gEconpy.plotting.plot_corner#

gEconpy.plotting.plot_corner(idata, group='posterior', var_names=None, colorby=None, figure_kwargs=None, hist_bins=100, rug_bins=20, rug_levels=6, fontsize=6, show_marginal_modes=True, scatter_kwargs=None)#

Draw a corner plot, also known as a scatterplot matrix, of the posterior distributions of a set of variables.

Each panel of the plot shows the two-dimensional distribution of two of the variables, marginalizing over the remaining variables. The diagonal panels show the one-dimensional distribution of each variable.

Parameters:
idataarviz.InferenceData

An arviz idata object with a posterior group.

group: str, one of “prior” or “posterior”

The group from the InferenceData to plot.

var_nameslist of str, optional

A list of strings specifying the variables to plot. If not provided, all variables in idata will be plotted.

figure_kwargs: dict, optional

Additional keyword arguments to pass to the figure creation.

hist_binsint, optional

The number of bins to use for the histograms on the diagonal panels. Default is 200.

rug_binsint, optional

The number of bins to use for the histograms on the off-diagonal panels. Default is 50.

rug_levelsint, optional

The number of contour levels to use for the histograms on the off-diagonal panels. Default is 6.

fontsizeint, optional

The font size for the axis labels and ticks.

show_marginal_modesbool, optional

Whether or not to show the modes of the marginal distributions. Default is True.

Returns:
matplotlib.figure.Figure

Figure object containing the plots.