gEconpy.model.statespace.data_from_prior#
- gEconpy.model.statespace.data_from_prior(statepace_mod, pymc_model, index=None, n_samples=500, pct_missing=0, random_seed=None)#
Generate artificial data from prior predictive samples.
Also modifies the pymc model and the statespace model in-place to act as if build_statespace_graph has been called with the new data.
- Parameters:
- statepace_mod: DSGEStateSpace
Statespace model to generate data from. Must have been configured with the .configure method.
- pymc_model: pm.Model
PyMC model with priors on expected DSGE parameters. It should not have a Kalman Filter added via build_statespace_graph.
- index: pd.DatetimeIndex
Index to use for the generated data. If None, a quarterly index from 1980-01-01 to 2024-11-01 is used.
- n_samples: int
Number of prior predictive samples to draw.
- pct_missing: float
Percentage of missing data to introduce into the generated data. Must be between 0 and 1.
- random_seed: np.random.Generator or int, optional
Random number generator to use for sampling. If None, the default numpy random number generator is used.
- Returns:
- true_parameters:
xr.Dataset True parameters used to generate the data.
- data:
pd.DataFrame Generated data.
- prior_idata:
az.InferenceData Draws from the prior predictive distribution, plus conditional prior predictive samples.
- true_parameters: