+sVQjZF3/1MP71N48q1OnN1Xtx7peux0sr9gAAKvwC5//bjfjZHa8o9PfqBxfiU/9xGzbvlyWRdh9pwZmfuxZ35n1h2Q7+8acP4HO/eEgh3M8s2oJzvnQdXluxG5xzdA2Ecc4Xr8PP7nhFjenHt83DJZfdgW35pGxrdx7FmZ+/Fve9tBo5w0IincNff/du/OtvHkVzl0wcdu+LqzD7yzdg0bvSn8daejHr87/HlXMXqIReX7n8cfzN9+9RybneXLMXsz5/LZ5auBm27WAolsIFX7kJ37vxeYX6XTl3Pi7+xq1qLndUN2Hmv1yj5tswbXz2R3PwJc13j7+5Aef96/XKlo6+IZz1hd/jqgcWKET129c9i7/7wX2qbOGyLYdx9hevU6Xh4qksPvH1W/CjW+eptXbj4+/gksvuUMn2Dtd3Yebn6Dz+/Q/vw9evfkolYXthyXZc9NWbsWq7TLYXGE7gzM9di1ueWqqQwR/dOg9f+NUjKqHa+j3HcN6/Xk9K81389VuJ/Xc+twJ//6P7VXK0hvYBnP3F6/DSEi855D///EGyVl9buRt/8Z27sOeITPIYS2VxzhevwxPzNyp092d3vkr8v/1QIz75zdtUUi8hBC697A7MmbdGIbX3vbQa/37lk4qB0tkfxse+djNW76hVz81Xr3gCtz+zXFHqF727n6z3nGnjU9+8jSTou3LuAtzw6NsqdGb/sXb8088ewDEtidw///whkqDvsTc3kjUXjCTwf394P0H+f3L7yyqpIiDLm/3q7tcQzlO4ORf43C8eVs8rIMsn6uXw6lp68ePb5pGEcD+5/WWS1O/N1Xvx2JteObxEKov/vOlFgmjf+dwKVSoRAHbXtODBV9cR5Pzy++cTVsJrK3aTd1tvIIJ7X1xFUO8HXllLkGY38ZzrW8dhuPfFVSTEYf6afSQRYFPnIJZtOUxO219csp0g2lsPNhCGQSKVLSqht2JrDQl/OtHWX4Ror9jqJRy0bQeX/f4Z8u+3PLWU3KeupbeoBN1/XPsMQehfWb6TlGSMp7L48W3ziMxv7n2D0OW3HWzA04s2kz5fv/opcv3Qq+/iQJ33o9s1EMa1BaXtvnfj8+T3aOlmWqLmVPsImvaNsHxLDVmnB9uHsfxwr0o6BwDP7+tCX8xDTWr646juiykaftZi2N0VRSTrPVctQyn0xLIKoU8aNjqHM6oEnQDQE80gkjHVxj2eMxFK5VSCO4dxhJNZkhQvkTWRyBpg+fVrOQ6S2RysfJk6ASBjGMiZltJr2w4M00I0Lcc5vrIUpmHAtj29lpGDZXphMcw2YWVSYHYeSRccViYJO5dRSKJjZGBnEuB59JE7NuxkFI5CXAXsVAxOxkPrmJGBnQirxHmC2bDjIdknv9m0UxE48RB4nsLKzSycyABYNqkOCZzoAJx4SJVNY+konEg/eP7ewjLghHvBUhHP3mgALBZQycZ4NgFnqAfc1ctssKEuMC05F4uHwIZ7VZkuYaTBQu3gqYja6LJwt0zIl0cGeWoYbKhLldkTtgEWaAPTku2x4V6ZCM0th5eJgwXawN1yeIyBBVqlvXm/8NigTLanyuFlwAPNni0Q4ME2mWzPRf6TYZlsTy/N198oE/+5yeqGOsHC3VoSwrhMiueiiZxJmXhQK4fXDxbs8JIFmlmZiM61HwAfbJFJ8Vy2QGIIPNju2e/Y4L31mv0AD3VKv7jJ6rIx8ECLloRNSFv0BIPRvnxSP1vZIgYavaR+AMRgC0mKh8QQSeoHziD6GwiCKsJdEPGAh+Zm49KXeim1gUaCEovYQD4poctKMKT9GnIuhjq0RIYA0hE5Zy5SKwREoIWU3RPRPgjNTyKXAh/uocnqQh0U3U0MQaQ0PzkWTX6Yn0eS4C4TJ34SQoCHuzzfAvLfdd9auXzyRg1tjw1QmUyMJBwUnOV9q8kkwyQJnjAzRYg21+fQtVeXcSzJtFA6suBDlMXH+hsJQs8TIVpejjPwAVoajgfb6RxmE+CRPtKH9dGyezzaT9eGbYIP0pKovL+RzkdqGDzmMQqFEGB9NFFu4Xg+aPvjR+gn+dG++hHgs9e9b5nCk69C5E4IAdNyFFINAKlMjiCPOcOCz+cjfcLRJEHfh2MpVI0dpZBExjiGokmcPnWC6tMXjGLG1AkKFYwl5Y+TjtK29YQwe9Zpyua+YBSTx49Bf9LCF57YjZu+eAG+dMEEnHPGVCXT0h3AuWdMVQhlcDgBv9+nkFwhBOrbB3Dx7DOU3vbeEE6fOkEhqolUFpFEGufOPE3pPdHWj4+dc7ryV28ggjGjKhTa6zgMTV0BorepcxBnz5iiUNhwNAnTdgij4FhLLy6ePVP5obN/CJPHj1WIcDZnon8oRpD/xo4BzJ41Tfl3cCiGstISNQdCCDR2DuLj584gY5wxdYJC2+OpLNJZg9gyEgth/NhRav5t20FvMIrzzvT80tk/hFnTJyu/DMdS8Pt9ZB4Lkf/+UBRTJ45DRb6cYDZnIpU1CFugZ3AYszR2RjiaxJhRFcp+zjkCwwnCogiE45g2uUrZ71LM9fUbHE5g+hTvPsOxFCZWjVH+t2wHOcMiiPxwLIUpE72yT8l0DqMqytQaE0IgnsoqFggg11DV2FHKfsO04fNBjdm1rxDVH11ZThB6y2bkWStE9U3LRnlZKXmuTcsm9ylE9R2Hwe/3EbT9vUpEumPkXLwniv8/WX7wVPt/o51C6D+6NnuSH+3VW4DZ//K+ZQqftY8Ooefwa2jkH0LoSZ+CUmsjsYbcPitqB3Dd0mN4+1f/B39zzqQPgNBTlJYzBz6CtjMAPoIYu4jreyL0Bag4dyz43hMV55L+StD2EZB0QOkVQkgqbmkBQu8v8fRyJlFxHfm3LSrD7Lwt74X8F9jCZSjDeyL/hWwBwQHOKNo+IlvAV2TLSdkCRbaMgPz7/UVMC4rij4D8a+wMV897I/8cEKDo+kmQ/xHZAidB9d2/vTeqPxIq/t6oviv330XbPwyZ99vnVPt/o/15IPSASngDANUnOlS5LkBugF5ZvlMh4gDw8rKd2Ly/Xj1Eh0504PH5G1WyOsY4bnlyCdbsOKqQurc3HMKjb2xQaFhvMIJrH16Edbvq1An3nHlr8dTCzQrF31nTjBsfewdbDzZACIFMzsSVDyzAvKU7VKzsK8t34rZnluHQ8Q4AQHNnAJfPmY+F6/YrFOHWp5dizry1CrFct+sorn5oEdbukehdqWD47b1vkHs/tXAzbn5yCXbVNEMIgcP1nbh8zny8uXoPEqksbIfhukcW476XViuE/u0Nh3DNQ4uwctsRtWn97X1v4ulFm1X8/px5a3DLk0uxt7YVQgjsPNyEy+fMx4K1+5DKSIr+VQ8swAOvrFMI/asrduG6R9/C+j3HZKK6zkH89t438OKS7Sp51S1PLsWdz61QaOnanXW46sGFWLKpGoZpIxxL4Xf3vYnH529Uc/Dkgk24+Ykl2FHdBCEEqus7cfmcBZi/Zi8SqSysfImruS97vntrw0Fc/9jbeHd3HRjj6B4cxu/uexPzlu5QKOy9L67CXc+vRG1jNwCJzF31wEIs31ID07KRzBi4cu4CPL3I8/dLS3bg1qc8v9S39+OKuQuweP0BhXTe8NjbeOT19QodXbXtCG583FsfoWgSv7t/Pt5YtUfFbD/25gbMmbdWIZAHjnXgukffUvabloNrH1pM7F+wdh/ufmEVjjb3AJAJ8K55aDFWbjuiEOG7n1+JZxdvUQyDzQfqyTpMpnO4+qFFWLKpWqG7LyzZjifmb1QxzcdaenHLU0ux50iLepZufmIJFr17QK3d5Vtq8Mjr6xVCPxiO4cbH38G2/JgB4JE3Nqh1CcjYd339GKaNm554Bxv3HlfP2ptr9uLVFbtUCcDmrgDue2k1QXfvn7cGa3ceVcj5+j3H8NKSHWrNxZIZ3PX8SuUnAHhp6Q7ipyON3Xjura0KbRdC4P55axR7A5AMn2VbDns5AIJRsjYA4IV3thPkds+RVryz8ZBCanOGRXwLAEs2VRPfNnUOYtG7BwhyPm/pDlJ2b/uhRuw83KRkhmMp9Wy6benmalUeEpCI9lZtPhjjWLB2H3lnbj/USBD6/lAUm/adIKj36h21JG/A0aYegpxnciY27DlOYn131TSTsntdA2H1PnLblgP1RKaupZfkGogm0qpcJCDDalZuO0J0PLN4C7F1V00zmfd01sAry3cSmTdX7yHjaegYIIwJQL5n9fbu7jpSQm8omsSidw+QPi8u2U5yDVSf6MCp9hE37Rth8/56Mq8dwxnsaA3DYV4Szv09UQRTHjrTH8+hI5KBxVyUnKMrmiWJ8sJpE5GMCSe/znI2w3DGVGXrBIBoxkTasBUbIGs6SBm2QugZ50jlTBiWlywqZ9owLEch9A7jyFk27HycvYA8vLRsR+l1HAbbdhDNyHdFVWUJbMtSZesAwLFMOLbtIfSODccywPLx8EJw2EYOjuXFujPLADOzKmaeOw6cXBpMSy7GcmlwM+ch3pYBlkvJ2HohILgDJ5sEMzIKbWS5FFguCW7nkX/bBMvG86g+B4SAk47LMnYa8s8ycfB8PLxwbLB0DDznxaCzdFQi4C6jwMzIv7kx6JyBpSKSCeDqzcZlKS/LLbVmgiUjUm/eFpYcBs/GPYQ+lwJPRcBdFoJj5/skPbQ9OQyRjnoIvZkBT4QVqg/OwRND0t68LTwTA08Ne2XfbEP2yZfzk3rDsqSei9DnkuDJIQ+5ZQ54IgSeTXglClN5W1yE3sxKvSpPAAePB6QtLtqeicnSdy5abZvg8aBnPyTyyTNezLYwUhIxdpFOxiDigxBanLdIR8DTEQ+1tLIQyZCGVguJBmcTao2JbFyOQc+NEA8UoNUhGjttpCTK76K7gksZPZ4/Fc3b7+YNkP4miHA8KPMcuFhnNiFLJbrIObMlUq6j+qlhCG3OYGYkS0FPtJgYKkCE4xBZLR7eMaVMAbqro/ow0jTmnDlyzHo5uXQUwtL8ZOUIy0IIQX0LuaaIbx2LyAD59aEndHTzTLjXgss1pyfQzCWpb22zOP49GydJCIWZpTLcKZYxUlTGzeuh/zspqcchkkNURypCfWAZhAkAACIeoNfZOGVZMIcwAQDIedbzIBSwEoSQ653IaGUe/zut9ORd/gia9mN9zhlTSWzwmFEV+NtLzydI4ydmn4GPaajt1ElV+JtPnqtQTr/fh898/Gz81cXnKCTu7DOmoLysFDPzfarGjMJffuIc/MXHz1Yn4xefL/WePmUCAOD0KePxmY+fjUsukLFr5WWl+PRFZ+EzHz8bk8ZLFHP2rGmoKC/DReecDgCYUDUan77oLHz6Y2cppPySC2bhMx8/C2fn48ddNHnctMkAophSNQqf/vjZ+MzHzsL0PLp74dmnY9L4MfjEeRIpnzpxHC69cBYuuegsVI0dBc6FvM9FZylk/6wZkzGxajQuvWgWyspKMW5MpeozLY96Xzx7Js6ZOVXFu0+fMgGXXjQLl1w4C2NHVyJrWPj0RWfh0otmYVY+Xnz2rGnw+3z45PlnoqTEj4lVY3DJRWfh0gtnYXIewb7kolm49KJZmD1rmhoj5xyXXHgmKivKMLqyXOq9cBZm5BkOF55zOqZOHIePnyfn8rRJVbjkwjPxyQvORNXYUWCMyzFfOAuzTp8sx3j6FJw2sUrZUjWmEpdcNAufuuBMhaZfPHsmLjh7ukLgT586EZdedBY+ecFMVJSXwXYYLs3LuH45/6xpqKwoV36ZWDUGl14o+4zOI8mX5G1x5+/M0ydjzKgKNUdjRlXg0xedhU9dcCaqxsjY9YvOmYEzp09SuQNOmzQOl1w4S7EZSrkfl1x4JrH/nJlT4ff5cW5+XsePHYVLL5qFT54/UyHUF88+A5dcOEsxNmZMnQC/z4fzz5L+r6wowyUXnIlPnj9TIeOzZ03DaRPHKWR/4vgx+NQFs3BhfsxCCFxyobyPu3bPPH0SZpw2Qc3Z2NGVuOSCWeT5u+ic03HR2adjXH7Mp02qwqcuOFPlGygtLcGlF87CJ2bPVM/aOWdMxcSq0ZhYJZ/rCeNG41MXnImzZ8h5BoBPnn8mLj5/pkLYzzhtIqZNGq/WXGVFGS698CzlJzmP03HuzKnKT5PGj8WnLjgTU/PMBJ/PR9apXFOTMX7caCUzdlQFWRvuGC8422OXnDa5ClMnjVMsg7LSElx60VmENXHemaeR3BkTq8aQ9QQAF58/EzOmeuyMGadNxMSq0UpmVGU5PnXBmSQXwgVnTcfMaZ7M1InjcJqWc8Hv9+GSC2eRPB6zTp+s5hAAxo2uxMXnzySo4MfOnYHxmsz0KeOJjvLSElx8/kzCbjh35mkq54U7xqkaCwQAYe4AwMzTJhIWyOjKCpxzhpdbY8K40ThbuwaATxbYOmPqRIyq9JCwyvIyXHTODCJz/lnTSf6HyePHEuQUAC658ExyPev0KZik2TZ2VAUuOGsa6fPxc89AeZmHLumMnFPtI2rjvW+ESy48k6yfCaPKUDWjCqX5Nebz+TCjqhKTR3vP2ZjyUpSW+FCWR9dL/D6MqyjFmHJvHitK/agsK0FJfo2U+n2oLC1Buas336e81A93Gbn3VPeGD2UlJSgt8RDKknxmfnft+Xw++Tc3lj2Pzpf4fUqvz++DDz7Ec/KDdNLocvj9fvIM+Pwl8Gvx8D6/Hz7hg99FVPP/7/eXAqqPRJRdBN7n98FfUppHWPN9SkrhKykB8giqRFL98u8+n0RfS8okKp5HP30lZXm5UmULSsrgLy3z9JaWSyTa1ZvPgO3Lo+nCL/8fut7ScvjKygF/aYGMZIAJnx++sgK9peXw+Us91N5fIvuUlUtbfCJvSwXg2ptH1V298Of1llV4tpRVAGUVgIvAl5RKlkdZRd4WH1BWKftptsBfqmR8/hLVx/3N9ZVV5GXyn+ulZfCJUsBF7X1++Moq4Sur9OaxrEL+e4nml7JK+ErzeuHTZPJrpjQ/FuIXT0bqLZApKZNjccfs88mKVGWVHpJcMK/wl8JXNsqzHz6gvDIv466XcnkPd8x+P1Cuy0DKlFeq9SOZDn41ZsC1Rbe/HCgpV36CvwS+8lGaDOS1JiPZHH5vzD5/Xsb7ffGVVdIxl5RSGfjyMp79vtJyws6AL2+LxkzwFY65pIwyFXx++MpHU5mySjmXbvOXAOUei1Lp9Wvbv7wt7yWDskriJxRlqPcBFaMp46G0olivZisAOa/6fUrKgBKtj88v7603ba1LmRJqi+ZnqcOnKqV5OioAn3afkhIAFbRPxRh6XVpB/eb359dg4Xh0W8rIfXw+H0TFaCpTVnDfD9j+RDb03ofYhHGjyY9WSYlfbSzddsa0SeQjsmrMKIwfO0p9NPp8Plx49nTyYXn61AmYPH6s2hyMqizHx86dQZKRzZ41DeefNV3pmZKnU7sHDKUlfnz8vDPkBjdv49kzpmDi+DHqw3f82FH4+Hln4JwZU9TD8vHzZuDj552hPv5nTJ2AqrGjMODI62njR+ET552BizQq/PlnTcPpUyaoe0+ZOA6fmH0GZp8pqft+vzzY+Ph5Z6iP1rNOnwIuuHZoUYmPnzeD6L3o3NMxe9Y0pXfa5Cp84jxPb0VZKS6ePROfOO8MRQs/54ypGDu6Qm0IJlaNwcWzz8CF55yufHXx7Jm4ePZMtSGYOW0ixo2pVIcYY0ZVKHvdjdMFZ03HGadNVHMwZeI4XHz+TJXor6TEj0/MnomLtQ2mTBToU4c3VWOk73RbLjrndHz8vDPUnEybXIUSv0/ZUlFWik/MnomPn3eGopufc8ZUTJk4Tvll0vixuPj8mThvphcq8cnzpS3uBnnmaRMxY+oETJss7R9dWY5PzD4DF5w9Xa2P88+ahtmzpin7J08Yh4tnz1T2yzGegYvOnaHsnzV9MiZUjVaHWFVjRuHi2TNx1uneZveic2fgY+fOUPN62qQqTJk4Tn3olufHqIcInHvGVJw1Y4qisU+sGoNPXjCTPCcfP2+GWguAfG4mjBut1u6oijJ88oKZZON6/qxpZMyTJ4zFpAlj1ZhL82PUN5Qzp0/CmdMmKZmxoyvxyfPPJNT9C8+ejjO1UIqpk6rIc15eVoqLzz+DHPadfcYU4qfx40ZhYtVoQru/6JzTyftj+pQJmD5lvBpzZUUZWRuA3Jy7h3gAMHn8GIwb4/0g+v1+fOzcGSRE4Mzpk0iIw5hRFZgwbjT5Eb3grOkkFGHa5CpiW1lpCUkKCYCEvwDynaMfErj26jJ6mIo7RvcAxm1nnT6ZvHsnTxhLQhz8fj+ZQ0Aeeuoy40ZXks07APKOBYBJ48cQmfKyEuKDCeNG49ILZxGZf/jLi8j1tMneBg6Qh0b6IQ0gfaDbP2HcaHIfAEWHADOnTSSHAJUVZSSRJwCy1gGQOT7VPoLm8wMVno8njaf+Hl1egrISSludMqYCpRo1flR5CcpLvA9lv8+HsRWlavMOAJVlfpSTjbgPfp8ffv2bt8RfsFn3we/zqc263+dDaYmf0PJLS3z5zbp34OYT9HvVDR3S7fP5fEhk5YZ+/OgylczO3Qj6/X6S4E5utn2eYp8PvpIS+Er0TX+erq5tGFBSqjb4Qghvc67JIL+RV3pLy+Sm2e1TWp7fbLsbqfyGJ99HAPmNt7fB8ZWUyQ9md5PnL5EbLXeDL0T+usKjWpeUwecX3ke3zw+UVlC9yhZ385j/kC9x9QK+8kpv8w54hwjuZsTnl5tmfUNWVinH4PcOMYS/VLPFpzbant5KOQfaZldunLT3UFkl3WCWuIcKrkx+U1FaYEtpube5ys+ht5nyyY1HWTnxi9qIAiNuduWmuoLOkRau8Ac3u/qY/aVAuTZmoGCDD3UY4cmUjLBxHUX1lpTmr7V1WEE3yCitoH7ylwDl3kGCGqO+aSspJ2EF8n0zitD75UGOvtErBUpoiADKK6lMaXnx5tBfQWXKKoifUFJKx+Pz5e3XZcqpjL9gswvQwwcg/9wU6C0t2BSXFtimHQSSMZHrsgKZgs084K1nbYw0rMBXLOcv6OOjCZML7fD5fBCVY8nf5Ia+0LaC8ZQXHAKUlheM2Vd82FA4H/5SwF8Q2V6k98PZ0P/JUe437a9XCcQAWRv57udXKjoyADz/1la8uXqvoprVNHTh+kffVrRsx2G48fF38Nzb2xT19q31B3Hdo28pSm9XfxhXPbAQz7+zTSUNmzNvLW547G1FTd1+qBFXPbAQb6zaC8Y4kpkcrntkMW55comi476yYheufmAhVm6TidEaOgZw9YMLcc8LqxQt8Panl+GquQtUwrJ1u4/hyrkLsHavTMhgGTlc98hbuO5R797PLNqCKx9YgAVr94Nzjur6Tlz9wELc8cxyDEWTMC0Htzy5FFc9sAA7qmUyiKWbq3HlAwvx2PyNMEwbXf1h/P6Rt/D7R95Seh969V1cNXcBFq+Xya121TTjqgcW4q7nViISTyOeyuKmJ97BVQ8sVInDXl+1B1c+sBDPLN4Cy3bQ0N6Pax5ahBsee1vR5+94ZhmunLsAa3YehRAC63bX4cq58zHn5bVIZXIYGIrjukffwlUPLFSJz55etAVXzF2AN1bJxGeHjnfgqrkLcPvTyxCOJpEzLNz8xDu4cs585bu3NhzA5XMkXd6yHXT0DRXZMmfeGlw5dwHW7aqDEALbDjXiirkL8OCr62Qt6mQG1z2yGNc8tEhRil9auhNXzPH8cqylF1fMmY+7n1+p5vHGx97BlXMXqLCC5VtrcPmc+Xh52S4wxtEfiuHqBxfilieXqmRcj7y+HlfMmY+dh+Uc7a1twRVzF+DpvC9zpo3rHnkLNzz2tqJrv7F6D66YswDv7q4DIOnol8+Zj4deW68o3nc+uwLXPrxY0YM37D2OK+bMV4nOhmMpXPPgQtz30hqVtOzpRVtw9YOe/2saunBFPtzCLYd07cOLcddzKxWNesmmalw5d6GiqPcEIrhi7gK8snyXolHPfXkdbnt6mUrQt6ummcxZJmfi6gcX4bm3t6pn7fWVu3HTE++o56ipcxBXzJmPrQe9JCW3P70MTyzYpKjw7+6qI/M8HE/jyrmen9zn5uHX16swg5qGLlz36FuKos65wA2Pvq2eV3eMc+atUWEGvYEIrn1oMaGbP/jqOizZVK1kdhxuxn0vrVa09qxh4vePLCZJ/V5ZvgsL1+1X76mmzkGyngDgjmeXq9AQQIaquM8DICn3dzy7nFDUn168hdC8q090kvlgjOPeF1aRWu5vbzhEEgF2DQzjhXe2kxJ6Ty3cTBIBbj3YgN01XkKYrGGSOQSAxesPqHAeADje1qcSS7rttZW71XsYADbtq1fhUYDMB1FIhV+1vZYkD6xt7CbJAzfsPY6Dxz0fxFNZPLlgE9Hx3Nvb1JoEZEnDNTtqSZ+7n19JrpduqialTPtDMby8bCfp8/Br75KkeHqyxFPtI2h+ikusOtCFcMKjRfbHc9jWGiZ154/0xzGY9OivQ2kTHZGsKkFnM47+uKTcu890NGNhOGMo6r5hM0TSJrKWl7wukTWRzFoqcV7OcpA0TJj59c04R8awkLM8vTnLRta04TA3cR6DadmwHbe8nKTcm5ZHn3cYg23biGYtjC6XLAHbsuBoSfFsy4JjWWB5vdxx4JimlxSPczhmDo5pgLsUdsuEY+QU5V4wB46RkdT4fPZ6x8jCzklaPpCnz+fS4FYuL8PyFPsC+nxWo+XbJpxsAkzR3DlYNgUnm1R6mZkByyQUzZ07NpxMQtLnXXszCTgafZ6bOTiZuKKsC+6AZeJgmbii1/JsEiwVk9ReIcvwSep+nrIuBFg6DpaOyXh7ADyXlnRoNykes8EUfdu1JQaWimi2ZMFSw16CPs7AkhGwVFSzJSHp/nm6s7BNKaNRyVkyApYc9ujzRkpe67YkhiUt36X/p6Oyj5aEkCXCHi1ccEnlT3q0cJ5NSPp5nlIsbFPKaBRvngyDpzyKtzDSeSp/nq7NHbBEKJ8gjitbJK09HzJg5cDjIXBFiRYyuWA64slkEzKxmUu9diypV6f/p4bBU1EvqZ+RAU8EPSo8Z2DxIKH/80xMhkZoJQB5PCRLKuYbT4QorT2XpLR27shkghr1mqcipGSbsGSIg0eFF1KmMFldOqpR7i15b40GzpND4FopNWGkiZ/AmdSrU+HTUc23kGXTUsMoShpXUHaPawnuwGyZ0E6ntevhGIAsdUdK6IlimUycytgGlYEMySgsu6eHJshSiAVl9/QyiABg58gcyjFRGZhpSoVPRWjdecuQJed0HYXU+GxClsRTtjkQqWHaJxmmtpkZmjxQCIg4LY8rMjF8GO2PPynelDK0D9sn7/hfaCMlqGCMoUSjeYxUJsswLVRWeCc/mayBMRrV1bYd2A4jSFcsmSH0v1gijXFjRhFEMBRJEFrmYDiO06eMx4Mbm/HSrk7svu7vUVVZRpC5vkAEZ2pI4+BQDJPHj0FF3j7OOfqCUYIedfWHcfYZHjNgOJ5CaUkJ0dvZN4RztWRwPYNhzJg6UaGRhmEhHE/hzOnevUcqAzdudCXGaghfod7ugTDOnD5J+VzG/TuYMrGK9Dlbo0v3h2I4beJYlOdRTs45BkIx4oe+QAQzp3vJgSLxNCrLyzBmdIWmJ0qS5A2G45g2aZyyJZczYdgOmbfgcBzT86EWrt7xY+k8FiZNjMRTmDzBQ4vSWQNlJX41R0Dx+ihMMuc4DkyLEfvTGYP4NpszMaqSnnIWJpUrvLZtB36/j6x5y7KVb90+Ogot6xyL90wqV/gcjfS3kUrFAf/9hDGn2qn2x9pOJcX76NrsaWPRHvpw6vi6baR3y8mSY7qb7Q+jj4u0n0zmP185iO7hLPbc+I+kzx+SObleBr+eJC+fFI/qFbRPQam7EfUyB349SV4+Kd57630fMoIX9dET9n1gW4SAv+Q9bCnwyx/Se1JbRvC3z1foS1HUh16/vzX1312H71fvRyHzQRLGnfo+ONX+lNqfR1K8gliI5VtqSBmqwaEYfn7nqyRB1RVz5qtyaACwctsR/PuVTyqky3EY/vI7d6lSbABw61PL8NXLH1fIVn3HAD72tZsx9+W1qs8Xf/0ovn71UyrZ0ptr9uGT37xN3SudMzH7yzfgP296USF+Vz2wEH/9vbsxf41kDBxpkmXrfnf/mwql/eyP5uCffvYANu49DkAm0pv95RuwraYVAGAZJs7+wu/lvZvkvX9592u45D9uV6XWdh9pwZmf/z1+cder6AtGYdkMf/P9e/APP5mLtXlU/IkFGzH7yzfg9meWI5XJoXcwglmfvxbfuPppNaZvXfcsPv2tO/Diku1gjGPNzjqc+flr8Zt738DgUAyprIFPffN2/PPPHlTlzG5/Zhku/MpNuO+l1cjmTBxv7cOZn78W373hecWK+OefP4j/8/17sGDtPggh8NqqPTjnS9fjukcWI5pIIxxL4dx/vQFfufxxVdruF3e9hk998zY8vUj6d0d1I2Z+7lr88u7X0BeMwjBt/OV378Y//+xBbNgjfffAq+uILR19Icz83DX43o3PqyRsX73iCfzdD+7DW/kSW+9sOIhzv3Q9bnzsbcRTWSSzBs7/txvx9aueVKXhrnxgIT7z7TtVabiDx9sx6/PX4vL756t5/Kvv3o0v/foRhcg99uZGfOLrt6jyZQNDMZz5+d/jp7e/rNDEb/3+WfzjT+eqElurth/BhV+5Cfe+uCpft97BRV+7idh//WNv4+9+cJ8qEVbX0otzv3Q9bn5yiUKEP/vjOfjmNU+jLo8IP/f2NvzVd+/G6yt3q9r2s798I659aJFKPPfDW+fhq5r/391zDJdedgeee2urQmovuex2/O7+NxVSe9fzK/HFXz+iGAbN3UEyZgD496uews/vfFWhrm+u3ot/+fmDar2nswY+/a07ybN29YML8cNbXlIJBvccacU//GSuKgEIAF/41SO467kVKoncUws3kzU3MBTD3//oflJ68pd3v0b8tHbnUfzHtc8o5Jwxjs/94iH1vALA3JfX4vpH31LIeX17P1kbAPDT21/GK8u9cniL1x/ANQ8uUsh5Mp3D169+SvkWAO56bgVeeGeb8u3+ujZcfv98ghr/+LZ5iskAyLJ17vPgjvHX97xOSnne9vQyxcoBZJKwR9/w5sNxGC6/fz4poffiku2qBCYg2QIPvfouQcHveWEVQcHX7DhKSugl0zkyh4BM6ucmTAQkI2LNjqPk5PzJBZsIor1mx1GS1G9gKEZK2wEgiRkB4NDxDvV8APIwqrDs3pYD9SR5oM4aAYC9ta14Y9Ue6O2Xd79Grl9csp3Me8/gMO59cRXpc9UDC8h49PJ5p9qH30QBQr/8SD+CGkLfF89hX3dUoe9CCBzuiyGYNNT6CCQMdEcyqo/FOLoiacRzluozlDIwlMoppD9nM4QSWgk6nw/DaQOJrKkS3GVMG7GMATNfgo5xgUTWQMbwStBlDAvpnKkQepsxZAwTpuXpNUwLpmmpd5LtODBME9GMhQmjyyCEgGWasC1LbWQsIwfTyIHlkX5uW7ByGTiWmR+TgJ3LwDay4C47wMjByqbA8n2E48DOpGAbEqH3+QA7k5J9XCTdysFKJ+AYWYVE2+k47GxKbpYBONkk7FQsn1xPQNgWnHQMTi4t9ULASUZgp2OqZB7LpWElIzK5nhAAc+AkI3AyCQjG4PP54KQisJMRlTiPm1nYiTCcXApuVnknMZTX65bDi8FODCm9wjbhJIZUmT0fACc5JPW6CHcuBSs+lGcUyOz6TiwAJxVVKKyTCMOOD4G7CLeZhR0L5kvzcfgElzLJiJdsLxmBEwuq0nywDDjRQckOyG90WSwAJxFWbAGRScCOBvJJ/AR8zAGLDkrk30XbE0Nw4kPKfmGkYWtlAn0QYNEBOMlhL0FfKgInFlD2wzbgRAcku8FNqOra4iboyyakTJ7t4ONMliNMawh93haFCJtZOJFBlWzP54OU0dH2TEyWMHTtt03YkQGSLJDFg/kShkzNkRMLqjFDcDJmOUdDknXgjtnMwokOemNG3hZ9zOkYHA1tF44lZTSk1omHwLSydTyXlmN2/SR4XsZLPMdSUeon25Bj1tB2Jx4iCL1kl3iJ5wRzZBlEDW1nyWGaVDHPFFG+FUIyF2xPhmusFneMTGMyuHp1tJ0baY99kh9joQwvQOiFbcjkjdrvMkk4mNdLkgcyp1imAKEXVo4mqxPCKxep69UTDjoWTTgIEB8Acr2Tf8/EafJA5oAVJMVjBUnxuJEBL0iKxwqQf/4hJcWD+CNv5513Hrm2bYdcm5Yt0lmD/K1ncFhwztV1cDguhiIJdc05F4frO4XjMPW3E219IhCOq+t4MiP2H20jfXZUNxI9zV2Doqa+UzAm+zgOEyu21ohYMqP67K5pFifa+pQ9g0MxsXbnUZHRbF62+bDo7B9S1zX1nWLn4SbxizeqxSfv2iiyOVPMX7NXhLR7r9t1VNQ2diu9rd1BsWJrjUims2qMb67eK9p6gkpm1+Fmsf1Qo7AsWwghRCSeEm+u3kP0Ltl0SNQ2eXrrmnvE6u21yse27YhXlu8UXQNhJbNx73Gx50iLmpveQEQsene/iMRTqs+CtftEfXu/0nvwWLvYuPe4yBmWEEKIdNYQr63YJQZCUSWzavsRcVjzb3PXoFi5rXCMe0RHX0jJ7DzcJHbXNCtbwtGkWLz+ALFl2ebDokGzpa65R2w5UC8MU9piWbZYsHYfWQ9bDtQTv/QGIkXzuHRztegNRNT14fpOcfBYu7I/lcmJ5VsOi0Qqq/ps2ndCtPd69rd2B4n9jDGxclsNsf/gsXbR1DmobBmKJMTWA/XCzM+rEEJs3n+CzGtDe7841tKrZEzLFhv3HhfZnKn6HKhrI/7vC0bEkYYuZT/nXGw72ECet+OtfaJncFhdJ9NZcei4N2YhhDh0vF3NmRBCdA2EyZwxxsSBujbybJ9o6yPP0XAsJVq6A0JvtU3dai0LIURn/xDxk2FaxE9CCNHUOUj8FIokit4NzV1UpmdwWK0NIeQ86mvDHZMuE4okiG8dh4nBoRiRGRyKEZlEKkvWk6tHb5F4ivjWMK2i95/uN9deXYZzLlKZHOlTqMMwLfLuE0KoZ1XvozfHYUUy+vwIUfz+duX0pts60rUQgvjt/VyP9LdwNEmuDdMi63SkPvFkhoyJc07W3EgymaxR9Dt2qn14regboWC9mDYTDqNzn7XoOjRsh/RhjIuc5ZA1Y1iOYFof22HCsr0+nHNhWLZgmoxlO8LW1jdjXJg21WvZDlnjDmPCdqheu0DGcaTM3z6wVXz/5QOCMSacAhnHtole5tiCOTbtY1mCc+3etiWYpoc5jnAsk8qYhuDM8x+zLcFsy+vDWL6PptfMkXsz2xKsUK+RpXotg+p1bMHMnLJXymQEd2xNxhTMMqgtRpbYwsws0ctsK6+XU71Ftmj2Oo5ghXoLbbELbFF6qS18xDF6MmwEW7huC8vbwgv0arbwEWxhhbZYOcEd753OHVv+TVt3zKRj5rYpuK3JcEbslzI5Yj93LGo/51KvJsMtk8owR/5N12sZZMzcseiYORdcG7Oyl8jYREbeu1DGomNmjPhJ9dFlHJvKcE78pProMoyRMbt9yDWj7wHOebFM0TV7XzK0D5Vx9ZBrPoJeXtyHXvP/8m/3/5TMiH2K/D+CXwr7FF5zVuy7Eeb1w/hG+KNH6PXYSkDGdurx8oZpY1dNM0FEjjb34HhrnzppCQ4nsPVQo4r7FUJg52FZ1sg98W7tDmJ7daNCK5MZA1sO1qNO63PoeCd2HG5WJcf6glFsOdiA+vYBCCFgWjZ2Hm7C7poWhRoeb+3DtoONCqUKx1LYdrAB+4+1q7HtOdKC7YcaFerZ1hvC1oMN6I+kMGF0OdJZAzuqm7Cjukndu6ahG1sPNqCpcxBCCATCceyobsT+unYYpg3GOLZXN2JHdZOKYW3sHMC2Q4040tgNxjhiySy2HWrEzsPNCrE8UNeeL2EVhBAC3YPD2H6oEfvr2mBaNgzLxvZDTdh+sFEh03XNvdh2qBHHWnrBOUc4msT2Q43YVdOiULRdNc3YfqhRlRxs6Q5i+6FGVJ/ohOMwpLMGtlc3YcfhZjUHNQ1d2HawEY35MQ4OxfO2yDE6DlN+cX3X2DGA7dVNypZYMovthxqxp7ZVzcnBY+3YUd2Enjxi3D04jG2HGlHT0AXGOHKmnMddNd5cH2vpxY7qJhWTPhRJYPuhRhw83qHmcXdNM3ZUN6n12doTxLZDjWp9pLMmdlQ3Yd/RNlXWqqahCzuqGxXCOhiOEV86jGPX4WZif0P7ALYfalSIdywl5/FIQ7dCiPfXtWNXjTev3YPD2FHdpNahYdrYcbgJh+u7FEJ8rKUPO7UyY+FYCtu0tQAAe2pbcUBbu+29Iew87I05nTXJmN21qo95cCiGndXNav04jGNnTTNOtPUrmabOQeytbVXPdSyZwY5DTYSJc/BYO+ryfgIkWrr7iLfmTMshfnKfR91PQ9Ekdh1pUXkEhBDYc6SFlMZs6wkSP2VyJlkb7jy293pI9MBQDNX1nQpJZ5wXlXBr7Bggvo0lMzh4vIPEoB881kHi47sHhtHUFVAypuWoZ9Ntx1p6SXx8KJIk8yGEwMHjHaS0WmtPUM0HAKQyBk6095PT6mMtvQR97wtGCTOAcU7euwDQ0hMk7+ZIIk1i6gGgsXOQlJzrCURI6b6caRM2AQB09oeJTDiWIoi9EKJIJhCOE5mK8lKC2FeUlyGrjQ8AavOMKHXfgTBi2rxnDYswAwCoZ9dtQY0FcKp9+I1pvgaAUMqEqeV+sDlH3LAVIi6EQMZySB+HCeRsx+sDAdNhcLi3lm3GYTpM9eFCwGZcxctLPfKd7T4DjAs4jCkbBQQY42Dc68O5vFb35rIP50LTw8E0vVwIMM4Rz9qYMKocEAKcMZXrxNVLroXUK9y/CQHOHHDGvHcDZ+DMgRCyjxAcnDNZnknpZVLGLZHmyvB8mT2l16G25PXKOeDgzPb0uvY7jqeXFetlbh/XXsZkvL8bEy3y91H3lnkABLM9JJRxidS568a1xfHyDwjHAXcsD9VkTP67awtE/j6eDC+0hTOpQxujcGyJDAqu2W8pW4TgUgfRm7fFleHyPnBRQCGK7OeOTe3nXN5X84u8j/Uevszbq8+jsl9bL47lIZJC5Mdskz5kzJzL8oU6wlqk15GlyNQcCXDHHEFGvw8nY5ZjtAC9pBtzIGzvPhAyhwJBVB0b0Mbs2S88vbZFEWLHknHnSi+X9mu/hcKh9xHMAZxCGc9Prl4dVQYrtkXeR5exqYzgBTIoug8YI76Va7VAhum+heyvy7j31mTAHCojOMDpng4F9wF3aAw6BJlDpVeXEbxABsUynBXIiGKZwj5u8k3tGrqvBae+Bsjalzr5iH6iMgW2fsD2R7+h59qPJSDjkoe0D1zLdtA9MEw+svqDUXQPDsO0pJOS6Rw6+4YwqGpNy41IR9+Q+oALDifQ0TekNgxZw0RbTwjtWp+ugTDae0PqgzQSTys9puXAYRxtPSG09Xofx/1DMbT3htDeG1IbV/fa3bh29IXQltcjhEA4lkJbTwiRtImqyhIYliNt6Q0p+3oDEbT1BNHWG4JlO4ilMmjtDqK1J4ihaBJcCLT3htDWE0R7b0ht+tt6gmjtCSGZySGTk2Ns6wmiN//x29k/JPV0B2E7DJFYGm29QbT1hDAcT8N2GNp6g2jtDaKjT+odGIqirSeIlp4gMjkTyUxO6XV95drS2h0EYxxD0SRa876KJTPImbYcT09QJX/rGYyoe5uWg1gyg7aekBoj4wKteZ3uGAfDcbR2B9HcHUQ6ayKdM6RtXQHPlr4htOb/xhhHJJZGa3cQLV3SFtth6j6uLX2BqOpj2Q4S6ZzU0R1QG67Wbnnd2S83g6HhhLx3dwA5w0LWMJWM+5HfPRBGa7ecRyEEogk5Rtd+xrgao2v/QDim5ppzjkzWRFtvCC3dAbXJ7OiT8+jO63AspexzHAbLlmuqpTuASH6T2RuMoLU7iO4BOeZEKqvst/KUUXdthPNjDkUSaOkOqoOCnGmp+7ibv+6BMFp7goreHE1k0JqfayEEnLy/m7sDalM2EIqhtSeIQP45SudMue60DXB7bwjNXQGkMlImnB+j6yfTsvO2BNUGvjcQQWtPAIl0loyxTzsoaOsJoaUrqDbwgeEEWruDyreZnEnWBiDzU7R0B9RmPBqXayqap+nL5yaEnkHvcGFgKKZ8CwCprIHWHs+3ANDWGySHC0PRJFq6Aurd5o5Rl+kZjKAz/y5xx9jaE1TzIYQ8pNA3/YFwXD3P7hhbugJkg9vRP0Q2p9FEGu293n1sh6GlO0A24/3BqJpDAEimDTXvbmvNr3U1xkgSg0NxdW3k3w1k0z84rOYdkIch+kEB56JIJhCOI5H2NvCZnIX+ED1c6OwLq7UCQIV86LYlNR3ZnFl0cNA9OAxb2yzGEhmcah9dIx9PAJKGg5ztzaHDBbIWUxtvn88H0+GwHG+z63AOmwnVhwu5gbfJ5lxu3t1vEpHfVOubc5b/m3544MrITR3ARX6znrdPXef7COQ3xYUfjsLb4AshYNoMWYth4ugyiPzf3I2j1CsT33FtAy8EV3qFq5dzbbOVt0HbSLk6XL2Cs/zGNq+Xyz76Rsq9JhtK7h0mCCXDivVqm1v3b+6Y1bW2ufXsEQDncvPNmRyhK6MdQBTKyI9yXa9MpufpAYSQOtQmQXDVh9riEFvAWP5jXXh6uXeY4NniePZzeSCh/MIcqcfdFHCeP6RwvPVS4Be4hzD5zZPaeLibKQHvProt+mGI8O4Dd7UqGffQgtpC+kDbnBccoAhGDwrUffS1wByQuS84QHGvyZgdW40ZAsW2ufOhHSzJPnSjTajZvPAASBTpde31xizHSA8gHLrh5Xn7Xd8KkZfRnvvC+4j8GlSHACDzofvfuw+Xyd/I5tyWm3g1RkY3okIUyRRu+uUhUeEGXpsPyEMisoEXXPqB2OJQmcKDgrxf3ktGjvG9N9ZFekc4KCjaWI8gQw9LRPEBhf685HWQgxx3ngvv82E08UfeTkZDsAvoakJIWqTeook0oYtyzgnFXQhJ19UpsolUltCChZAUX51m2jUQJhRrx2Fib20LoZXWNnYT2mxwOE5o+kIIsf1QI6Fhn2jrE81dg+Kv7t8ifvzaIZHNmWLTvhPk3rsONxF6dGf/EKF3M8bE2p1HiS+qT3QQCvJwLFmkd9O+44Qa3NDeL6pPdCi9lmWL1dtrCTV1z5FmQu3vD0bEjupGQk1dt+sooaLWNnUTCng6kxPv7q4jc7D9UIPoC3r+be8NFo1x3a6jxHfVJzqILeFossiW7YcaxXDMo8k2dQ6SsAjLssXm/SfImjl4rJ34ZSAUHXEederyibY+0a2FJqQyuaIwjoPH2skcdQ+ERWu3Zz9jck3p9p9o6yP2D8dSJJxBCBm2oc9rR19IBIfj6tq0bHG0uYfI1Lf3E/8Hh+NkjXHOxfHWPjLmzv4hMuZUJkco+ELIMAJ9zIFwnMwZY6zoeewZHCbPUTyZKaKS62tDCElP1/1kmBbxkzsmfczxZIZQ8DnnRTLRRJrIZHNmEf1cH48Q0g+UIsuIb4UQRfT6nEFpe+4Y9GaOQGEvfP8V0toLKe2c85PS2j8qmvufaztFuf/o2sl8ywrol5zzIgq+U0ClZCP0sZ2CPowRCj7nnFDl/7BeVvBucEbQS+m6hX0cxkQwnhVn3bROPLqpWfC8jKKRF1Dw5X3sEfpQ2q9tU6qw4ziUgs+YcAroxcXUfkcwu0CvZVK9tv0+9FKqc6FexpjU+14hA4wRer0QQoYQkDGOFIpQQO+27QIKeLHeomvHoTKcjyBTQM1mTpEtxXoL6dyMyIxkC2fvw5b3QQEv7uNQCjvngjvFtPFivYUyBX2cESjgRbRlZwRb/ovU8pEo1IX3GYmy/mdAR//forn/ubY/C8p9MkOTFry+cjcpQxUYTuDzv3wYx1v71N9+escruPmJJYpOuf1QEz7z7TtVEi7HYfjsj+bgN/e+odDV59/ahksvu10lkOsNRvDxf78Fl98/XyHpV8yZj7/4zl0qedSW/fW46Ks34abH30Eqk0MincVXr3gC//dH96vkV08v2owLv3KTSjDV3BXA3/7gPvzb7x5XVM3f3Ps6Pva1m1U5qjU7juJT37wd4ZSBCr+kbH7j6qfw6W/dqRLRPfL6elzwlZtw+zPLkcmZONLYjc/+eA4+94uHcaylF5bN8Mu7X8OFX70J85bKRG5vrT+IT33zNvzk9pcRCMfRF4rhK5c/js98+041pjueXYELvnIj7n5+JbJ5avH//eH9+NJvHkVDxwBiqSx+cvs8fOxrt6jEYS8u2YFPfP1W/Pqe1xGOJtHUFcAXfvUI/s9/3qsSel05dwEu+MqNKjnX2p1H8ZffuQuX/f5ZdA2EERhO4LLfP4tPffM2rN5RCyEEHnr1XVz4lZtw85NyLqvru8gYc6aNn9/5Ki766k14bYVM9rZg7T5iS28gomzZWyuTDF7/6Fu44Cs34vH5G2HbDrYcqMdnvnUnvnvD8+gNRBBJZPCt38vkgG7SrycXbsIFX7kRdz23AtmciRNt/fjbH9yHr1z+hJrHn9w2D5/491tUsrolm6px0dduxnWPLEYilUVwOIF//NkD+KefPaCSG97+zHJc9LWbVUK1PbWtuPgbt+JXd7+GcDSJrGHhG1c/jb/9wX3Yd1Ta//zb23DhV2/Ckws2wbYddPSF8OnL7sB/3vyiYnD8/K7X8BffuUuV+1qz4ygu+MpNmDNvDQzTRjSRwd//8H5845qnFbp+9/Mrif9rGrrIGhNC4F9/8yi+/NvHVOK5l5ftxCf+/RaVYHAwHCdjBoBf3v0q/uUXD6oEfRv3HifrPZMz8dffvRu/u/9N9azd99JqfPbHc7wkle39uPArN+GFd7YpBPVLv3kUP7/zVYX8v7FqD/5GW3OxZBYf+9rNyk8A8Ot738APb3lJobnbq5vwF9+5C9vy5fA4F/ib791DEsLNnbcW377+OZUQrr1viKwNAPjG1U/h3hdXKRR80boD+MbVTymEN2uY+Ivv3KV8CwBXP7QIdzy7XCHa+4624iuXP04o3F/89SNYutkrh/f4/I3k3TYwFFPPptt+cfdrWLz+gJJZsa2GzAdjHF+94glSQu++l9aQRIB1zb246oEFpITeb+59g5TQW7B2v3ruAFkaTp9DQCYUdEsaAjK8yH0fue3mJ5aQMKoFa/fhQJ2XPLBncJgkZgSAZxZvIQntdh5uUs8HIJPiPbt4C5FZtuUwKbvX0h0gZfcAmcxQD3nYc6SFIP/xVJYkHOwaCOOaBxcRHd+78XkSZrB0czVOtY+u6eEmANAQSiGW8/6WMhz0xrIqmZ3P50N/PEMS3qUMG0OpHKz8euFcYDiVRdrw+qQNC/GsqfTYjCOeySFnekhQOmciY5hqfZu2g2TWS4onuEDWMGFYXoI7w7KRNQxVpo4xLpPgaaXtLNuGqZWgcxwHwbh8NsePKgMXMimeldfr8/lgWxZMw4DjJsVjHJaRg215VGbbNGEZOTC3vJxjwzRyKrkeOIdtZGEbuXwGdh8c04CVzajyd5zZMrmemcsj/QK2kYGdS4M7+eRjlgkrm4LjJsXjDuxcGo6RlXoBOEZWJttz9dqWlDFzCp23c2nY2bTMIO/zgZk5WOmCJH7ZlEzQl2cV2LmMTNCnkviZsDJJOGY+KSJjsLNpOLmMYgw4uTSsdAIsT5tmtpFP/JfxbMmmSOI/O5eBlY6rxH/csWClE7BzmbwtXMpkvNJ8jpmDlY6rMXLGYGeSeVvyc5RLw84kVLJAbhmwU1GwfBJCwTmcdBxONqmQZmZkYKdiqkwgty3YqZjUK6RfnEwCTiap7OdmTurV5yiVT1yYR0OdTBJOJuGVLLRMmewwbz8Eh52OwcmmlP2OkYGTjnsyjk1lANjpGC1HaGZhp6KSmg+J9NrJYS9BIiDtzybUmLltwk5FtKR4AnYymrc/L5NL55Mq5pkLzCZJFQHATkXJmJmZlaUQVdk6BjsZUX4CACeb8BIx5v3ipOPgGhJrp6JkzCyXJn4SzJYlGPWkeOk4keFmTs6zxhYolGHZlCwz6aL6tgUno8kAcNKebwGZuE33rSz3SBPPsWzC821+HTKtjCAgimWMNJERzPYSS7p9tPKWrr+5nhSPs2KZggR33DbJHAohimWsHGVeMIfIuPfWQxG4bVIZwYtk5HUxq4L4SU+kJwTsNGUGOnrJwP9O+28fCXzE7WSnFiOd7hSiWOmsUXTiPRJyp/dJZXJFfdp6guR+fcEIQQ0tyxb1GtIrhES4dSQuEI4XIf8H6toIstjY3i86ByPirJvWibtW14tkKktQcldGRwXbe4MkaRhjTGw9SBOlHWnoIsm8gsPxIr07q5sI+l7f1k8Qb8OwxLaD9cTe/XVtJLFY90BY1BWgv1sP1BM/HG3qJkhuPJkWe2tbCZq4t7aFoNdtPcVj3H6okY6xsYvYEgzHi2zZf7SVoKXNnQOiX0Oic4YpDh5rI36pbewmfukPRovmsfpEB0FHmzsHRTSR1saYEY0dA8SW4y29xP6+YITY7ziOONHaS2RauwPE/kg8RZB0ISTrQLe/NzBMEqEZplWEpHf2DxH/D8dSZI1xzgnjQAiZ2E0fcyZrkDG7fXT7I/EUWT+MsaJEYuFoksikMrkitLrwPvFkhsiYll2Eihcmg8tkCxLgcF6EnBfqMC27CMEutK0wGZxEw/5rSLor917X7+fE+/2ckp9qH207hdB/dO2DfCMU/o2N8IwU/s1hFIFiRddMOAXP58nQdyFEMao/AhOgGG13xP72sDjrpnViWU1fkd4/JEMSp42A0BdeM8cp1muPJPP/t3fm0VFUaf//VlV3tu4knY1AQkKAEJbQCRAQJAEVRYJnODLovOPrOHhmFLczrzLLq+j4c1wI4CDKJksHBJQdQU3YN9lBhhgclQyLsgTEqCwJS9LdVX1/f1TV7apO6CA/TJNfns8cz1Dd97n13O+9t/LcvrfuNaaR66dpZJb5WjP/pnxl8+z1NW0a87eRmfRrrhZowBcjN17GQF+C29SbjQ+YfWesodUCgXWk1JtJbzhfJWiahmfFA2e4g8+KNzyTHpjmRmfS66cxXTc4qxz8b2xznxW/0Zl04pelWc7QV1RUoE+fPsjKysKgQYNw9uzZoOlrAzYpWrfz31i9/SD/haTqXA3+962lpqOE3pj9CSZ/sIHPFO0sO4wnX5+PdTv/zX8BH/nSbEyYu5rPvhR/uB2jXp3H8z5+5ieMGD0V/3xvDd/46W+TluKp1+dj456vwBjDxt1f4b/+Op3f60qdBw89PxOj31zEZ4umLd6E/35+JmYv/xRXat34z/HvMPzZKXhxygq+quB/xi/EyL+7sHjtXsiygk+2leO3Y1wAAEHx4uLlWvz2b+/i6TcWYP0utQwT56/Df/11OqYt3oSLl67i4H8qMfzZKVwLWfHh6dcX4PcvzsbC1Xvg8cpYsnYfRoyeiiJXCU589xOqztXggT9Pw9NvLMCG3V+CMYZX3l2F3/5tBt5dshnVl65i1+dHMPy5KRjzznIcPHwKV90e/OHlOXj05WIsXbcPsqzAteJTPPDnaXhz7hqc+eECvj39I0aMnopnxy/kM2Cj/7kYD78wE3NWbsPVWjdWb/8CI0ZPxT/eXaW9+12L/35+Bka9+h4/1mrivLX4zV+nY8rCjTh38TLKDp3A8Gen4PlJS/H5oRPweBU8+do8PGrQbmHpHpMv3/14sZ4vYyavwMMvzMJ7q3agts6DzfsOYfizU/DqjI9w9GQVLl9145Exs/HU6/OxducXYIxhyqKNJl3Uo8vUevzy6GkAwKhX5+GPr8zFyk0HoCg+LNvwGX7zl+l4+/31+OF8DX68cAkPjJ6Kv721hM88v/LuRxj5kguL1qgzg9sPHMaI0dMwYe5qnK46D7dHxiMvuvDcBL//s5Zvxe/GzMK8j3Zo7xdX4dejp+L1WR/j29PqbPtzExbimbHv87Za8mk5Hn5+JmYt34pLV2pxoeYqfvPX6fg/01fy2fYJc1bjidfmcf33f/ktb2P6TO2jf3dhzOTlfHZ3/ic7TWWurDqPB/88DW+/v57Pur7wznI8P2kZP25yw56vMPLvLizR2s/VOg9+N2aWqa9NWbQRf35zMfYcPApA3QjwkRdn4/2SXfyd82fGLsC44lK+6d2Hm/6F/xn3AT828NzFy/jdGH89A8Absz4x6bT74FE8M3YBNu/7Wp3J8DE89o+5cK34lM+cz121Hf94dxXfEPHb0z/iSUPbANQj0GYu28Lfr16z8wu8PG0lDmkz51dq3XjqjfmmI9umLt6E6Vr/BdTNPI3tCQD+d9JSfLSljM/mLd+wn/cHQN3744W3l/FjJwH1uMQVG/fzWcJdnx8x1Yei+PDSlBWmZ+bC1Xt4fwbUfQTemr/OtFHe2++v5+0WADbv+5q3WwC4dKUWE+etNW2UFzjb/u8jlfigdLdps9NpizeZNjvcsPtLvppGL+OCT3aaZmIXr91r2uyw7OvjvN4BdYb+/ZJdpo3/Nu75ynTs3klto0gjH20pM/3NKfv6uGkPg0tXarFFays62/5VYZqR/6byB9NRfcaVA0Rwfm58AMC0XwEAXLzqwVWPv315ZB+qaz2QDatCqms9uGqYAXd7ZVyp8/Cj43xMnUl3ew1ptE1h9XwUn4Jat4fvLyIIAtzazLq+CZ6sKKjzePjsO2NqPh6vl/dpWZbh8aqbvDLtnW6PwUYQBHi9XnhlGYq2gZ2iKDh3SZ3F0o+t83o88Gr5CoIA2euF1+PxH1vn88Hj9kA23Nvr8UL2ev35er3wuusga+X2MR+87jp4PW4+Q+/1euD1uP35ygo8bjdkr7ZpFgO8Xg9kr4fnK3tleN1uf74+HzzuOnj1FQUAZI8bsrsOivZerk/2wltXp+bL1Pf8ve46KB43fPqxdbqNli/zyfC6a9Wj+XzqagHZUwfZ4+ab6allrOUrAZhPUe9jKGM9XxTF5AvAILvrILvr+JF/itcTYCPDW3dVXZWgl9FdC9lT558V97oh1131+8J88NZdUVcPaL4onjrI7lp1Qzquy1W+KgEM6n3cdfBps6Oy1wPZXct9Uct4VTuyUDt+0H1VzZf771Vt9E3jfMxvo7dVdx0Ug/+KLJv8B2OmMsNQr7zMPsVsA8BbV2uyUTT/fdx/ptn4N5qTPXWmMvsU2VRmgEGuq/XrBEDxuk1lZopczxdZ94UfJ+eBXFfrn6Fnvno2irvO5L9Pkc02QH0br1urZ/8eBorbbKMY6wPq6gajDRjTdDLYeNwmnZiimG00f42z+j7Za9IJzMfbIPffU8froyEbxlg9G8XrMdsoivk+er4BmxIqsnmzw0AbxevhdajrbbJhrJ6NT/aabJjPx58bxnxNM/TapqHchjFTfej5soA9AIw2AEy+6fkabRSveZx7o1gaT3JzeeqppzBmzBg88MADmDRpEsaMGYMFCxZcM73VKpmuu3ZMQUKsDYIgAABibBG4b2AucrLSeJr8Hp3Qvm0SEhx2AEB6mwTcNyAXBb06QRAEiKKAoQU5GNi7C1KSHACA3M5p6NKhDQb0yoIgCEh02DF0QA6GDshFGy3Nnb27ICM1Ef17ZEIQBHRMb4XCghwMHZCDBIcddW4vCvs7MahvN+R1aw8A6NU1AzlZCgoLnLBFhqNVfAyGFuRgaH4OunVIAQDc3bcbunVMxeB+2bBYJGS1a43be8n45CzQrlUsbJFhuLe/E0PyncjvqZahT/f2iAwPw9CCHDiio5CS5MDQAieGDsiBMysNkihiUN9u6JfTEff0y0aY1YKuHVJgt0WgMN+J9NbxqPz+PIbkO1FYkMPLdHuPTKQkOTAk34nY6CiktYnH0PwcFBY4kd0hBV5Zwd39snFnn664u283WCwScrLS0KldawwpcCIlyYGfLlzCvf27Y0i+E72zM7h22ZmpuLe/E1GR4chMb6XeOz8HmWnJOF99GYNvV20G9u4MQRCQl90etshwFBY4keCw8zIOyXeie6e2EAUBg/p2Q/8embhH0y47MxWJcdHcF7fHq5XR70tBryy0a5OAwf27IzIiDO3bJqGwwImhBTnomJaEq3UeDO7fHXf3zUZBT7U95HXLAGOM69I6MRb3DcjF0PwcdG3fBgAwuF82enZrh7tu6wJJEtG1Qwoiw8NQmO9EUlw0BACFBTkoLMhBbud0ta327IREhx339OsGq9WCjJQEFBaodZLaKg6yrGBI/+4Y2Lsz979Hl3bo0j4Fg/t3R0S4FUnx0SjMV/3PSEkEANx1W1d0zmiD23M7QhAEZGW0BgAMyXci2hYJQRA0/Z3Iaqd+19fZEXZbBNe/bet4DB2QiyH5TsTF2MAYQ2FBDm7PzeRt19kpDeltEnFnH7XM8TE2tYz5TiTGRQMABuZlISM1iffRzLRWGFqQw9tPOGMozHfi7n7ZvK/ldctARJgVvbqqZU5OjMXQ/BwMvr07wqzqY+ueftno1TUDaa3jAQBd2rdBckIs+mSrfS/aFoH7BuTg3ny1ngGgX24m2ibHcZ3SWiegsCAH/XI6as8GYGhBLu7o3Rm2yHAAQE5WOsKsEjq2bQUASIi1oTA/h7cNtYxd0L1TKmLskQCAjmnJSIqLRucMtW1EhFm1Z05nbtMnuz1aJzrgiI4CALTWyqi3JwAYfHt33ObsAFFUf3vt2iEFPbu2Q3ysTX3+2SNRWJCD7h1TuU3/HpnonNEGkqTapLVJQILDzutDkkQU5qvPCZ0eXdKRHB8Di0V93ibG2VFY4ERyQgxPo/dhncz0ZDg7tYVVq4+IMCuG5Dt5HQJAn+4duNYAkJLkQKv4GF6HAHBv/+5IbRXHr7t1TEWi9uwGgFh7JAbf3h3hYVb+WX6PTrzeASAjNQmR4f7vLRYJg29X+4dObuc0JGkaqGWMNl0DwMC8zrytAEDH9GTE2CL4dWR4GPrlZvI6BNS2GqW1FQBokxhrum/71CQQ18fPjQ8AQBLN8xKRYRLCJNHwvYBIqwRJ9NdZuEVCmEXk9WgRRUD05yUIAqySBKsk+dNIano9H1EQYZH8nzPGIEkSJEmEqNmIoggRgCSq+QgCgySJ/JqnEURIWj6CIECUJFO59GtR1NKIIqrr1CDeERWmPbv83+v5CqIIUSuDKAiAJPFrAJC0a3++Er+/6otqL0oWCIKo6SlBkPz5CqIICaoN9HxFCaLoz1eURJ6XP18LJIMv+n3Ue6n5CtrngN9GlCwQNG1EyaKWm+crQZQEiJIFEAQITEsjSRAkc9n4fQQRokVLIxjy5eVWtWWa/4AAaPaixeCLKEEQJYMuEkQLIEpWrotosWr+q89ZQbJAEGDwRYAoWSFaLIDBF0H/T89XECFarKp2Rl+4jcT18usCnoYxpt7HpKWk+ajaMFHQdLEY/LfwcgJQ60iw8vswMM3GUGa9LnQbrreF9xtVF3/7ESQJAiReZl5GyWpoLxbt/iL3RTT6ote9Vh41jaqLXmaIqo7GNKJF11r024gi9x+CUM9GkDRN9GtBhGDx17Op7nn/1HQ12IgWq8lGsFhVvY3+G+6j+yJIhvtwXXQbEaLgr0NjGfl9+PNJz1c0tUF/vpIpX+O1nq/RhmvHbQQIgsVsI1m51g37Ipi0Vm0k830EUcvb6IvVdG3Sjecb4L+h3vUyAgYboJ4vguG5oWsnmE1M9c59Aa55faM06YC+qqoKFRUVGDFiBABg1KhRSE1NDfoHWxQC/liHWxFhCOxEUUR8rI0HogAQa49CXIzNbxMRhvhYG7cTBAGJcdGIN/4wYI+Ez8cQpQVzYVYLEmLtpjTxsXYkxNp5PrbIcCTE2vi9JFHNNzHOjjDth4jY6CgwxhCrBe2qL3bEO2w84E5w2JHgsMEepQaO0bYIhEdFAfAizhYGq0VS08TaERmu+hcfY0NkRBgfDEREWBEfa0dcrA1WiwTGmFZGO6K1gDQmOhKJbjviHXaIoqiW0WFHosOfr1pmOy+TPTICCXHqZxaLBB9jSAzwNy7GhiiPjIRYOwRBQGREGBIc0Uh02HkQnhgXjQSHHbHagCfaFoEEh1+HMKsFiZoveh0kxNphjwrnvtgiw9U6iIuG1SLB52NqHrF22LWAOsYeCVn2cV8iwqy83nRf1PsafImKQKJD9U8URVgkideJPkhwREdBFEXui96mjPWYFB+NREc0HwjG2CK5noIgwMr1juYDmvgYGxIcdkRrWkZFhqv+xdh4IJEYF23yP9YehagIBTE21f+IMCvXQR/4JQbUqz0yAvEOO28vFklCktY+RC1AdcREwREdxfWPDLciPtaGOM1Gz1dvC3oZrRaJl9mq1aNeZt5vHHZYNRu9jHqdiaKIBIe5Pzqio2CPiuD9KCLMiniHjbdlvU0ZbWxRERAFkeuk1mM010n1xcbrWS+jsU+r+dp5fwWAaHsE7JERvJ7DrBYkxtlNA8g4TTudqIgwWCSRa6uW0d+21XwjERfjtwm3WpAQZ+f30f21GQaLtshwxNgj/QG5lq/p+RcdZbKJCFOfmcY/KAlx/vrQ89X7M8/XUId6vsaBeESYlbdbQH2uJjjMNjE2fx0CgNUimQbMgFrXRpuoiDCEhxmCDUHgP5TwfA0aAECYVTINogGY2goA2KMieL3rZTRqoOtgJDLcarLRnylGAq/DrBaTTYrhxwri2txIfACA9zEda8AAXxQFiAzm9iIJfNANwDTYB9QQTh9gG9OYgjJBzTswjTFf/d/+2FTQ/vP7I2rXgfeHlpYxxq+N31/U9gmIi/LHNUZf0NA1/6d2HFPAjfVBNA/AoQXLxnSGQRTPC4L6Pz1fUQzQSjT7p//blK95MADDAFAQBDB15AuIAWlE0Z+PKAJM8GunpQkMuI0DKfXfYv1717Mx+MKE+mm4b/5BEUSBl1vVxTzIgz7IMAykIFm0QYHBJuA+grHuBKEB7SwB2uo/VDXkr1lv/wBG0Pw11KVoMdkIgggmwHAvzcZY1wGDPr+/Rv8kXmZdB1PL1Ou+no15EGraXdyQb6ANzxYCmCgZyowG9A5cyKz5YrAJHLiqdRowSKvnf/0+gcCBniCabbQ+HGxwaOoP3CawDwfYBPZFNeOAehPrfV8PIbDfC4EJGn7mBLaPBvIN7ltDNoHlaSANGktzHTYNpmkccx3enMXyTbrk/vTp00hLS/MPomNiYLVace7cuWva1LrNSxE+3V+BxWv38uWkP128hCJXqWnp5LyPd+DNuav50s+yQycwrrgUS9Z9pp7tLSsoKi7F+OLVfGnk6m0HUeQqwcLVe/jS4XHFpRhfXMqX5xZ/uA1FrhIs27AfPp8PB74+jiJXKb/X5Vo33vlgPYpcJVizQ12Ou2aHmu/b76/HxUtXceLMT5g4fy3GFZfy5cRzVm5DkasUs5ZvRZ3bi/1ffoulG8sAAJdrLuNc9RVMX7IZRcUlWLJun7px3rZyjCsuxcR5a1F1rhrHTqlLZMcVl2LrZ4fg8Sp4b9V2FBWXYMbSLait82BP+VGMn7Ma44pLceibM6g6X4NpizahyFWCpetVbT7c9C+MKy7FWwvW4cfzNTj07RlMnKf6u7PsCC5dqcOcVdsxrrgUrg+3we3xYstnhzB+TinGzynFsVNVqDx7DpM/2IAiVwk+3qpuAvZ+yS4UuUoxeeFGVF+6irJDJ/Dm3DUYV1yKsq+P41z1ZcxYtgVFrhJ8ULobiuJD6bZyFLlK8M/31uDsjxdx5OT3eGv+OhS5SrD1s0Nwe7yYq/kya8WnqHN7sePAYYwrLuG+nP3xIqYs3IBxxaUo0TY8XLR6D4pcJZi8cANqLtfi4OFTmDB3NYpcJTh4+BRqrtTi3SWbtTaj6r1mxxcocpVwXb6t/AH/nGeuxxlLVf/f+2gHvF4Zu8qPYFyx2j4qvz+PH89fwqQF6zDWVYJNe9VN2Bav3YsiVwlmLNuK2joPvjxyGuOLSzFh7mocPVmFWrcHkz8w+7925xcoKi7BlEUbcelKLU6dPYcJWr3qy7VnLNtqaqu7Dx7FuOJSTFqwHuerL+NCzRVuoy+FX7Jun0n/r785o7aF+etQda6avwYxrriEL4leu0vVZe6q7fB6ZZz54QIvs76MevaKT1HkKsFmbeO5fV8cQ5GrFLO1OrtS68b4OaWYMGc172vLN+zHWFcJ1mqvyRw+cRbjikvx7pItfHnzW/PU9n74hLosd/PerzGu2N/mfjhfgyKXXycAmLtqB4pcpfjqmKrT5xUnUeQqwXJt4zlF8aHIVYJ3tP4KAJ9s/RxFxSV8I8OTZ8+hyOXvi6reWzBpwXq+FH53+REUuUr4hnCXr9ZhXHEp1xYAlq3/DBPnreXHxx0+8T2KXCXY+4V/ifqkBesx7+OdfCn8ln2HeH8A1KP6ilwl2FHm39xtwcc7MXfVdr6s/eB/TmLCHH99yLKC8dpzQmf19oO8PwPgzz/j0Xyzlm3lm3ICwN4vjmGm9swC1NcKjHWo1+M67TUhQD3vfsbSLaYl6u+8vwFHT/qPh9u872uUGl6rOld9GdMWbzIdh7fgk1283tUynuL1rpfx3SVbTGfTl24r569AAOoxjau2HDAthfugdLfpWLrd5Ud5WwHUejRuUggAq3d8wTccBICK42dNm7QS18eNxAdAvRAeXkU2nU3v8/ng8cqmIwy9ssyXuAPq0nivIQ1jDLIs8w3leBrZn0aNJcxpvLJsSqP4fOq9tKXnPkO+fMm9okA2LKf3Mab510Aa7dg3xefDhctqf3BEWv3+GpbTK9q1ccm9fu3T85Fl9dqwlN9YJt/PyJf7q+UrB8mXGbUz5mvUQbfxevlxd8oNljGYL74G6jrQF0X3V1/a35AuimLyhV1LF82GlzGYDeBvL4G68Nc4Gvff5/Pxe/ufkdfwX1HqlZEF6G1s3yb/Gavnf2CZWYCNnkYx2Ohl9AX6YuyPAX1EL6PuvzENv4+WL18ar+VrstH8Ny4TN2rAGrLR0xiWiRt10n0x2uh6m545DdkYfdHaoSmNQVs9359ro2tnWrIeYGN8ThjzNS1ZD7RRFJONrp1pyX2AjU9RTDrpaYLdh/l8jdr4Ar7XnwWmfAOufT6f6VWFBtM0kG+gTWAao/Y3E4H9ErlegwMHDuDJJ59EWVkZ/yw+Ph7Hjh1DfLy6fHLq1KmYOnUq//7EiRPIyMhoKhebHdXV1YiNjQ21G7c0pFFwSJ/gkD6NQxoF59SpU/B4bs57cv+/cj3xAUAxws+F+mZwSJ/GIY2CQ/oEh/RpnJsRIzTpgL6qqgpOpxNVVVUQBAE1NTVITU3FpUvX3rI/MzMTx44du+b3LR3Sp3FIo+CQPsEhfRqHNAoO6dM4NxIfAKRtY5A+wSF9Goc0Cg7pExzSp3FuhkZNuuQ+OTkZXbp0wapVqwAAxcXF+PWvf92ULhAEQRAEcYtB8QFBEARB3BhNvsv9zJkz8eijj2LMmDFo27YtFi1a1NQuEARBEARxi0HxAUEQBEH8fJp8QJ+dnY0DBw5cd/pnn332F/Sm+UP6NA5pFBzSJzikT+OQRsEhfa6PnxsfAKRtY5A+wSF9Goc0Cg7pExzSp3FuhkZN+g49QRAEQRAEQRAEQRA3hyZ9h54gCIIgCIIgCIIgiJsDDegJgiAIgiAIgiAIohlyyw7oKyoq0KdPH2RlZWHQoEE4e/ZsqF0KKZWVlbjnnnvQuXNnOJ1OjBo1ip9Z+NFHHyErKwuZmZl44oknoChKiL0NLY8//jgEQYAsywBIHyO1tbUYNWoUsrKy0LVrV7zyyisASCOdjRs3Ii8vDz179kTv3r2xe/duAC1bn8ceewypqammPgUE1+SVV15Bx44dkZmZiZkzZ4bC7SajIX02bdqEPn36IDs7G06nE9OmTTPZtCR9fikoRjBDMcL1QzHCtaEYITgUI5ih+KBxmixGYLcoAwcOZB9++CFjjLG33nqLjRw5MsQehZbvvvuO7du3jzHGmKIo7KGHHmITJ05k1dXVrE2bNuz48ePM5/OxYcOGsffeey/E3oaOzZs3s0cffZQBYF6vl/QJ4JlnnmEvv/wyvz579ixpZCA5OZlVVFQwxhhbs2YN69mzZ4vXZ9u2bez777/nfYoxFlSTrVu3sry8PFZXV8fOnz/P2rVrx44dOxbKIvyiNKRPWVkZO3HiBGNM1apTp05s//79jLGWp88vBcUIZihGuD4oRggOxQjBoRjBDMUHjdNUMcItOUNfVVWFiooKjBgxAgAwatQofjZtS6VNmzbo27cvAEAURfTu3RsnTpzA+vXrkZ+fj4yMDAiCgCeeeAIrVqwIsbeh4cqVK3jppZcwadIk/hnp4+fy5ctYvnw5Xn75Zf5Z69atSaMALly4wP8/JSWlxetzxx13IDk52fRZME1WrFiBP/zhDwgPD0dcXBwefPBBrFy5MhSuNwkN6dOrVy+0a9cOABATE4POnTvj5MmTAFqePr8EFCPUh2KExqEYITgUI1wfFCP4ofigcZoqRrglB/SnT59GWloaBEEAoBbWarXi3LlzIfbs1qC2thbz5s3Dr371K1RWViI9PZ1/l56ejsrKyhB6FzpefPFFPPfcc0hISOCfkT5+vvnmGyQlJeGFF15AXl4ehgwZgi+//JI0MrB48WIMGzYM6enpeP755zF58mTSpwGCaUJ6mTl8+DD279+PO+64AwDpczOgGCE4FCM0DMUIwaEYoXEoRmgcig9+HjcrRrglB/TsGifp6X+8WzKKouCRRx7B3XffjcLCwga1aok67dmzB9988w0efvhh0+ekjx9ZllFRUYG77roLZWVleO6553D//feTRhqyLOPNN9/Exo0bcerUKcyaNQsjRoyAz+erl7Yl6mMkWJuh9uSnqqoKw4cPx4wZM5CUlASA9LkZUIxwbShGaBiKERqHYoTgUIxwfVB8cP3czBjhlhzQp6WlobKykheqpqYGXq8X8fHxIfYstDDG8Mc//hE2mw2TJ08GoP5yoy/TAIBTp06hbdu2IfIwdOzYsQPl5eXIyMhARkYGACAzMxOtWrUifTTS09MRFRWF+++/HwBw33334eLFi9SGNA4ePIiffvoJvXr1AgAMGzYMp0+fJn0aIJgmpJfKhQsXMGTIEPzlL3/BAw88wD8nff7foRihYShGuDYUIzQOxQjBoRjh+qD44Pq46THCzXrp/2YzYMAA04Y3v//970PsUeh56qmn2IgRI5gsy/yz6upq1rp1a9PmE3Pnzg2hl7cGMGx4Q/r4GTRoENu1axdjjLHPPvuMpaamsosXL5JGTN38x+FwsOPHjzPGGNu9ezdLTk4mfTQQsOnNtTTZsmVLi9v0hjGzPjU1NaxPnz7s7bffrpeupepzs6EYoT4UI1w/FCM0DMUI14ZihGtD8UHj/NIxwi07oP/qq69YXl4ey8zMZHfeeSc7c+ZMqF0KKbt27WIAWLdu3Vhubi7Lzc1lo0ePZowxtmLFCpaZmck6dOjAHnvsMd5gWjLGjkP6+Dly5AgrKChgTqeT3XbbbWzv3r2MMdJIZ8GCBSw7O5vl5OSwvLw8tm3bNsZYy9bnkUceYampqQwAS01NZQ899BBjLLgmL730EuvQoQPr0KEDmz59eqhcbxIa0mfs2LEsLCyMP6tzc3PZwoULuU1L0ueXgmIEMxQj/DwoRmgYihGCQzGCGYoPGqepYgSBsWu8jEYQBEEQBEEQBEEQxC3LLfkOPUEQBEEQBEEQBEEQwaEBPUEQBEEQBEEQBEE0Q2hATxAEQRAEQRAEQRDNEBrQEwRBEARBEARBEEQzhAb0BEEQBEEQBEEQBNEMoQE9QRAEQRAEQRAEQTRDaEBPEARBEARBEARBEM0QGtATRAtj3bp16N+/P79esWIFMjMzsX///hB6RRAEQRBEqKEYgSCaH5ZQO0AQRNNSXl6Onj17gjGG1157DWvWrMH27duRmpoaatcIgiAIggghFCMQRPODBvQE0cIoLy/HgAED8OCDD8JisWDHjh2IjIwMtVsEQRAEQYQYihEIovkhMMZYqJ0gCKLpyMzMxIULF/D0009j7Nixpu8uXLiAuLi4EHlGEARBEEQooRiBIJof9A49QbQgampqcPr0aQwbNgynTp2q9/3jjz8eAq8IgiAIggg1FCMQRPOEBvQE0YI4ePAgunTpApfLhaNHj2LSpEn8ux07duDw4cN49dVXUVNTE0IvCYIgCIJoaihGIIjmCb1DTxAtiPLycvTo0QNhYWFYuXIl+vbtC6fTiXvvvRfJyckYPnw4Xn311VC7SRAEQRBEE0MxAkE0T2iGniBaEPofawBISUnB8uXLMXLkSBw7dgyff/45evXqFVoHCYIgCIIICRQjEETzhDbFIwgCALBlyxbMnj0bf/rTnzBw4MBQu0MQBEEQxC0CxQgEcetCA3qCIAiCIAiCIAiCaIbQknuCIAiCIAiCIAiCaIbQgJ4gCIIgCIIgCIIgmiE0oCcIgiAIgiAIgiCIZggN6AmCIAiCIAiCIAiiGUIDeoIgCIIgCIIgCIJohtCAniAIgiAIgiAIgiCaITSgJwiCIAiCIAiCIIhmCA3oCYIgCIIgCIIgCKIZQgN6giAIgiAIgiAIgmiG/F/ZmkSbZbfH9wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 2, figsize=(16, 4), dpi=77)\n", "for axis, colorby, name in zip(fig.axes, [k_delta, c_delta], [\"ΔK\", \"ΔC\"], strict=False):\n", " axis.plot(k_grid, boundaries[0], label=\"ΔK = 0\")\n", " axis.plot(k_grid, boundaries[1], label=\"ΔC = 0\")\n", " quiver_plot = axis.quiver(kk, cc, k_delta, c_delta, colorby, cmap=plt.cm.RdBu, clim=(-0.05, 0.05))\n", " axis.set(\n", " xlim=(0, k_max),\n", " ylim=(0, c_max),\n", " xlabel=\"$K_t$\",\n", " ylabel=\"$C_t$\",\n", " title=f\"Phase Diagram (Colored by {name})\",\n", " )\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "a6411b03d2953a6c", "metadata": {}, "source": [ "# Authors\n", "\n", "- Authored by Jesse Grabowski in March 2025" ] }, { "cell_type": "markdown", "id": "6d955fa3c85a31f5", "metadata": {}, "source": [ "# Watermark" ] }, { "cell_type": "code", "execution_count": 47, "id": "cee716277e9c8869", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:38.041894Z", "start_time": "2025-03-13T11:56:38.035606Z" }, "execution": { "iopub.execute_input": "2025-03-15T11:41:06.575665Z", "iopub.status.busy": "2025-03-15T11:41:06.575582Z", "iopub.status.idle": "2025-03-15T11:41:06.580849Z", "shell.execute_reply": "2025-03-15T11:41:06.580631Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Last updated: Sat Mar 15 2025\n", "\n", "Python implementation: CPython\n", "Python version : 3.12.9\n", "IPython version : 9.0.1\n", "\n", "gEconpy: 0+untagged.305.gd931e48.dirty\n", "\n", "sympy : 1.12.1\n", "sys : 3.12.9 | packaged by conda-forge | (main, Feb 14 2025, 07:56:32) [Clang 18.1.8 ]\n", "gEconpy : 0+untagged.305.gd931e48.dirty\n", "numpy : 1.26.4\n", "matplotlib: 3.10.1\n", "\n", "Watermark: 2.5.0\n", "\n" ] } ], "source": [ "%load_ext watermark\n", "# Delete lambdify functions (they break watermark)\n", "del f_ss, f_Delta, f_boundaries\n", "\n", "%watermark -n -u -v -iv -w -p gEconpy" ] }, { "cell_type": "code", "execution_count": null, "id": "eb1f3917b36be0a1", "metadata": { "ExecuteTime": { "end_time": "2025-03-13T11:56:38.051199Z", "start_time": "2025-03-13T11:56:38.050021Z" } }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.9" } }, "nbformat": 4, "nbformat_minor": 5 }