gEconpy.model.model.autocorrelation_matrix#
- gEconpy.model.model.autocorrelation_matrix(model, T=None, R=None, shock_std_dict=None, shock_cov_matrix=None, shock_std=None, n_lags=10, *, correlation=True, return_xr=True, **solve_model_kwargs)#
Compute the model’s autocovariance matrix using the stationary covariance matrix.
Alternatively, the autocorrelation matrix can be returned by specifying
correlation = True.In order to construct the shock covariance matrix, exactly one of shock_dict, shock_cov_matrix, or shock_std should be provided.
- Parameters:
- model: Model
DSGE Model associated with T and R
- T: np.ndarray, optional
Transition matrix of the solved system. If None, this will be computed using the model’s
solve_modelmethod.- R: np.ndarray
Selection matrix of the solved system. If None, this will be computed using the model’s
solve_modelmethod.- shock_std_dict: dict, optional
A dictionary of shock sizes to be used to compute the stationary covariance matrix.
- shock_cov_matrix: array, optional
An (n_shocks, n_shocks) covariance matrix describing the exogenous shocks
- shock_std: float, optional
Standard deviation of all model shocks.
- n_lags: int
Number of lags of auto-covariance and cross-covariance to compute. Default is 10.
- correlation: bool
If True, return the autocorrelation matrices instead of the autocovariance matrices.
- return_xr: bool
If True, return the covariance matrices as a DataArray with dimensions [“variable”, “variable_aux”, and “lag”]. Otherwise returns a 3d numpy array with shape (lag, variable, variable).
- **solve_model_kwargs
Arguments forwarded to the
solve_modelmethod. Ignored if T and R are provided.
- Returns:
- acorr_mat:
DataFrame
- acorr_mat: