gEconpy.plotting.plot_corner#
- gEconpy.plotting.plot_corner(idata, group='posterior', var_names=None, colorby=None, figure_kwargs=None, hist_bins=100, rug_bins=20, rug_levels=6, fontsize=6, show_marginal_modes=True, scatter_kwargs=None)#
Draw a corner plot, also known as a scatterplot matrix, of the posterior distributions of a set of variables.
Each panel of the plot shows the two-dimensional distribution of two of the variables, marginalizing over the remaining variables. The diagonal panels show the one-dimensional distribution of each variable.
- Parameters:
- idata
arviz.InferenceData An arviz idata object with a posterior group.
- group: str, one of “prior” or “posterior”
The group from the InferenceData to plot.
- var_names
listofstr, optional A list of strings specifying the variables to plot. If not provided, all variables in idata will be plotted.
- figure_kwargs: dict, optional
Additional keyword arguments to pass to the figure creation.
- hist_bins
int, optional The number of bins to use for the histograms on the diagonal panels. Default is 200.
- rug_bins
int, optional The number of bins to use for the histograms on the off-diagonal panels. Default is 50.
- rug_levels
int, optional The number of contour levels to use for the histograms on the off-diagonal panels. Default is 6.
- fontsize
int, optional The font size for the axis labels and ticks.
- show_marginal_modesbool, optional
Whether or not to show the modes of the marginal distributions. Default is True.
- idata
- Returns:
matplotlib.figure.FigureFigure object containing the plots.